# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for MiniCPMV. """ import re from typing import List, Optional, Union import torch from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PreTokenizedInput, TextInput from transformers.utils import TensorType from .image_processing_minicpmv import MiniCPMVBatchFeature class MiniCPMVProcessor(ProcessorMixin): r""" Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. Args: image_processor ([`MiniCPMVImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerWrapper`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) self.version = image_processor.version def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: ImageInput = None, max_length: Optional[int] = None, do_pad: Optional[bool] = True, max_slice_nums: int = None, use_image_id: bool = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, **kwargs, ) -> MiniCPMVBatchFeature: image_inputs = None if images is not None: image_inputs = self.image_processor( images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors ) return self._convert_images_texts_to_inputs( image_inputs, text, max_slice_nums=max_slice_nums, use_image_id=use_image_id, max_length=max_length, **kwargs, return_tensors=return_tensors, ) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ output_ids = args[0] result_text = [] for result in output_ids: result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) return result_text # return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ result = args[0] result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id or ( hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id ): result = result[:-1] return self.tokenizer.decode(result, *args[1:], **kwargs).strip() def _convert(self, input_str, max_inp_length: Optional[int] = None): if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False): input_ids = self.tokenizer.encode(input_str) else: input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) if max_inp_length is not None: input_ids = input_ids[:max_inp_length] input_ids = torch.tensor(input_ids, dtype=torch.int32) start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id) end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id) image_start_tokens = torch.where(start_cond)[0] image_start_tokens += 1 image_end_tokens = torch.where(end_cond)[0] valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) image_bounds = torch.hstack( [ image_start_tokens[:valid_image_nums].unsqueeze(-1), image_end_tokens[:valid_image_nums].unsqueeze(-1), ] ) return input_ids, image_bounds def _convert_images_texts_to_inputs( self, images, texts: Union[str, List[str]], truncation=None, max_length=None, max_slice_nums=None, use_image_id=None, return_tensors=None, **kwargs, ): if images is None or not len(images): model_inputs = self.tokenizer( texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs ) return MiniCPMVBatchFeature(data={**model_inputs}) pattern = "(./)" images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] if isinstance(texts, str): texts = [texts] input_ids_list = [] image_bounds_list = [] for index, text in enumerate(texts): image_tags = re.findall(pattern, text) assert len(image_tags) == len(image_sizes[index]) text_chunks = text.split(pattern) final_text = "" for i in range(len(image_tags)): final_text = ( final_text + text_chunks[i] + self.image_processor.get_slice_image_placeholder( image_sizes[index][i], i, max_slice_nums, use_image_id ) ) final_text += text_chunks[-1] input_ids, image_bounds = self._convert(final_text, max_length) input_ids_list.append(input_ids) image_bounds_list.append(image_bounds) padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left") for i, length in enumerate(padding_lengths): image_bounds_list[i] = image_bounds_list[i] + length attention_mask = padded_input_ids.ne(0) return MiniCPMVBatchFeature( data={ "input_ids": padded_input_ids, "attention_mask": attention_mask, "pixel_values": images, "image_sizes": image_sizes, "image_bound": image_bounds_list, "tgt_sizes": tgt_sizes, } ) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"): items = [] if isinstance(inputs[0], list): assert isinstance(inputs[0][0], torch.Tensor) for it in inputs: for tr in it: items.append(tr) else: assert isinstance(inputs[0], torch.Tensor) items = inputs batch_size = len(items) shape = items[0].shape dim = len(shape) assert dim <= 2 if max_length is None: max_length = 0 max_length = max(max_length, max(item.shape[-1] for item in items)) min_length = min(item.shape[-1] for item in items) dtype = items[0].dtype if dim == 0: return torch.stack([item for item in items], dim=0), [0] elif dim == 1: if max_length == min_length: return torch.stack([item for item in items], dim=0), [0] * batch_size tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value else: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value padding_length = [] for i, item in enumerate(items): if dim == 1: if padding_side == "left": tensor[i, -len(item) :] = item.clone() else: tensor[i, : len(item)] = item.clone() elif dim == 2: if padding_side == "left": tensor[i, -len(item) :, :] = item.clone() else: tensor[i, : len(item), :] = item.clone() padding_length.append(tensor.shape[-1] - len(item)) return tensor, padding_length