|
|
|
|
|
import argparse |
|
import math |
|
import os |
|
from multiprocessing import Value |
|
from typing import List |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
|
|
init_ipex() |
|
|
|
from accelerate.utils import set_seed |
|
from diffusers import DDPMScheduler |
|
from library import deepspeed_utils, sdxl_model_util |
|
|
|
import library.train_util as train_util |
|
|
|
from library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import library.config_util as config_util |
|
import library.sdxl_train_util as sdxl_train_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
import library.custom_train_functions as custom_train_functions |
|
from library.custom_train_functions import ( |
|
apply_snr_weight, |
|
prepare_scheduler_for_custom_training, |
|
scale_v_prediction_loss_like_noise_prediction, |
|
add_v_prediction_like_loss, |
|
apply_debiased_estimation, |
|
apply_masked_loss, |
|
) |
|
from library.sdxl_original_unet import SdxlUNet2DConditionModel |
|
|
|
|
|
UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23 |
|
|
|
|
|
def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]: |
|
block_params = [[] for _ in range(len(block_lrs))] |
|
|
|
for i, (name, param) in enumerate(unet.named_parameters()): |
|
if name.startswith("time_embed.") or name.startswith("label_emb."): |
|
block_index = 0 |
|
elif name.startswith("input_blocks."): |
|
block_index = 1 + int(name.split(".")[1]) |
|
elif name.startswith("middle_block."): |
|
block_index = 10 + int(name.split(".")[1]) |
|
elif name.startswith("output_blocks."): |
|
block_index = 13 + int(name.split(".")[1]) |
|
elif name.startswith("out."): |
|
block_index = 22 |
|
else: |
|
raise ValueError(f"unexpected parameter name: {name}") |
|
|
|
block_params[block_index].append(param) |
|
|
|
params_to_optimize = [] |
|
for i, params in enumerate(block_params): |
|
if block_lrs[i] == 0: |
|
continue |
|
params_to_optimize.append({"params": params, "lr": block_lrs[i]}) |
|
|
|
return params_to_optimize |
|
|
|
|
|
def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type): |
|
names = [] |
|
block_index = 0 |
|
while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2: |
|
if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR: |
|
if block_lrs[block_index] == 0: |
|
block_index += 1 |
|
continue |
|
names.append(f"block{block_index}") |
|
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR: |
|
names.append("text_encoder1") |
|
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1: |
|
names.append("text_encoder2") |
|
|
|
block_index += 1 |
|
|
|
train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names) |
|
|
|
|
|
def train(args): |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
sdxl_train_util.verify_sdxl_training_args(args) |
|
deepspeed_utils.prepare_deepspeed_args(args) |
|
setup_logging(args, reset=True) |
|
|
|
assert ( |
|
not args.weighted_captions |
|
), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません" |
|
assert ( |
|
not args.train_text_encoder or not args.cache_text_encoder_outputs |
|
), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません" |
|
|
|
if args.block_lr: |
|
block_lrs = [float(lr) for lr in args.block_lr.split(",")] |
|
assert ( |
|
len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR |
|
), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください" |
|
else: |
|
block_lrs = None |
|
|
|
cache_latents = args.cache_latents |
|
use_dreambooth_method = args.in_json is None |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True)) |
|
if args.dataset_config is not None: |
|
logger.info(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
if use_dreambooth_method: |
|
logger.info("Using DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
logger.info("Training with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2]) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2]) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
train_dataset_group.verify_bucket_reso_steps(32) |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group, True) |
|
return |
|
if len(train_dataset_group) == 0: |
|
logger.error( |
|
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。" |
|
) |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
if args.cache_text_encoder_outputs: |
|
assert ( |
|
train_dataset_group.is_text_encoder_output_cacheable() |
|
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
( |
|
load_stable_diffusion_format, |
|
text_encoder1, |
|
text_encoder2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype) |
|
|
|
|
|
|
|
if load_stable_diffusion_format: |
|
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path |
|
src_diffusers_model_path = None |
|
else: |
|
src_stable_diffusion_ckpt = None |
|
src_diffusers_model_path = args.pretrained_model_name_or_path |
|
|
|
if args.save_model_as is None: |
|
save_stable_diffusion_format = load_stable_diffusion_format |
|
use_safetensors = args.use_safetensors |
|
else: |
|
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" |
|
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) |
|
|
|
|
|
|
|
def set_diffusers_xformers_flag(model, valid): |
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
fn_recursive_set_mem_eff(model) |
|
|
|
|
|
if args.diffusers_xformers: |
|
|
|
accelerator.print("Use xformers by Diffusers") |
|
|
|
set_diffusers_xformers_flag(vae, True) |
|
else: |
|
|
|
accelerator.print("Disable Diffusers' xformers") |
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) |
|
if torch.__version__ >= "2.0.0": |
|
vae.set_use_memory_efficient_attention_xformers(args.xformers) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) |
|
vae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
train_unet = args.learning_rate != 0 |
|
train_text_encoder1 = False |
|
train_text_encoder2 = False |
|
|
|
if args.train_text_encoder: |
|
|
|
accelerator.print("enable text encoder training") |
|
if args.gradient_checkpointing: |
|
text_encoder1.gradient_checkpointing_enable() |
|
text_encoder2.gradient_checkpointing_enable() |
|
lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate |
|
lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate |
|
train_text_encoder1 = lr_te1 != 0 |
|
train_text_encoder2 = lr_te2 != 0 |
|
|
|
|
|
if not train_text_encoder1: |
|
text_encoder1.to(weight_dtype) |
|
if not train_text_encoder2: |
|
text_encoder2.to(weight_dtype) |
|
text_encoder1.requires_grad_(train_text_encoder1) |
|
text_encoder2.requires_grad_(train_text_encoder2) |
|
text_encoder1.train(train_text_encoder1) |
|
text_encoder2.train(train_text_encoder2) |
|
else: |
|
text_encoder1.to(weight_dtype) |
|
text_encoder2.to(weight_dtype) |
|
text_encoder1.requires_grad_(False) |
|
text_encoder2.requires_grad_(False) |
|
text_encoder1.eval() |
|
text_encoder2.eval() |
|
|
|
|
|
if args.cache_text_encoder_outputs: |
|
|
|
with torch.no_grad(), accelerator.autocast(): |
|
train_dataset_group.cache_text_encoder_outputs( |
|
(tokenizer1, tokenizer2), |
|
(text_encoder1, text_encoder2), |
|
accelerator.device, |
|
None, |
|
args.cache_text_encoder_outputs_to_disk, |
|
accelerator.is_main_process, |
|
) |
|
accelerator.wait_for_everyone() |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
|
|
unet.requires_grad_(train_unet) |
|
if not train_unet: |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
|
|
training_models = [] |
|
params_to_optimize = [] |
|
if train_unet: |
|
training_models.append(unet) |
|
if block_lrs is None: |
|
params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate}) |
|
else: |
|
params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs)) |
|
|
|
if train_text_encoder1: |
|
training_models.append(text_encoder1) |
|
params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate}) |
|
if train_text_encoder2: |
|
training_models.append(text_encoder2) |
|
params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate}) |
|
|
|
|
|
n_params = 0 |
|
for group in params_to_optimize: |
|
for p in group["params"]: |
|
n_params += p.numel() |
|
|
|
accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}") |
|
accelerator.print(f"number of models: {len(training_models)}") |
|
accelerator.print(f"number of trainable parameters: {n_params}") |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
|
|
if args.fused_optimizer_groups: |
|
|
|
|
|
|
|
|
|
|
|
n_total_params = sum(len(params["params"]) for params in params_to_optimize) |
|
params_per_group = math.ceil(n_total_params / args.fused_optimizer_groups) |
|
|
|
|
|
|
|
grouped_params = [] |
|
param_group = [] |
|
param_group_lr = -1 |
|
for group in params_to_optimize: |
|
lr = group["lr"] |
|
for p in group["params"]: |
|
|
|
if lr != param_group_lr: |
|
if param_group: |
|
grouped_params.append({"params": param_group, "lr": param_group_lr}) |
|
param_group = [] |
|
param_group_lr = lr |
|
|
|
param_group.append(p) |
|
|
|
|
|
if len(param_group) == params_per_group: |
|
grouped_params.append({"params": param_group, "lr": param_group_lr}) |
|
param_group = [] |
|
param_group_lr = -1 |
|
|
|
if param_group: |
|
grouped_params.append({"params": param_group, "lr": param_group_lr}) |
|
|
|
|
|
optimizers = [] |
|
for group in grouped_params: |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=[group]) |
|
optimizers.append(optimizer) |
|
optimizer = optimizers[0] |
|
|
|
logger.info(f"using {len(optimizers)} optimizers for fused optimizer groups") |
|
|
|
else: |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
if args.fused_optimizer_groups: |
|
|
|
lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers] |
|
lr_scheduler = lr_schedulers[0] |
|
else: |
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
if args.full_fp16: |
|
assert ( |
|
args.mixed_precision == "fp16" |
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
accelerator.print("enable full fp16 training.") |
|
unet.to(weight_dtype) |
|
text_encoder1.to(weight_dtype) |
|
text_encoder2.to(weight_dtype) |
|
elif args.full_bf16: |
|
assert ( |
|
args.mixed_precision == "bf16" |
|
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" |
|
accelerator.print("enable full bf16 training.") |
|
unet.to(weight_dtype) |
|
text_encoder1.to(weight_dtype) |
|
text_encoder2.to(weight_dtype) |
|
|
|
|
|
if train_text_encoder1: |
|
text_encoder1.text_model.encoder.layers[-1].requires_grad_(False) |
|
text_encoder1.text_model.final_layer_norm.requires_grad_(False) |
|
|
|
if args.deepspeed: |
|
ds_model = deepspeed_utils.prepare_deepspeed_model( |
|
args, |
|
unet=unet if train_unet else None, |
|
text_encoder1=text_encoder1 if train_text_encoder1 else None, |
|
text_encoder2=text_encoder2 if train_text_encoder2 else None, |
|
) |
|
|
|
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
ds_model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
training_models = [ds_model] |
|
|
|
else: |
|
|
|
if train_unet: |
|
unet = accelerator.prepare(unet) |
|
if train_text_encoder1: |
|
text_encoder1 = accelerator.prepare(text_encoder1) |
|
if train_text_encoder2: |
|
text_encoder2 = accelerator.prepare(text_encoder2) |
|
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler) |
|
|
|
|
|
if args.cache_text_encoder_outputs: |
|
|
|
text_encoder1.to("cpu", dtype=torch.float32) |
|
text_encoder2.to("cpu", dtype=torch.float32) |
|
clean_memory_on_device(accelerator.device) |
|
else: |
|
|
|
text_encoder1.to(accelerator.device) |
|
text_encoder2.to(accelerator.device) |
|
|
|
|
|
if args.full_fp16: |
|
|
|
|
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
if args.fused_backward_pass: |
|
|
|
import library.adafactor_fused |
|
|
|
library.adafactor_fused.patch_adafactor_fused(optimizer) |
|
for param_group in optimizer.param_groups: |
|
for parameter in param_group["params"]: |
|
if parameter.requires_grad: |
|
|
|
def __grad_hook(tensor: torch.Tensor, param_group=param_group): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
accelerator.clip_grad_norm_(tensor, args.max_grad_norm) |
|
optimizer.step_param(tensor, param_group) |
|
tensor.grad = None |
|
|
|
parameter.register_post_accumulate_grad_hook(__grad_hook) |
|
|
|
elif args.fused_optimizer_groups: |
|
|
|
for i in range(1, len(optimizers)): |
|
optimizers[i] = accelerator.prepare(optimizers[i]) |
|
lr_schedulers[i] = accelerator.prepare(lr_schedulers[i]) |
|
|
|
|
|
global optimizer_hooked_count |
|
global num_parameters_per_group |
|
global parameter_optimizer_map |
|
|
|
optimizer_hooked_count = {} |
|
num_parameters_per_group = [0] * len(optimizers) |
|
parameter_optimizer_map = {} |
|
|
|
for opt_idx, optimizer in enumerate(optimizers): |
|
for param_group in optimizer.param_groups: |
|
for parameter in param_group["params"]: |
|
if parameter.requires_grad: |
|
|
|
def optimizer_hook(parameter: torch.Tensor): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
accelerator.clip_grad_norm_(parameter, args.max_grad_norm) |
|
|
|
i = parameter_optimizer_map[parameter] |
|
optimizer_hooked_count[i] += 1 |
|
if optimizer_hooked_count[i] == num_parameters_per_group[i]: |
|
optimizers[i].step() |
|
optimizers[i].zero_grad(set_to_none=True) |
|
|
|
parameter.register_post_accumulate_grad_hook(optimizer_hook) |
|
parameter_optimizer_map[parameter] = opt_idx |
|
num_parameters_per_group[opt_idx] += 1 |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
|
|
accelerator.print("running training / 学習開始") |
|
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") |
|
accelerator.print( |
|
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" |
|
) |
|
|
|
|
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False |
|
) |
|
|
|
|
|
if args.zero_terminal_snr: |
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) |
|
|
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) |
|
|
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers( |
|
"finetuning" if args.log_tracker_name is None else args.log_tracker_name, |
|
config=train_util.get_sanitized_config_or_none(args), |
|
init_kwargs=init_kwargs, |
|
) |
|
|
|
|
|
sdxl_train_util.sample_images( |
|
accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet |
|
) |
|
|
|
loss_recorder = train_util.LossRecorder() |
|
for epoch in range(num_train_epochs): |
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") |
|
current_epoch.value = epoch + 1 |
|
|
|
for m in training_models: |
|
m.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = global_step |
|
|
|
if args.fused_optimizer_groups: |
|
optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} |
|
|
|
with accelerator.accumulate(*training_models): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) |
|
else: |
|
with torch.no_grad(): |
|
|
|
latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype) |
|
|
|
|
|
if torch.any(torch.isnan(latents)): |
|
accelerator.print("NaN found in latents, replacing with zeros") |
|
latents = torch.nan_to_num(latents, 0, out=latents) |
|
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR |
|
|
|
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None: |
|
input_ids1 = batch["input_ids"] |
|
input_ids2 = batch["input_ids2"] |
|
with torch.set_grad_enabled(args.train_text_encoder): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_ids1 = input_ids1.to(accelerator.device) |
|
input_ids2 = input_ids2.to(accelerator.device) |
|
|
|
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( |
|
args.max_token_length, |
|
input_ids1, |
|
input_ids2, |
|
tokenizer1, |
|
tokenizer2, |
|
text_encoder1, |
|
text_encoder2, |
|
None if not args.full_fp16 else weight_dtype, |
|
accelerator=accelerator, |
|
) |
|
else: |
|
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype) |
|
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype) |
|
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
orig_size = batch["original_sizes_hw"] |
|
crop_size = batch["crop_top_lefts"] |
|
target_size = batch["target_sizes_hw"] |
|
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) |
|
|
|
|
|
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) |
|
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) |
|
|
|
|
|
|
|
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps( |
|
args, noise_scheduler, latents |
|
) |
|
|
|
noisy_latents = noisy_latents.to(weight_dtype) |
|
|
|
|
|
with accelerator.autocast(): |
|
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
if ( |
|
args.min_snr_gamma |
|
or args.scale_v_pred_loss_like_noise_pred |
|
or args.v_pred_like_loss |
|
or args.debiased_estimation_loss |
|
or args.masked_loss |
|
): |
|
|
|
loss = train_util.conditional_loss( |
|
noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c |
|
) |
|
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None): |
|
loss = apply_masked_loss(loss, batch) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
if args.min_snr_gamma: |
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) |
|
if args.scale_v_pred_loss_like_noise_pred: |
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) |
|
if args.v_pred_like_loss: |
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) |
|
if args.debiased_estimation_loss: |
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization) |
|
|
|
loss = loss.mean() |
|
else: |
|
loss = train_util.conditional_loss( |
|
noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c |
|
) |
|
|
|
accelerator.backward(loss) |
|
|
|
if not (args.fused_backward_pass or args.fused_optimizer_groups): |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = [] |
|
for m in training_models: |
|
params_to_clip.extend(m.parameters()) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
else: |
|
|
|
lr_scheduler.step() |
|
if args.fused_optimizer_groups: |
|
for i in range(1, len(optimizers)): |
|
lr_schedulers[i].step() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
sdxl_train_util.sample_images( |
|
accelerator, |
|
args, |
|
None, |
|
global_step, |
|
accelerator.device, |
|
vae, |
|
[tokenizer1, tokenizer2], |
|
[text_encoder1, text_encoder2], |
|
unet, |
|
) |
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise( |
|
args, |
|
False, |
|
accelerator, |
|
src_path, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
save_dtype, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
accelerator.unwrap_model(text_encoder1), |
|
accelerator.unwrap_model(text_encoder2), |
|
accelerator.unwrap_model(unet), |
|
vae, |
|
logit_scale, |
|
ckpt_info, |
|
) |
|
|
|
current_loss = loss.detach().item() |
|
if args.logging_dir is not None: |
|
logs = {"loss": current_loss} |
|
if block_lrs is None: |
|
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet) |
|
else: |
|
append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type) |
|
|
|
accelerator.log(logs, step=global_step) |
|
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) |
|
avr_loss: float = loss_recorder.moving_average |
|
logs = {"avr_loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_recorder.moving_average} |
|
accelerator.log(logs, step=epoch + 1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
if args.save_every_n_epochs is not None: |
|
if accelerator.is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise( |
|
args, |
|
True, |
|
accelerator, |
|
src_path, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
save_dtype, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
accelerator.unwrap_model(text_encoder1), |
|
accelerator.unwrap_model(text_encoder2), |
|
accelerator.unwrap_model(unet), |
|
vae, |
|
logit_scale, |
|
ckpt_info, |
|
) |
|
|
|
sdxl_train_util.sample_images( |
|
accelerator, |
|
args, |
|
epoch + 1, |
|
global_step, |
|
accelerator.device, |
|
vae, |
|
[tokenizer1, tokenizer2], |
|
[text_encoder1, text_encoder2], |
|
unet, |
|
) |
|
|
|
is_main_process = accelerator.is_main_process |
|
|
|
unet = accelerator.unwrap_model(unet) |
|
text_encoder1 = accelerator.unwrap_model(text_encoder1) |
|
text_encoder2 = accelerator.unwrap_model(text_encoder2) |
|
|
|
accelerator.end_training() |
|
|
|
if args.save_state or args.save_state_on_train_end: |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
del accelerator |
|
|
|
if is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
sdxl_train_util.save_sd_model_on_train_end( |
|
args, |
|
src_path, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
save_dtype, |
|
epoch, |
|
global_step, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
vae, |
|
logit_scale, |
|
ckpt_info, |
|
) |
|
logger.info("model saved.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
train_util.add_training_arguments(parser, False) |
|
train_util.add_masked_loss_arguments(parser) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_sd_saving_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
custom_train_functions.add_custom_train_arguments(parser) |
|
sdxl_train_util.add_sdxl_training_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--learning_rate_te1", |
|
type=float, |
|
default=None, |
|
help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率", |
|
) |
|
parser.add_argument( |
|
"--learning_rate_te2", |
|
type=float, |
|
default=None, |
|
help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率", |
|
) |
|
|
|
parser.add_argument( |
|
"--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する" |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
parser.add_argument( |
|
"--block_lr", |
|
type=str, |
|
default=None, |
|
help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / " |
|
+ f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値", |
|
) |
|
parser.add_argument( |
|
"--fused_optimizer_groups", |
|
type=int, |
|
default=None, |
|
help="number of optimizers for fused backward pass and optimizer step / fused backward passとoptimizer stepのためのoptimizer数", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
train(args) |
|
|