layoutlmv3-finetuned-wildreceipt
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3146
- Precision: 0.8798
- Recall: 0.8807
- F1: 0.8802
- Accuracy: 0.9260
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.3155 | 100 | 1.3209 | 0.5494 | 0.3560 | 0.4320 | 0.6831 |
No log | 0.6309 | 200 | 0.8725 | 0.6581 | 0.5196 | 0.5807 | 0.7703 |
No log | 0.9464 | 300 | 0.6947 | 0.7348 | 0.6701 | 0.7009 | 0.8309 |
No log | 1.2618 | 400 | 0.5767 | 0.7727 | 0.7133 | 0.7418 | 0.8519 |
1.0485 | 1.5773 | 500 | 0.5011 | 0.7667 | 0.7605 | 0.7636 | 0.8673 |
1.0485 | 1.8927 | 600 | 0.4996 | 0.7616 | 0.7818 | 0.7716 | 0.8668 |
1.0485 | 2.2082 | 700 | 0.4144 | 0.8010 | 0.7989 | 0.7999 | 0.8867 |
1.0485 | 2.5237 | 800 | 0.3943 | 0.8162 | 0.8231 | 0.8196 | 0.8936 |
1.0485 | 2.8391 | 900 | 0.3821 | 0.8096 | 0.8340 | 0.8216 | 0.8963 |
0.418 | 3.1546 | 1000 | 0.3637 | 0.8350 | 0.8428 | 0.8389 | 0.9031 |
0.418 | 3.4700 | 1100 | 0.3422 | 0.8518 | 0.8314 | 0.8415 | 0.9081 |
0.418 | 3.7855 | 1200 | 0.3425 | 0.8322 | 0.8579 | 0.8449 | 0.9057 |
0.418 | 4.1009 | 1300 | 0.3242 | 0.8556 | 0.8541 | 0.8549 | 0.9132 |
0.418 | 4.4164 | 1400 | 0.3267 | 0.8442 | 0.8628 | 0.8534 | 0.9117 |
0.28 | 4.7319 | 1500 | 0.3144 | 0.8565 | 0.8603 | 0.8584 | 0.9152 |
0.28 | 5.0473 | 1600 | 0.3102 | 0.8707 | 0.8617 | 0.8661 | 0.9182 |
0.28 | 5.3628 | 1700 | 0.3291 | 0.8677 | 0.8615 | 0.8646 | 0.9169 |
0.28 | 5.6782 | 1800 | 0.2999 | 0.8587 | 0.8717 | 0.8652 | 0.9182 |
0.28 | 5.9937 | 1900 | 0.3128 | 0.8596 | 0.8680 | 0.8638 | 0.9184 |
0.2106 | 6.3091 | 2000 | 0.3111 | 0.8667 | 0.8725 | 0.8696 | 0.9207 |
0.2106 | 6.6246 | 2100 | 0.3053 | 0.8716 | 0.8679 | 0.8697 | 0.9207 |
0.2106 | 6.9401 | 2200 | 0.3017 | 0.8683 | 0.8756 | 0.8719 | 0.9221 |
0.2106 | 7.2555 | 2300 | 0.2986 | 0.8800 | 0.8702 | 0.8751 | 0.9236 |
0.2106 | 7.5710 | 2400 | 0.3012 | 0.8747 | 0.8717 | 0.8732 | 0.9230 |
0.1724 | 7.8864 | 2500 | 0.3014 | 0.8696 | 0.8776 | 0.8736 | 0.9232 |
0.1724 | 8.2019 | 2600 | 0.3066 | 0.8763 | 0.8725 | 0.8744 | 0.9232 |
0.1724 | 8.5174 | 2700 | 0.3181 | 0.8696 | 0.8794 | 0.8745 | 0.9228 |
0.1724 | 8.8328 | 2800 | 0.3065 | 0.8724 | 0.8816 | 0.8770 | 0.9237 |
0.1724 | 9.1483 | 2900 | 0.3041 | 0.8753 | 0.8818 | 0.8785 | 0.9259 |
0.1393 | 9.4637 | 3000 | 0.3205 | 0.8685 | 0.8812 | 0.8748 | 0.9238 |
0.1393 | 9.7792 | 3100 | 0.3050 | 0.8705 | 0.8838 | 0.8771 | 0.9253 |
0.1393 | 10.0946 | 3200 | 0.3158 | 0.8746 | 0.8838 | 0.8792 | 0.9246 |
0.1393 | 10.4101 | 3300 | 0.3086 | 0.8785 | 0.8779 | 0.8782 | 0.9258 |
0.1393 | 10.7256 | 3400 | 0.3108 | 0.8801 | 0.8822 | 0.8811 | 0.9274 |
0.1222 | 11.0410 | 3500 | 0.3146 | 0.8798 | 0.8807 | 0.8802 | 0.9260 |
0.1222 | 11.3565 | 3600 | 0.3111 | 0.8790 | 0.8813 | 0.8802 | 0.9261 |
0.1222 | 11.6719 | 3700 | 0.3161 | 0.8769 | 0.8848 | 0.8808 | 0.9261 |
0.1222 | 11.9874 | 3800 | 0.3133 | 0.8769 | 0.8823 | 0.8796 | 0.9262 |
0.1222 | 12.3028 | 3900 | 0.3137 | 0.8767 | 0.8829 | 0.8798 | 0.9260 |
0.1115 | 12.6183 | 4000 | 0.3135 | 0.8766 | 0.8833 | 0.8799 | 0.9262 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for kaydee/layoutlmv3-finetuned-wildreceipt
Base model
microsoft/layoutlmv3-base