File size: 1,839 Bytes
725b5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: kazandaev/m2m100_418M
tags:
- translation
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: m2m100_418M
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: wmt16
      type: wmt16
      config: ru-en
      split: validation
      args: ru-en
    metrics:
    - name: Bleu
      type: bleu
      value: 32.0585
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# m2m100_418M

This model is a fine-tuned version of [kazandaev/m2m100_418M](https://huggingface.co/kazandaev/m2m100_418M) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8954
- Bleu: 32.0585
- Gen Len: 36.1643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.8087        | 1.0   | 47790 | 0.9542          | 30.786  | 36.1469 |
| 0.7266        | 2.0   | 95580 | 0.8954          | 32.0585 | 36.1643 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.2.0.dev20230920+cu121
- Datasets 2.14.4
- Tokenizers 0.13.3