File size: 1,688 Bytes
0222478
 
886675d
 
 
 
 
 
0222478
 
886675d
 
0222478
886675d
 
1e5af0b
886675d
a9c9b6a
 
 
886675d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c9b6a
1e5af0b
 
886675d
 
 
a9c9b6a
886675d
 
 
1e5af0b
 
a9c9b6a
 
 
 
 
886675d
 
 
 
 
1e5af0b
886675d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-ru-en-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-mt-ru-en-finetuned

This model is a fine-tuned version of [kazandaev/opus-mt-ru-en-finetuned](https://huggingface.co/kazandaev/opus-mt-ru-en-finetuned) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0379
- Bleu: 43.3073
- Gen Len: 26.1682

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 49
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|
| 0.8428        | 1.0   | 35147  | 1.0405          | 43.2785 | 26.1278 |
| 0.8485        | 2.0   | 70294  | 1.0383          | 43.3787 | 26.1725 |
| 0.8474        | 3.0   | 105441 | 1.0380          | 43.4092 | 26.1561 |
| 0.8373        | 4.0   | 140588 | 1.0379          | 43.3883 | 26.1952 |
| 0.8299        | 5.0   | 175735 | 1.0379          | 43.3073 | 26.1682 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0