kazugiri commited on
Commit
b088348
1 Parent(s): a9faf84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -20,3 +20,106 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+
25
+ # how to use
26
+ Using Google Colab env
27
+ ```python
28
+ !pip install -U bitsandbytes
29
+ !pip install -U transformers
30
+ !pip install -U accelerate
31
+ !pip install -U datasets
32
+ !pip install ipywidgets --upgrade
33
+ ```
34
+
35
+
36
+ ```python
37
+ from transformers import (
38
+ AutoModelForCausalLM,
39
+ AutoTokenizer,
40
+ BitsAndBytesConfig,
41
+ )
42
+ import torch
43
+ from tqdm import tqdm
44
+ import json
45
+ ```
46
+
47
+
48
+ ```python
49
+ # Write here your Hugging Face token and model name
50
+ HF_TOKEN = "{your Hugging Face token}"
51
+ model_name = "your model name"
52
+ ```
53
+
54
+
55
+ ```python
56
+ # QLoRA config
57
+ bnb_config = BitsAndBytesConfig(
58
+ load_in_4bit=True,
59
+ bnb_4bit_quant_type="nf4",
60
+ bnb_4bit_compute_dtype=torch.bfloat16,
61
+ bnb_4bit_use_double_quant=False,
62
+ )
63
+ ```
64
+
65
+
66
+ ```python
67
+ # Load model
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ model_name,
70
+ quantization_config=bnb_config,
71
+ device_map="auto",
72
+ token = HF_TOKEN
73
+ )
74
+
75
+ # Load tokenizer
76
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
77
+ ```
78
+
79
+
80
+ ```python
81
+ datasets = []
82
+ with open("{your task data jsonl file path}", "r") as f:
83
+ item = ""
84
+ for line in f:
85
+ line = line.strip()
86
+ item += line
87
+ if item.endswith("}"):
88
+ datasets.append(json.loads(item))
89
+ item = ""
90
+ ```
91
+
92
+ ```python
93
+ # llmjp
94
+ results = []
95
+ for data in tqdm(datasets):
96
+
97
+ input = data["input"]
98
+
99
+ prompt = f"""### 指示
100
+ {input}
101
+ ### 回答:
102
+ """
103
+
104
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
105
+ with torch.no_grad():
106
+ outputs = model.generate(
107
+ tokenized_input,
108
+ max_new_tokens=200,
109
+ do_sample=False,
110
+ repetition_penalty=1.2
111
+ )[0]
112
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
113
+
114
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
115
+ ```
116
+
117
+ ```python
118
+ # get the answers as a jsonl file
119
+ import re
120
+ model_name = re.sub(".*/", "", model_name)
121
+ with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
122
+ for result in results:
123
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
124
+ f.write('\n')
125
+ ```