|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch GPTJiang model.""" |
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
import torch.nn.functional as F |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from .configuration_gpt_jiang import GPTJiangConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "GPTJiangConfig" |
|
GPT_JIANG_PRETRAINED_MODEL_ARCHIVE_LIST = [] |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float=1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
class GPTJiangPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
config_class = GPTJiangConfig |
|
base_model_prefix = "gpt_jiang" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["GPTJiangLayer"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, GatedLinear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.fill_(1.0) |
|
elif isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, RMSNorm): |
|
|
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, GPTJiangModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class GPTJiangAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size = config.hidden_size |
|
self.head_size = self.hidden_size // self.num_attention_heads |
|
self.rotary_ndims = int(self.head_size * config.rotary_pct) |
|
self.rotary_emb = RotaryEmbedding( |
|
self.rotary_ndims, |
|
config.max_position_embeddings, |
|
base=config.rotary_emb_base |
|
) |
|
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.causal_mask_cached = None |
|
|
|
def causal_mask(self, x, seq_len): |
|
if self.causal_mask_cached is None or seq_len > self.causal_mask_cached.shape[2]: |
|
cache_size = max(self.max_position_embeddings, seq_len) |
|
self.causal_mask_cached = torch.ones( |
|
cache_size, |
|
cache_size, |
|
dtype=torch.bool |
|
).tril().view(1, 1, cache_size, cache_size) |
|
return self.causal_mask_cached[:, :, :seq_len, :seq_len].to(x.device) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
head_mask=None, |
|
layer_past=None, |
|
use_cache=False, |
|
output_attentions=False |
|
): |
|
has_layer_past = layer_past is not None |
|
|
|
|
|
|
|
|
|
qkv = self.query_key_value(hidden_states) |
|
|
|
|
|
|
|
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) |
|
qkv = qkv.view(*new_qkv_shape) |
|
|
|
|
|
query = qkv[..., : self.head_size].permute(0, 2, 1, 3) |
|
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) |
|
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seq_len = key.shape[-2] |
|
offset = 0 |
|
if has_layer_past: |
|
offset = layer_past[0].shape[-2] |
|
seq_len += offset |
|
cos, sin = self.rotary_emb(value, seq_len=seq_len) |
|
|
|
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=offset) |
|
|
|
|
|
|
|
|
|
|
|
if has_layer_past: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
present = (key, value,) if use_cache else None |
|
|
|
query = query.type_as(hidden_states) |
|
key = key.type_as(hidden_states) |
|
value = value.type_as(hidden_states) |
|
|
|
if output_attentions: |
|
|
|
attn_output, attn_weights = self._attn( |
|
query, key, value, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
else: |
|
if layer_past is not None and attention_mask is None: |
|
|
|
batch_size = query.size(0) |
|
attention_mask = torch.ones(batch_size, seq_len, dtype=torch.bool)[:, None, None, :] |
|
|
|
if attention_mask is not None: |
|
attn_mask = attention_mask.transpose(2, 3) * attention_mask |
|
query_length = query.size(-2) |
|
key_length = key.size(-2) |
|
if query_length > 1: |
|
causal_mask = self.causal_mask(query, seq_len) |
|
causal_mask = causal_mask[:, :, -query_length:, :] |
|
attn_mask = (attn_mask[:, :, -query_length:, :] * causal_mask).to(torch.bool) |
|
else: |
|
attn_mask = attn_mask[:, :, -query_length:, :].to(torch.bool) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=attn_mask, |
|
is_causal=False |
|
) |
|
else: |
|
attn_output = F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=None, |
|
is_causal=True |
|
) |
|
attn_weights = None |
|
|
|
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size) |
|
|
|
attn_output = self.dense(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
@classmethod |
|
def _calculate_attn_output_loss(self, attn_output): |
|
bs, num_attention_heads, seq_len, attn_head_size = attn_output.size() |
|
attn_output_out = attn_output.view(bs, num_attention_heads, -1) |
|
attn_output_out_norm = attn_output_out / torch.max( |
|
attn_output_out.norm(dim=2, keepdim=True), |
|
1e-8 * torch.ones_like(attn_output_out) |
|
) |
|
sim = torch.bmm(attn_output_out_norm, attn_output_out_norm.permute(0, 2, 1)) |
|
attn_output_loss = sim.sum() / sim.numel() |
|
return attn_output_loss |
|
|
|
@classmethod |
|
def _split_heads(cls, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Splits hidden dim into attn_head_size and num_attention_heads |
|
""" |
|
|
|
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) |
|
|
|
tensor = tensor.view(new_shape) |
|
|
|
tensor = tensor.permute(0, 2, 1, 3) |
|
return tensor |
|
|
|
@classmethod |
|
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden dim |
|
""" |
|
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
|
|
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size) |
|
|
|
return tensor |
|
|
|
def create_upper_triangular_matrix(self, q, k): |
|
size = max(q, k) |
|
|
|
identity = torch.eye(size) |
|
|
|
row_indices = torch.arange(size).view(-1, 1).expand(size, size) |
|
|
|
col_indices = torch.arange(size).view(1, -1).expand(size, size) |
|
|
|
upper_triangular_matrix = torch.where(row_indices < col_indices, 0, 1) |
|
return upper_triangular_matrix[-q:, -k:].to(torch.bool) |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
|
|
batch_size, num_attention_heads, query_length, attn_head_size = query.size() |
|
key_length = key.size(-2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
causal_mask = self.create_upper_triangular_matrix( |
|
query_length, key_length |
|
).view(1, 1, query_length, key_length).to(query.device) |
|
|
|
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) |
|
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) |
|
attn_scores = torch.zeros( |
|
batch_size * num_attention_heads, |
|
query_length, |
|
key_length, |
|
dtype=query.dtype, |
|
device=key.device, |
|
) |
|
norm_factor = self.head_size ** 0.5 |
|
attn_scores = torch.baddbmm( |
|
attn_scores, |
|
query, |
|
key.transpose(1, 2), |
|
beta=1.0, |
|
alpha=(torch.tensor(1.0, dtype=query.dtype, device=query.device) / norm_factor), |
|
) |
|
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) |
|
|
|
mask_value = torch.finfo(attn_scores.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device) |
|
attn_scores = torch.where(causal_mask, attn_scores, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_scores = attn_scores + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_scores.float(), dim=-1).type_as(value) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
return attn_output, attn_weights |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings, base=10000, device=None): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0): |
|
cos = cos[..., offset : q.shape[-2] + offset, :] |
|
sin = sin[..., offset : q.shape[-2] + offset, :] |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class GatedLinear(nn.Linear): |
|
pass |
|
|
|
|
|
class GPTJiangMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias) |
|
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias) |
|
self.gated = config.gated |
|
if config.gated: |
|
self.dense_h_to_4h_gate = GatedLinear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias) |
|
self.act = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states): |
|
|
|
if self.gated: |
|
|
|
|
|
|
|
hidden_states = self.act(self.dense_h_to_4h(hidden_states)) * self.dense_h_to_4h_gate(hidden_states) |
|
else: |
|
|
|
|
|
hidden_states = self.act(self.dense_h_to_4h(hidden_states)) |
|
hidden_states = self.dense_4h_to_h(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GPTJiangLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.use_parallel_residual = config.use_parallel_residual |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.attention = GPTJiangAttention(config) |
|
self.mlp = GPTJiangMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
use_cache=False, |
|
layer_past=None, |
|
output_attentions=False, |
|
): |
|
attention_layer_outputs = self.attention( |
|
self.input_layernorm(hidden_states), |
|
attention_mask=attention_mask, |
|
layer_past=layer_past, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attention_layer_outputs[0] |
|
outputs = attention_layer_outputs[1:] |
|
|
|
|
|
if self.use_parallel_residual: |
|
|
|
|
|
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) |
|
hidden_states = mlp_output + attn_output + hidden_states |
|
else: |
|
|
|
|
|
|
|
attn_output = attn_output + hidden_states |
|
mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) |
|
hidden_states = mlp_output + attn_output |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
GPT_JIANG_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`~GPTJiangConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GPT_JIANG_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GPTJiang Model transformer outputting raw hidden-states without any specific head on top.", |
|
GPT_JIANG_START_DOCSTRING, |
|
) |
|
class GPTJiangModel(GPTJiangPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([GPTJiangLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.final_layer_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_in |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_in = value |
|
|
|
@add_start_docstrings_to_model_forward(GPT_JIANG_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
r""" |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * self.config.num_hidden_layers) |
|
|
|
|
|
if attention_mask is not None: |
|
assert batch_size > 0, "batch_size has to be defined and > 0" |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_in(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, None, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
attention_mask, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
if output_attentions: |
|
all_attentions = all_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) |
|
|
|
ret = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
return ret |
|
|
|
|
|
@add_start_docstrings( |
|
"""GPTJiang Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_JIANG_START_DOCSTRING |
|
) |
|
class GPTJiangForCausalLM(GPTJiangPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.gpt_kdf = GPTJiangModel(config) |
|
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.embed_out |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.embed_out = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(GPT_JIANG_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are |
|
only required when the model is used as a decoder in a Sequence to Sequence model. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, GPTJiangForCausalLM, GPTJiangConfig |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") |
|
>>> config = GPTJiangConfig.from_pretrained("EleutherAI/gpt-neox-20b") |
|
>>> config.is_decoder = True |
|
>>> model = GPTJiangForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config) |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.gpt_kdf( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.embed_out(hidden_states) |
|
|
|
lm_loss = None |
|
attn_output_loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
ret = CausalLMOutputWithPast( |
|
loss=lm_loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
return ret |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if past_key_values and past_key_values[0] is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"past_key_values": past_key_values, |
|
} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], |
|
) |
|
return reordered_past |
|
|