File size: 1,885 Bytes
66dd9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8687370
 
 
 
66dd9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8687370
 
 
 
 
66dd9e1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: t5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-cnn-news
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-cnn-news

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8421
- Rouge1: 24.3896
- Rouge2: 12.1278
- Rougel: 20.4284
- Rougelsum: 23.1568

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00056
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.0267        | 1.0   | 718  | 1.8134          | 24.5126 | 12.0487 | 20.3865 | 23.2129   |
| 1.8289        | 2.0   | 1436 | 1.8150          | 24.4837 | 12.142  | 20.5671 | 23.3283   |
| 1.6833        | 3.0   | 2154 | 1.8148          | 23.9291 | 11.7959 | 20.0136 | 22.7257   |
| 1.576         | 4.0   | 2872 | 1.8271          | 24.2228 | 11.8815 | 20.2007 | 22.9745   |
| 1.4965        | 5.0   | 3590 | 1.8421          | 24.3896 | 12.1278 | 20.4284 | 23.1568   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1