File size: 7,774 Bytes
40d3327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
"""
Attribution: https://github.com/AIPI540/AIPI540-Deep-Learning-Applications/
Jon Reifschneider
Brinnae Bent
"""
import streamlit as st
from PIL import Image
import numpy as np
import os
import numpy as np
import pandas as pd
import pandas as pd
import os
import json
import pandas as pd
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from ultralytics import YOLO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import cv2
import pytesseract
from PIL import ImageEnhance
import numpy as np
import os
import json
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from transformers import DataCollatorForLanguageModeling
from PIL import Image, ImageEnhance
from io import StringIO
def crop_image(model, original_image):
"""
Crop the region of interest (table) from an image using a YOLO model.
Inputs:
model (YOLO): The YOLO model used for object detection.
original_image (PIL.image): The image to be processed.
Returns:
PIL.Image: The cropped image containing the detected table.
"""
image_array = np.array(image)
results = model(image_array)
for r in results:
boxes = r.boxes
for box in boxes:
if box.cls == 3:
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
table_image = original_image.crop((x1, y1, x2, y2))
return table_image
return
def process_image(model, image):
"""
Process the uploaded image with YOLO model and draw bounding boxes with class-specific colors.
Inputs:
model: The trained YOLO model
image: The image file uploaded through Streamlit.
Returns:
PIL.Image: The processed image with bounding boxes and labels.
"""
colors = {'title': (255, 0, 0),
'text': (0, 255, 0),
'figure': (0, 0, 255),
'table': (255, 255, 0),
'list': (0, 255, 255)}
image_array = np.array(image)
results = model(image_array)
for result in results:
boxes = result.boxes.cpu().numpy()
for box in boxes:
r = box.xyxy[0].astype(int)
label = result.names[int(box.cls)]
color = colors.get(label.lower(), (255, 255, 255))
cv2.rectangle(image_array, r[:2], r[2:], color, 2)
label_size, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top_left = (r[0], r[1] - label_size[1] - baseline)
bottom_right = (r[0] + label_size[0], r[1])
cv2.rectangle(image_array, top_left, bottom_right, color, cv2.FILLED)
cv2.putText(image_array, label, (r[0], r[1] - baseline),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
return Image.fromarray(image_array)
def improve_ocr_accuracy(img):
"""
Preprocess the image to improve OCR accuracy.
This function resizes the image, increases contrast, and applies thresholding
to enhance the image for better OCR results.
Inputs:
img (PIL.Image): The input image to be processed.
Returns:
numpy.ndarray: A binary thresholded image as a numpy array.
"""
img = img.resize((img.width * 4, img.height * 4))
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(2)
_, thresh = cv2.threshold(np.array(img), 127, 255, cv2.THRESH_BINARY_INV)
return thresh
def ocr_core(image):
"""
Perform OCR on the given image and process the extracted text.
This function uses pytesseract to extract text from the image and then
processes the extracted data to format it with appropriate line breaks
and spacing.
Inputs:
image (numpy.ndarray): The preprocessed image as a numpy array.
Returns:
str: The extracted and formatted text from the image.
"""
data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
df = pd.DataFrame(data)
df = df[df['conf'] != -1]
df['left_diff'] = df.groupby('block_num')['left'].diff().fillna(0).astype(int)
df['prev_width'] = df['width'].shift(1).fillna(0).astype(int)
df['spacing'] = (df['left_diff'] - df['prev_width']).fillna(0).astype(int)
df['text'] = df.apply(lambda x: '\n' + x['text'] if (x['word_num'] == 1) & (x['block_num'] != 1) else x['text'], axis=1)
df['text'] = df.apply(lambda x: ',' + x['text'] if x['spacing'] > 80 else x['text'], axis=1)
ocr_text = ""
for text in df['text']:
ocr_text += text + ' '
return ocr_text
def generate_csv_from_text(tokenizer, model, ocr_text):
"""
Generate CSV text from OCR extracted text using the gpt model
This function takes the OCR extracted text, processes it through a language model,
and generates CSV formatted text.
Inputs:
tokenizer: The tokenizer for the gpt model
model: The gpt model used for csv
ocr_text (str): The text extracted from OCR
Returns:
str: The generated CSV formatted text.
"""
inputs = tokenizer.encode(ocr_text, return_tensors='pt')
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
csv_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return csv_text
if __name__ == '__main__':
# pytesseract.pytesseract.tesseract_cmd = r'C:/Program Files/Tesseract-OCR/tesseract.exe' # Update this path for your system
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = YOLO(os.getcwd() + '/models/trained_yolov8.pt')
gpt_model = GPT2LMHeadModel.from_pretrained(os.getcwd() + '/models/gpt_model')
tokenizer = GPT2Tokenizer.from_pretrained(os.getcwd() + '/models/gpt_model')
st.header('''
Intelligent Document Processing: Table Extraction
''')
header_img = Image.open('assets/header_img.png')
st.image(header_img, use_column_width=True)
st.subheader("Please upload an image of a scanned document with a table using the sidebar")
with st.sidebar:
user_image = st.file_uploader("Upload an image of a scanned document", type=["png", "jpg", "jpeg"])
if user_image is not None:
st.divider()
image = Image.open(user_image)
st.image(image, caption='Uploaded Image', use_column_width=True)
st.divider()
st.subheader("Document Classes:")
processed_image = process_image(model, image)
st.image(processed_image, caption='Processed Image', use_column_width=True)
try:
cropped_table = crop_image(model, image)
st.divider()
st.subheader("Table Cropped Image:")
st.image(cropped_table, caption='Cropped Table', use_column_width=True)
improved_image = improve_ocr_accuracy(cropped_table)
st.divider()
st.subheader("Improved Table Image:")
st.image(improved_image, caption='Improved Table Image', use_column_width=True)
ocr_text = ocr_core(improved_image)
st.divider()
st.subheader("OCR Text:")
st.write(ocr_text)
csv_output = generate_csv_from_text(tokenizer,gpt_model,ocr_text)
st.divider()
st.subheader("CSV Output:")
st.write(csv_output.encode('utf-8'))
except:
st.divider()
st.subheader("Error:")
st.write("Please upload a scanned document with a table")
|