created dev branch and refactored code (#1)
Browse files- created dev branch and refactored code (31e0d1a8efa41e56aa53d9e147159a71066ee1bc)
- .gitignore +1 -0
- README.md +4 -2
- config.yaml +2 -2
- main.py +185 -17
- setup.py +5 -5
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
data/
|
README.md
CHANGED
@@ -8,6 +8,7 @@ The purpose of this project is to perform very basic intelligent document proces
|
|
8 |
|
9 |
### If you want to run the full pipeline and train the model from scratch
|
10 |
1. You will need to install all of the necessary packages to run the setup.py script beforehand
|
|
|
11 |
3. You will then need to run setup.py to create the data pipeline and train the model
|
12 |
4. You will then need to run the frontend to use the model
|
13 |
```bash
|
@@ -17,7 +18,7 @@ streamlit run main.py
|
|
17 |
```
|
18 |
|
19 |
### If you want to just run the frontend
|
20 |
-
1. You will need to install all of the necessary packages to run the setup.py script beforehand
|
21 |
2. You will then need to run the frontend to use the model
|
22 |
```bash
|
23 |
pip install -r requirements.txt
|
@@ -34,7 +35,8 @@ streamlit run main.py
|
|
34 |
> - build_features.py: script to prepare the dataset for training
|
35 |
> - model.py: script to train model and predict
|
36 |
> - models: directory for trained models
|
37 |
-
> -
|
|
|
38 |
> - data: directory for project data
|
39 |
> - raw: directory for raw data
|
40 |
> - processed: directory to store the processed data
|
|
|
8 |
|
9 |
### If you want to run the full pipeline and train the model from scratch
|
10 |
1. You will need to install all of the necessary packages to run the setup.py script beforehand
|
11 |
+
2. You will need to download pytesseract and add it to your Path if you are using Windows OS
|
12 |
3. You will then need to run setup.py to create the data pipeline and train the model
|
13 |
4. You will then need to run the frontend to use the model
|
14 |
```bash
|
|
|
18 |
```
|
19 |
|
20 |
### If you want to just run the frontend
|
21 |
+
1. You will need to install all of the necessary packages to run the setup.py script beforehand and install pytesseract
|
22 |
2. You will then need to run the frontend to use the model
|
23 |
```bash
|
24 |
pip install -r requirements.txt
|
|
|
35 |
> - build_features.py: script to prepare the dataset for training
|
36 |
> - model.py: script to train model and predict
|
37 |
> - models: directory for trained models
|
38 |
+
> - trained_yolov8.pt: pytorch trained model for album recommendations
|
39 |
+
> - gpt_model: directory to store the gpt model
|
40 |
> - data: directory for project data
|
41 |
> - raw: directory for raw data
|
42 |
> - processed: directory to store the processed data
|
config.yaml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
path: C:/Users/keese/term_project
|
2 |
-
train: training/images
|
3 |
-
val: validation/images
|
4 |
|
5 |
names:
|
6 |
0: text
|
|
|
1 |
path: C:/Users/keese/term_project
|
2 |
+
train: data/processed/training/images
|
3 |
+
val: data/processed/validation/images
|
4 |
|
5 |
names:
|
6 |
0: text
|
main.py
CHANGED
@@ -22,31 +22,199 @@ import pandas as pd
|
|
22 |
import torch.nn as nn
|
23 |
import torch.nn.functional as F
|
24 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
with st.sidebar:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
st.
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
22 |
import torch.nn as nn
|
23 |
import torch.nn.functional as F
|
24 |
import matplotlib.pyplot as plt
|
25 |
+
from ultralytics import YOLO
|
26 |
+
from PIL import Image, ImageDraw, ImageFont
|
27 |
+
import numpy as np
|
28 |
+
import cv2
|
29 |
+
import pytesseract
|
30 |
+
from PIL import ImageEnhance
|
31 |
+
import numpy as np
|
32 |
+
import os
|
33 |
+
import json
|
34 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
|
35 |
+
from datasets import load_dataset
|
36 |
+
from transformers import DataCollatorForLanguageModeling
|
37 |
+
from PIL import Image, ImageEnhance
|
38 |
+
from io import StringIO
|
39 |
+
|
40 |
|
41 |
+
def crop_image(model, original_image):
|
42 |
+
"""
|
43 |
+
Crop the region of interest (table) from an image using a YOLO model.
|
44 |
+
|
45 |
+
Inputs:
|
46 |
+
model (YOLO): The YOLO model used for object detection.
|
47 |
+
image_file (str): Path to the image file to be processed.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
PIL.Image: The cropped image containing the detected table.
|
51 |
+
"""
|
52 |
+
image_array = np.array(image)
|
53 |
+
results = model(image_array)
|
54 |
+
|
55 |
+
for r in results:
|
56 |
+
boxes = r.boxes
|
57 |
+
|
58 |
+
for box in boxes:
|
59 |
+
if box.cls == 3:
|
60 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
61 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
62 |
+
|
63 |
+
table_image = original_image.crop((x1, y1, x2, y2))
|
64 |
+
|
65 |
+
return table_image
|
66 |
+
return
|
67 |
|
68 |
+
def process_image(model, image):
|
69 |
+
"""
|
70 |
+
Process the uploaded image with YOLO model and draw bounding boxes with class-specific colors.
|
71 |
|
72 |
+
Inputs:
|
73 |
+
uploaded_image (UploadedFile): The image file uploaded through Streamlit.
|
74 |
|
75 |
+
Returns:
|
76 |
+
PIL.Image: The processed image with bounding boxes and labels.
|
77 |
+
"""
|
78 |
+
colors = {'title': (255, 0, 0),
|
79 |
+
'text': (0, 255, 0),
|
80 |
+
'figure': (0, 0, 255),
|
81 |
+
'table': (255, 255, 0),
|
82 |
+
'list': (0, 255, 255)}
|
83 |
+
|
84 |
+
image_array = np.array(image)
|
85 |
+
results = model(image_array)
|
86 |
+
|
87 |
+
for result in results:
|
88 |
+
boxes = result.boxes.cpu().numpy()
|
89 |
+
for box in boxes:
|
90 |
+
r = box.xyxy[0].astype(int)
|
91 |
+
label = result.names[int(box.cls)]
|
92 |
+
color = colors.get(label.lower(), (255, 255, 255))
|
93 |
+
|
94 |
+
cv2.rectangle(image_array, r[:2], r[2:], color, 2)
|
95 |
+
|
96 |
+
label_size, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
97 |
+
top_left = (r[0], r[1] - label_size[1] - baseline)
|
98 |
+
bottom_right = (r[0] + label_size[0], r[1])
|
99 |
+
cv2.rectangle(image_array, top_left, bottom_right, color, cv2.FILLED)
|
100 |
+
cv2.putText(image_array, label, (r[0], r[1] - baseline),
|
101 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
|
102 |
|
103 |
+
return Image.fromarray(image_array)
|
104 |
+
|
105 |
+
def improve_ocr_accuracy(img):
|
106 |
+
"""
|
107 |
+
Preprocess the image to improve OCR accuracy.
|
108 |
+
|
109 |
+
This function resizes the image, increases contrast, and applies thresholding
|
110 |
+
to enhance the image for better OCR results.
|
111 |
|
112 |
+
Inputs:
|
113 |
+
img (PIL.Image): The input image to be processed.
|
114 |
|
115 |
+
Returns:
|
116 |
+
numpy.ndarray: A binary thresholded image as a numpy array.
|
117 |
+
"""
|
118 |
+
img = img.resize((img.width * 4, img.height * 4))
|
119 |
+
|
120 |
+
enhancer = ImageEnhance.Contrast(img)
|
121 |
+
img = enhancer.enhance(2)
|
122 |
+
|
123 |
+
_, thresh = cv2.threshold(np.array(img), 127, 255, cv2.THRESH_BINARY_INV)
|
124 |
+
|
125 |
+
return thresh
|
126 |
+
|
127 |
+
def ocr_core(image):
|
128 |
+
"""
|
129 |
+
Perform OCR on the given image and process the extracted text.
|
130 |
+
|
131 |
+
This function uses pytesseract to extract text from the image and then
|
132 |
+
processes the extracted data to format it with appropriate line breaks
|
133 |
+
and spacing.
|
134 |
+
|
135 |
+
Inputs:
|
136 |
+
image (numpy.ndarray): The preprocessed image as a numpy array.
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
str: The extracted and formatted text from the image.
|
140 |
+
"""
|
141 |
+
data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
|
142 |
+
df = pd.DataFrame(data)
|
143 |
+
df = df[df['conf'] != -1]
|
144 |
+
df['left_diff'] = df.groupby('block_num')['left'].diff().fillna(0).astype(int)
|
145 |
+
df['prev_width'] = df['width'].shift(1).fillna(0).astype(int)
|
146 |
+
df['spacing'] = (df['left_diff'] - df['prev_width']).fillna(0).astype(int)
|
147 |
+
df['text'] = df.apply(lambda x: '\n' + x['text'] if (x['word_num'] == 1) & (x['block_num'] != 1) else x['text'], axis=1)
|
148 |
+
df['text'] = df.apply(lambda x: ',' + x['text'] if x['spacing'] > 80 else x['text'], axis=1)
|
149 |
+
ocr_text = ""
|
150 |
+
for text in df['text']:
|
151 |
+
ocr_text += text + ' '
|
152 |
+
return ocr_text
|
153 |
+
|
154 |
+
def generate_csv_from_text(tokenizer, model, ocr_text):
|
155 |
+
"""
|
156 |
+
Generate CSV text from OCR extracted text using the gpt model
|
157 |
+
|
158 |
+
This function takes the OCR extracted text, processes it through a language model,
|
159 |
+
and generates CSV formatted text.
|
160 |
+
|
161 |
+
Inputs:
|
162 |
+
tokenizer: The tokenizer for the gpt model
|
163 |
+
model: The gpt model used for csv
|
164 |
+
ocr_text (str): The text extracted from OCR
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
str: The generated CSV formatted text.
|
168 |
+
"""
|
169 |
+
inputs = tokenizer.encode(ocr_text, return_tensors='pt')
|
170 |
+
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
|
171 |
+
csv_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
172 |
+
|
173 |
+
return csv_text
|
174 |
+
|
175 |
+
if __name__ == '__main__':
|
176 |
+
pytesseract.pytesseract.tesseract_cmd = r'C:/Program Files/Tesseract-OCR/tesseract.exe' # Update this path for your system
|
177 |
+
|
178 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
179 |
+
|
180 |
+
model = YOLO(os.getcwd() + '/models/trained_yolov8.pt')
|
181 |
+
gpt_model = GPT2LMHeadModel.from_pretrained(os.getcwd() + '/models/gpt_model')
|
182 |
+
tokenizer = GPT2Tokenizer.from_pretrained(os.getcwd() + '/models/gpt_model')
|
183 |
+
|
184 |
+
st.header('''
|
185 |
+
Intelligent Document Processing: Table Extraction
|
186 |
+
''')
|
187 |
+
|
188 |
+
header_img = Image.open('assets/header_img.png')
|
189 |
+
st.image(header_img, use_column_width=True)
|
190 |
|
191 |
with st.sidebar:
|
192 |
+
user_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
193 |
+
|
194 |
+
if user_image is not None:
|
195 |
+
st.divider()
|
196 |
+
image = Image.open(user_image)
|
197 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
198 |
+
|
199 |
+
st.divider()
|
200 |
+
st.subheader("Document Classes:")
|
201 |
+
processed_image = process_image(model, image)
|
202 |
+
st.image(processed_image, caption='Processed Image', use_column_width=True)
|
203 |
+
|
204 |
+
st.divider()
|
205 |
+
st.subheader("Table Cropped Image:")
|
206 |
+
cropped_table = crop_image(model, image)
|
207 |
+
st.image(cropped_table, caption='Cropped Table', use_column_width=True)
|
208 |
+
|
209 |
+
st.divider()
|
210 |
+
st.subheader("OCR Text:")
|
211 |
+
improved_image = improve_ocr_accuracy(cropped_table)
|
212 |
+
ocr_text = ocr_core(improved_image)
|
213 |
+
st.write(ocr_text)
|
214 |
|
215 |
+
st.divider()
|
216 |
+
st.subheader("CSV Output:")
|
217 |
+
csv_output = generate_csv_from_text(tokenizer,gpt_model,ocr_text)
|
218 |
+
data = StringIO(csv_output)
|
219 |
+
st.dataframe(pd.read_csv(data, sep=",").head())
|
220 |
|
setup.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import subprocess
|
2 |
import sys
|
3 |
|
4 |
-
script = 'make_dataset.py'
|
5 |
-
command = f'{sys.executable} scripts/{script}'
|
6 |
-
subprocess.run(command, shell=True)
|
7 |
|
8 |
script = 'build_features.py'
|
9 |
-
command = f'{sys.executable}
|
10 |
subprocess.run(command, shell=True)
|
11 |
|
12 |
script = 'model.py'
|
13 |
-
command = f'{sys.executable}
|
14 |
subprocess.run(command, shell=True)
|
|
|
1 |
import subprocess
|
2 |
import sys
|
3 |
|
4 |
+
# script = 'make_dataset.py'
|
5 |
+
# command = f'{sys.executable} scripts/{script}'
|
6 |
+
# subprocess.run(command, shell=True)
|
7 |
|
8 |
script = 'build_features.py'
|
9 |
+
command = f'{sys.executable} scripts/{script}'
|
10 |
subprocess.run(command, shell=True)
|
11 |
|
12 |
script = 'model.py'
|
13 |
+
command = f'{sys.executable} scripts/{script}'
|
14 |
subprocess.run(command, shell=True)
|