kelestemur commited on
Commit
6e9fdc4
1 Parent(s): cde735d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.65 +/- 0.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5807fd071566263ccd32b402f5c76b800ff27e93dd106643b6781f9d1577ab8
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee26bfe280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fee26bfa3c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677475095365580684,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbi9QPxYOsj/VpMa/emhGv6aNWT9xsok/jssmP0SsQT8pbiW/tXvQPyAvir6SWEm8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]]",
60
+ "desired_goal": "[[ 0.8132237 1.3910549 -1.5519053 ]\n [-0.7750317 0.84981763 1.0757581 ]\n [ 0.6515435 0.7565348 -0.64621216]\n [ 1.6287752 -0.2698908 -0.01228918]]",
61
+ "observation": "[[ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcrAIPttg1z2PvOU9DdYIPp8mub2U+ls+7CmmvWe+ADsGLm49ON2pPL8crDw5cJQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.13348559 0.10516521 0.11217605]\n [ 0.13362904 -0.0904057 0.21482307]\n [-0.08113465 0.00196447 0.05814936]\n [ 0.02073537 0.0210098 0.2899187 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaTf6mA+I97+UhpRSlIwBbJRLMowBdJRHQKlxbZpSJj51fZQoaAZoCWgPQwhC0qdV9Mf9v5SGlFKUaBVLMmgWR0CpcRebNKRMdX2UKGgGaAloD0MIHa7VHvYiAsCUhpRSlGgVSzJoFkdAqXDAJRfnfXV9lChoBmgJaA9DCJvlstE5PwnAlIaUUpRoFUsyaBZHQKlwacOskpt1fZQoaAZoCWgPQwh33PC76db5v5SGlFKUaBVLMmgWR0Cpc30kGA09dX2UKGgGaAloD0MIvko+dhdoAMCUhpRSlGgVSzJoFkdAqXMnLmp2lnV9lChoBmgJaA9DCKLtmLorOw/AlIaUUpRoFUsyaBZHQKlyz37DVH51fZQoaAZoCWgPQwg3bFuU2eAGwJSGlFKUaBVLMmgWR0CpcnkCV8kVdX2UKGgGaAloD0MIoOBiRQ0mDcCUhpRSlGgVSzJoFkdAqXWByXD3unV9lChoBmgJaA9DCKcGms+5uwPAlIaUUpRoFUsyaBZHQKl1K4I8hcJ1fZQoaAZoCWgPQwifW+hKBGr+v5SGlFKUaBVLMmgWR0CpdNN+CsfadX2UKGgGaAloD0MIAVDFjVtMAsCUhpRSlGgVSzJoFkdAqXR9Hc1wYXV9lChoBmgJaA9DCPDDQUKUrw/AlIaUUpRoFUsyaBZHQKl3LOSntOV1fZQoaAZoCWgPQwiCyvj3GUcSwJSGlFKUaBVLMmgWR0CpdtXPRiPRdX2UKGgGaAloD0MIn3JMFvdf+7+UhpRSlGgVSzJoFkdAqXZ9ATqSo3V9lChoBmgJaA9DCAPN59zt2gPAlIaUUpRoFUsyaBZHQKl2JZ9uxbB1fZQoaAZoCWgPQwgc0NIVbOMIwJSGlFKUaBVLMmgWR0CpeE8s+V1PdX2UKGgGaAloD0MImj+mtWmsCsCUhpRSlGgVSzJoFkdAqXf4R02ca3V9lChoBmgJaA9DCKDBps6jIg3AlIaUUpRoFUsyaBZHQKl3n32VVxV1fZQoaAZoCWgPQwiphCf0+rMGwJSGlFKUaBVLMmgWR0Cpd0f5LytndX2UKGgGaAloD0MIHNKowMlWD8CUhpRSlGgVSzJoFkdAqXmL/VAiV3V9lChoBmgJaA9DCKTgKeRKvQbAlIaUUpRoFUsyaBZHQKl5NP+GXX11fZQoaAZoCWgPQwio4PCCiLQGwJSGlFKUaBVLMmgWR0CpeNwT238XdX2UKGgGaAloD0MI04TtJ2OcBcCUhpRSlGgVSzJoFkdAqXiEtRNypHV9lChoBmgJaA9DCCqPboRFhQXAlIaUUpRoFUsyaBZHQKl6yOYIBzV1fZQoaAZoCWgPQwgzGCMShdYGwJSGlFKUaBVLMmgWR0CpenHGCI1tdX2UKGgGaAloD0MIzxJkBFSYAMCUhpRSlGgVSzJoFkdAqXoY22oegnV9lChoBmgJaA9DCOvJ/KNvcg3AlIaUUpRoFUsyaBZHQKl5wWE9Mbp1fZQoaAZoCWgPQwjEd2LWi0EJwJSGlFKUaBVLMmgWR0Cpe/Tq8lHCdX2UKGgGaAloD0MI8Q9bejS1CsCUhpRSlGgVSzJoFkdAqXud7rs0HnV9lChoBmgJaA9DCIXv/Q3aqwfAlIaUUpRoFUsyaBZHQKl7RUjLSu11fZQoaAZoCWgPQwj+KOrMPWQFwJSGlFKUaBVLMmgWR0Cpeu2cJ+lTdX2UKGgGaAloD0MIQ/6ZQXwAAMCUhpRSlGgVSzJoFkdAqX0jnTy8SXV9lChoBmgJaA9DCCaOPBBZZA3AlIaUUpRoFUsyaBZHQKl8zL1VYIV1fZQoaAZoCWgPQwggzy7f+jD9v5SGlFKUaBVLMmgWR0CpfHOqebuudX2UKGgGaAloD0MIJH1aRX+IC8CUhpRSlGgVSzJoFkdAqXwcCtA9m3V9lChoBmgJaA9DCNrFNNO9TgTAlIaUUpRoFUsyaBZHQKl+UunMt9R1fZQoaAZoCWgPQwjXicvxCoQMwJSGlFKUaBVLMmgWR0CpffvE0iyIdX2UKGgGaAloD0MI8Ps3L05cDsCUhpRSlGgVSzJoFkdAqX2jABT4tnV9lChoBmgJaA9DCOrqjsU2WRHAlIaUUpRoFUsyaBZHQKl9S5MDfWN1fZQoaAZoCWgPQwjUJ7nDJnIDwJSGlFKUaBVLMmgWR0Cpf4tfgJkYdX2UKGgGaAloD0MIOgX52ch197+UhpRSlGgVSzJoFkdAqX805n13+3V9lChoBmgJaA9DCCJQ/YNIZgbAlIaUUpRoFUsyaBZHQKl+3BWxQi11fZQoaAZoCWgPQwjSw9Dq5OwBwJSGlFKUaBVLMmgWR0CpfoSfDk2hdX2UKGgGaAloD0MIT3XIzXCDBcCUhpRSlGgVSzJoFkdAqYC2HaewtHV9lChoBmgJaA9DCA/SU+QQcRLAlIaUUpRoFUsyaBZHQKmAXxI8QqZ1fZQoaAZoCWgPQwiPHOkMjDwIwJSGlFKUaBVLMmgWR0CpgAY9X9zfdX2UKGgGaAloD0MI9IjRcwvd9L+UhpRSlGgVSzJoFkdAqX+uwA2hqXV9lChoBmgJaA9DCCSZ1TvcTg7AlIaUUpRoFUsyaBZHQKmB3GFSKm91fZQoaAZoCWgPQwj2QgHbwagFwJSGlFKUaBVLMmgWR0CpgYWH1vl2dX2UKGgGaAloD0MIiSXl7nO89L+UhpRSlGgVSzJoFkdAqYEs189fTnV9lChoBmgJaA9DCJhRLLe0GvS/lIaUUpRoFUsyaBZHQKmA1VoYekp1fZQoaAZoCWgPQwgva2KBr6j9v5SGlFKUaBVLMmgWR0CpgwQcYIjXdX2UKGgGaAloD0MIKT+p9un4CcCUhpRSlGgVSzJoFkdAqYKtRHf/FXV9lChoBmgJaA9DCDfBN02fHQXAlIaUUpRoFUsyaBZHQKmCVJul41R1fZQoaAZoCWgPQwhdcAZ/v7gEwJSGlFKUaBVLMmgWR0Cpgf0yYXwcdX2UKGgGaAloD0MIT1jiAWUzD8CUhpRSlGgVSzJoFkdAqYQ6GahHsnV9lChoBmgJaA9DCLsNar+1cw3AlIaUUpRoFUsyaBZHQKmD4xGlQ/J1fZQoaAZoCWgPQwhjDoKOVrUBwJSGlFKUaBVLMmgWR0Cpg4pJwsGxdX2UKGgGaAloD0MIQ1n4+lrXCcCUhpRSlGgVSzJoFkdAqYMyxHG0eHV9lChoBmgJaA9DCJc3h2u1R/2/lIaUUpRoFUsyaBZHQKmFcKOT7l91fZQoaAZoCWgPQwgFTyFX6lkQwJSGlFKUaBVLMmgWR0CphRmlQ/HHdX2UKGgGaAloD0MIf6Xz4VkCAcCUhpRSlGgVSzJoFkdAqYTAvFm4AnV9lChoBmgJaA9DCPD8ogT9hfq/lIaUUpRoFUsyaBZHQKmEaTfR/mV1fZQoaAZoCWgPQwh3SDFAomkAwJSGlFKUaBVLMmgWR0CphqNrj5sTdX2UKGgGaAloD0MI6dfWT//5C8CUhpRSlGgVSzJoFkdAqYZMYEW69XV9lChoBmgJaA9DCMXIkjmW9wXAlIaUUpRoFUsyaBZHQKmF85CngpB1fZQoaAZoCWgPQwgSiULLul8CwJSGlFKUaBVLMmgWR0CphZwQtjCpdX2UKGgGaAloD0MIqU2c3O9QAcCUhpRSlGgVSzJoFkdAqYfSsS00FnV9lChoBmgJaA9DCJwVURN9PgHAlIaUUpRoFUsyaBZHQKmHe8wHqu91fZQoaAZoCWgPQwid9pScE/v2v5SGlFKUaBVLMmgWR0CphyLk8zRAdX2UKGgGaAloD0MItvRoqifzCMCUhpRSlGgVSzJoFkdAqYbLaPCEYnV9lChoBmgJaA9DCF8IOe//QwDAlIaUUpRoFUsyaBZHQKmI/HPNVzZ1fZQoaAZoCWgPQwhLPQtCeR8SwJSGlFKUaBVLMmgWR0CpiKWBreqJdX2UKGgGaAloD0MIMe2b+6sH/r+UhpRSlGgVSzJoFkdAqYhMjopx3nV9lChoBmgJaA9DCPlqR3GOOgjAlIaUUpRoFUsyaBZHQKmH9QzDXOJ1fZQoaAZoCWgPQwiuEFZjCSsCwJSGlFKUaBVLMmgWR0CpijqpDNQkdX2UKGgGaAloD0MItdyZCYaz+7+UhpRSlGgVSzJoFkdAqYnjr5ZbIXV9lChoBmgJaA9DCHicoiO5nAHAlIaUUpRoFUsyaBZHQKmJitbs4T91fZQoaAZoCWgPQwjYZmMl5jkCwJSGlFKUaBVLMmgWR0CpiTNFrl/6dX2UKGgGaAloD0MIhQX3Ax54AsCUhpRSlGgVSzJoFkdAqYvW9US7G3V9lChoBmgJaA9DCPm9TX/2YxDAlIaUUpRoFUsyaBZHQKmLgQgcLjR1fZQoaAZoCWgPQwiWXMXiN8X/v5SGlFKUaBVLMmgWR0CpiykjPfKqdX2UKGgGaAloD0MIAkuuYvG7AcCUhpRSlGgVSzJoFkdAqYrS6UaAF3V9lChoBmgJaA9DCOIftvRoqgLAlIaUUpRoFUsyaBZHQKmN2Q8wHqx1fZQoaAZoCWgPQwgteTwtPzD3v5SGlFKUaBVLMmgWR0CpjYM7+1jRdX2UKGgGaAloD0MI0VeQZiz6DcCUhpRSlGgVSzJoFkdAqY0q5/b0v3V9lChoBmgJaA9DCCCYo8fvHRDAlIaUUpRoFUsyaBZHQKmM1ER8MNN1fZQoaAZoCWgPQwjAXfbrTlcIwJSGlFKUaBVLMmgWR0Cpj8P7FbV0dX2UKGgGaAloD0MItKolHeXAAMCUhpRSlGgVSzJoFkdAqY9t07r9l3V9lChoBmgJaA9DCGlRn+QO2/y/lIaUUpRoFUsyaBZHQKmPFgm7aqV1fZQoaAZoCWgPQwgWak3zjpMCwJSGlFKUaBVLMmgWR0Cpjr9uxbB5dX2UKGgGaAloD0MI0H05s12BCsCUhpRSlGgVSzJoFkdAqZHPY150KnV9lChoBmgJaA9DCJHwvb9BuwDAlIaUUpRoFUsyaBZHQKmReQNkOI91fZQoaAZoCWgPQwiBlNi1vV33v5SGlFKUaBVLMmgWR0CpkSEwnH/+dX2UKGgGaAloD0MIIa6cvTM6FcCUhpRSlGgVSzJoFkdAqZDKkyk9EHV9lChoBmgJaA9DCHqp2JjXwRDAlIaUUpRoFUsyaBZHQKmT7KOktVd1fZQoaAZoCWgPQwiiKqbST7j5v5SGlFKUaBVLMmgWR0Cpk5a2OQyRdX2UKGgGaAloD0MI26SisfZ3/L+UhpRSlGgVSzJoFkdAqZM+2kSElHV9lChoBmgJaA9DCLiwbrw7svi/lIaUUpRoFUsyaBZHQKmS6GfwqiJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe9a9ba74b7240180abb9e13c5440dd2989ee2a87ff2db92f1acd86c303cf3c5
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4432b49500a55658466fabfe685d50a078c72a462e76731b8ff6f384e48d87dc
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee26bfe280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee26bfa3c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677475095365580684, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/Y+ypPv2FHbyXtwQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbi9QPxYOsj/VpMa/emhGv6aNWT9xsok/jssmP0SsQT8pbiW/tXvQPyAvir6SWEm8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjtj7Kk+/YUdvJe3BD+oTAk8gGfxu4fLkjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]\n [ 0.3318816 -0.00961446 0.51842636]]", "desired_goal": "[[ 0.8132237 1.3910549 -1.5519053 ]\n [-0.7750317 0.84981763 1.0757581 ]\n [ 0.6515435 0.7565348 -0.64621216]\n [ 1.6287752 -0.2698908 -0.01228918]]", "observation": "[[ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]\n [ 0.3318816 -0.00961446 0.51842636 0.00838009 -0.00736707 0.00447983]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcrAIPttg1z2PvOU9DdYIPp8mub2U+ls+7CmmvWe+ADsGLm49ON2pPL8crDw5cJQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13348559 0.10516521 0.11217605]\n [ 0.13362904 -0.0904057 0.21482307]\n [-0.08113465 0.00196447 0.05814936]\n [ 0.02073537 0.0210098 0.2899187 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaTf6mA+I97+UhpRSlIwBbJRLMowBdJRHQKlxbZpSJj51fZQoaAZoCWgPQwhC0qdV9Mf9v5SGlFKUaBVLMmgWR0CpcRebNKRMdX2UKGgGaAloD0MIHa7VHvYiAsCUhpRSlGgVSzJoFkdAqXDAJRfnfXV9lChoBmgJaA9DCJvlstE5PwnAlIaUUpRoFUsyaBZHQKlwacOskpt1fZQoaAZoCWgPQwh33PC76db5v5SGlFKUaBVLMmgWR0Cpc30kGA09dX2UKGgGaAloD0MIvko+dhdoAMCUhpRSlGgVSzJoFkdAqXMnLmp2lnV9lChoBmgJaA9DCKLtmLorOw/AlIaUUpRoFUsyaBZHQKlyz37DVH51fZQoaAZoCWgPQwg3bFuU2eAGwJSGlFKUaBVLMmgWR0CpcnkCV8kVdX2UKGgGaAloD0MIoOBiRQ0mDcCUhpRSlGgVSzJoFkdAqXWByXD3unV9lChoBmgJaA9DCKcGms+5uwPAlIaUUpRoFUsyaBZHQKl1K4I8hcJ1fZQoaAZoCWgPQwifW+hKBGr+v5SGlFKUaBVLMmgWR0CpdNN+CsfadX2UKGgGaAloD0MIAVDFjVtMAsCUhpRSlGgVSzJoFkdAqXR9Hc1wYXV9lChoBmgJaA9DCPDDQUKUrw/AlIaUUpRoFUsyaBZHQKl3LOSntOV1fZQoaAZoCWgPQwiCyvj3GUcSwJSGlFKUaBVLMmgWR0CpdtXPRiPRdX2UKGgGaAloD0MIn3JMFvdf+7+UhpRSlGgVSzJoFkdAqXZ9ATqSo3V9lChoBmgJaA9DCAPN59zt2gPAlIaUUpRoFUsyaBZHQKl2JZ9uxbB1fZQoaAZoCWgPQwgc0NIVbOMIwJSGlFKUaBVLMmgWR0CpeE8s+V1PdX2UKGgGaAloD0MImj+mtWmsCsCUhpRSlGgVSzJoFkdAqXf4R02ca3V9lChoBmgJaA9DCKDBps6jIg3AlIaUUpRoFUsyaBZHQKl3n32VVxV1fZQoaAZoCWgPQwiphCf0+rMGwJSGlFKUaBVLMmgWR0Cpd0f5LytndX2UKGgGaAloD0MIHNKowMlWD8CUhpRSlGgVSzJoFkdAqXmL/VAiV3V9lChoBmgJaA9DCKTgKeRKvQbAlIaUUpRoFUsyaBZHQKl5NP+GXX11fZQoaAZoCWgPQwio4PCCiLQGwJSGlFKUaBVLMmgWR0CpeNwT238XdX2UKGgGaAloD0MI04TtJ2OcBcCUhpRSlGgVSzJoFkdAqXiEtRNypHV9lChoBmgJaA9DCCqPboRFhQXAlIaUUpRoFUsyaBZHQKl6yOYIBzV1fZQoaAZoCWgPQwgzGCMShdYGwJSGlFKUaBVLMmgWR0CpenHGCI1tdX2UKGgGaAloD0MIzxJkBFSYAMCUhpRSlGgVSzJoFkdAqXoY22oegnV9lChoBmgJaA9DCOvJ/KNvcg3AlIaUUpRoFUsyaBZHQKl5wWE9Mbp1fZQoaAZoCWgPQwjEd2LWi0EJwJSGlFKUaBVLMmgWR0Cpe/Tq8lHCdX2UKGgGaAloD0MI8Q9bejS1CsCUhpRSlGgVSzJoFkdAqXud7rs0HnV9lChoBmgJaA9DCIXv/Q3aqwfAlIaUUpRoFUsyaBZHQKl7RUjLSu11fZQoaAZoCWgPQwj+KOrMPWQFwJSGlFKUaBVLMmgWR0Cpeu2cJ+lTdX2UKGgGaAloD0MIQ/6ZQXwAAMCUhpRSlGgVSzJoFkdAqX0jnTy8SXV9lChoBmgJaA9DCCaOPBBZZA3AlIaUUpRoFUsyaBZHQKl8zL1VYIV1fZQoaAZoCWgPQwggzy7f+jD9v5SGlFKUaBVLMmgWR0CpfHOqebuudX2UKGgGaAloD0MIJH1aRX+IC8CUhpRSlGgVSzJoFkdAqXwcCtA9m3V9lChoBmgJaA9DCNrFNNO9TgTAlIaUUpRoFUsyaBZHQKl+UunMt9R1fZQoaAZoCWgPQwjXicvxCoQMwJSGlFKUaBVLMmgWR0CpffvE0iyIdX2UKGgGaAloD0MI8Ps3L05cDsCUhpRSlGgVSzJoFkdAqX2jABT4tnV9lChoBmgJaA9DCOrqjsU2WRHAlIaUUpRoFUsyaBZHQKl9S5MDfWN1fZQoaAZoCWgPQwjUJ7nDJnIDwJSGlFKUaBVLMmgWR0Cpf4tfgJkYdX2UKGgGaAloD0MIOgX52ch197+UhpRSlGgVSzJoFkdAqX805n13+3V9lChoBmgJaA9DCCJQ/YNIZgbAlIaUUpRoFUsyaBZHQKl+3BWxQi11fZQoaAZoCWgPQwjSw9Dq5OwBwJSGlFKUaBVLMmgWR0CpfoSfDk2hdX2UKGgGaAloD0MIT3XIzXCDBcCUhpRSlGgVSzJoFkdAqYC2HaewtHV9lChoBmgJaA9DCA/SU+QQcRLAlIaUUpRoFUsyaBZHQKmAXxI8QqZ1fZQoaAZoCWgPQwiPHOkMjDwIwJSGlFKUaBVLMmgWR0CpgAY9X9zfdX2UKGgGaAloD0MI9IjRcwvd9L+UhpRSlGgVSzJoFkdAqX+uwA2hqXV9lChoBmgJaA9DCCSZ1TvcTg7AlIaUUpRoFUsyaBZHQKmB3GFSKm91fZQoaAZoCWgPQwj2QgHbwagFwJSGlFKUaBVLMmgWR0CpgYWH1vl2dX2UKGgGaAloD0MIiSXl7nO89L+UhpRSlGgVSzJoFkdAqYEs189fTnV9lChoBmgJaA9DCJhRLLe0GvS/lIaUUpRoFUsyaBZHQKmA1VoYekp1fZQoaAZoCWgPQwgva2KBr6j9v5SGlFKUaBVLMmgWR0CpgwQcYIjXdX2UKGgGaAloD0MIKT+p9un4CcCUhpRSlGgVSzJoFkdAqYKtRHf/FXV9lChoBmgJaA9DCDfBN02fHQXAlIaUUpRoFUsyaBZHQKmCVJul41R1fZQoaAZoCWgPQwhdcAZ/v7gEwJSGlFKUaBVLMmgWR0Cpgf0yYXwcdX2UKGgGaAloD0MIT1jiAWUzD8CUhpRSlGgVSzJoFkdAqYQ6GahHsnV9lChoBmgJaA9DCLsNar+1cw3AlIaUUpRoFUsyaBZHQKmD4xGlQ/J1fZQoaAZoCWgPQwhjDoKOVrUBwJSGlFKUaBVLMmgWR0Cpg4pJwsGxdX2UKGgGaAloD0MIQ1n4+lrXCcCUhpRSlGgVSzJoFkdAqYMyxHG0eHV9lChoBmgJaA9DCJc3h2u1R/2/lIaUUpRoFUsyaBZHQKmFcKOT7l91fZQoaAZoCWgPQwgFTyFX6lkQwJSGlFKUaBVLMmgWR0CphRmlQ/HHdX2UKGgGaAloD0MIf6Xz4VkCAcCUhpRSlGgVSzJoFkdAqYTAvFm4AnV9lChoBmgJaA9DCPD8ogT9hfq/lIaUUpRoFUsyaBZHQKmEaTfR/mV1fZQoaAZoCWgPQwh3SDFAomkAwJSGlFKUaBVLMmgWR0CphqNrj5sTdX2UKGgGaAloD0MI6dfWT//5C8CUhpRSlGgVSzJoFkdAqYZMYEW69XV9lChoBmgJaA9DCMXIkjmW9wXAlIaUUpRoFUsyaBZHQKmF85CngpB1fZQoaAZoCWgPQwgSiULLul8CwJSGlFKUaBVLMmgWR0CphZwQtjCpdX2UKGgGaAloD0MIqU2c3O9QAcCUhpRSlGgVSzJoFkdAqYfSsS00FnV9lChoBmgJaA9DCJwVURN9PgHAlIaUUpRoFUsyaBZHQKmHe8wHqu91fZQoaAZoCWgPQwid9pScE/v2v5SGlFKUaBVLMmgWR0CphyLk8zRAdX2UKGgGaAloD0MItvRoqifzCMCUhpRSlGgVSzJoFkdAqYbLaPCEYnV9lChoBmgJaA9DCF8IOe//QwDAlIaUUpRoFUsyaBZHQKmI/HPNVzZ1fZQoaAZoCWgPQwhLPQtCeR8SwJSGlFKUaBVLMmgWR0CpiKWBreqJdX2UKGgGaAloD0MIMe2b+6sH/r+UhpRSlGgVSzJoFkdAqYhMjopx3nV9lChoBmgJaA9DCPlqR3GOOgjAlIaUUpRoFUsyaBZHQKmH9QzDXOJ1fZQoaAZoCWgPQwiuEFZjCSsCwJSGlFKUaBVLMmgWR0CpijqpDNQkdX2UKGgGaAloD0MItdyZCYaz+7+UhpRSlGgVSzJoFkdAqYnjr5ZbIXV9lChoBmgJaA9DCHicoiO5nAHAlIaUUpRoFUsyaBZHQKmJitbs4T91fZQoaAZoCWgPQwjYZmMl5jkCwJSGlFKUaBVLMmgWR0CpiTNFrl/6dX2UKGgGaAloD0MIhQX3Ax54AsCUhpRSlGgVSzJoFkdAqYvW9US7G3V9lChoBmgJaA9DCPm9TX/2YxDAlIaUUpRoFUsyaBZHQKmLgQgcLjR1fZQoaAZoCWgPQwiWXMXiN8X/v5SGlFKUaBVLMmgWR0CpiykjPfKqdX2UKGgGaAloD0MIAkuuYvG7AcCUhpRSlGgVSzJoFkdAqYrS6UaAF3V9lChoBmgJaA9DCOIftvRoqgLAlIaUUpRoFUsyaBZHQKmN2Q8wHqx1fZQoaAZoCWgPQwgteTwtPzD3v5SGlFKUaBVLMmgWR0CpjYM7+1jRdX2UKGgGaAloD0MI0VeQZiz6DcCUhpRSlGgVSzJoFkdAqY0q5/b0v3V9lChoBmgJaA9DCCCYo8fvHRDAlIaUUpRoFUsyaBZHQKmM1ER8MNN1fZQoaAZoCWgPQwjAXfbrTlcIwJSGlFKUaBVLMmgWR0Cpj8P7FbV0dX2UKGgGaAloD0MItKolHeXAAMCUhpRSlGgVSzJoFkdAqY9t07r9l3V9lChoBmgJaA9DCGlRn+QO2/y/lIaUUpRoFUsyaBZHQKmPFgm7aqV1fZQoaAZoCWgPQwgWak3zjpMCwJSGlFKUaBVLMmgWR0Cpjr9uxbB5dX2UKGgGaAloD0MI0H05s12BCsCUhpRSlGgVSzJoFkdAqZHPY150KnV9lChoBmgJaA9DCJHwvb9BuwDAlIaUUpRoFUsyaBZHQKmReQNkOI91fZQoaAZoCWgPQwiBlNi1vV33v5SGlFKUaBVLMmgWR0CpkSEwnH/+dX2UKGgGaAloD0MIIa6cvTM6FcCUhpRSlGgVSzJoFkdAqZDKkyk9EHV9lChoBmgJaA9DCHqp2JjXwRDAlIaUUpRoFUsyaBZHQKmT7KOktVd1fZQoaAZoCWgPQwiiKqbST7j5v5SGlFKUaBVLMmgWR0Cpk5a2OQyRdX2UKGgGaAloD0MI26SisfZ3/L+UhpRSlGgVSzJoFkdAqZM+2kSElHV9lChoBmgJaA9DCLiwbrw7svi/lIaUUpRoFUsyaBZHQKmS6GfwqiJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (452 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.6526918904855847, "std_reward": 0.6295737292779745, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T06:15:08.080529"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0dd625484d0419fafa0ccc8deb8e9cb178b34c66967b12d2679ca394308c8c
3
+ size 3056