--- tags: - spacy - token-classification language: - en model-index: - name: en_medextract_md results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8699878493 - name: NER Recall type: recall value: 0.834255753 - name: NER F Score type: f_score value: 0.8517472119 --- | Feature | Description | | --- | --- | | **Name** | `en_medextract_md` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 20000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (9 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `ADE`, `Dosage`, `Drug`, `Duration`, `Form`, `Frequency`, `Reason`, `Route`, `Strength` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 85.17 | | `ENTS_P` | 87.00 | | `ENTS_R` | 83.43 | | `TOK2VEC_LOSS` | 16984196.13 | | `NER_LOSS` | 2004372.73 |