File size: 26,982 Bytes
d9dec41
ecd3f14
 
9704faf
 
68cbb10
 
 
 
9fdbc09
554e4f0
68cbb10
 
 
 
91f62b2
 
 
 
554e4f0
 
 
 
91f62b2
 
 
554e4f0
 
 
91f62b2
554e4f0
 
91f62b2
68cbb10
554e4f0
91f62b2
 
 
554e4f0
 
91f62b2
 
554e4f0
 
 
91f62b2
68cbb10
554e4f0
91f62b2
 
 
68cbb10
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
9704faf
554e4f0
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
 
554e4f0
9704faf
 
554e4f0
 
9704faf
554e4f0
 
 
 
 
 
 
d9dec41
 
68cbb10
90cd4a9
ecd3f14
 
1d0a076
 
554e4f0
1d0a076
 
68cbb10
a858f56
ecd3f14
 
888a0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cd4a9
 
 
 
 
 
 
 
 
 
 
 
 
68cbb10
 
1d0a076
 
 
 
 
 
 
 
9fdbc09
 
1d0a076
 
 
 
 
 
 
 
 
68cbb10
 
 
ecd3f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9dec41
 
68cbb10
 
 
 
 
 
d9dec41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9704faf
 
 
 
 
 
 
 
 
 
 
 
554e4f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
---
language:
- en
license: mit
library_name: transformers
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.1
    repetition_penalty: 10
    no_repeat_ngram_size: 4
    eta_cutoff: 0.0006
    renormalize_logits: true
widget:
- text: My name is El Microondas the Wise, and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: >-
    Bungie Studios is an American video game developer. They are most famous for
    developing the award winning Halo series of video games. They also made
    Destiny. The studio was founded
  example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: >-
    The Harry Potter series, written by J.K. Rowling, begins with the book
    titled
  example_title: Harry Potter Series
- text: >-
    Question: I have cities, but no houses. I have mountains, but no trees. I
    have water, but no fish. What am I?

    Answer:
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: >-
    Jane went to the store to buy some groceries. She picked up apples, oranges,
    and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: >-
    Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, and
    another train leaves Station B at 10:00 AM and travels at 80 mph, when will
    they meet if the distance between the stations is 300 miles?

    To determine
  example_title: Math Problem
- text: In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
- name: nano-phi-115M-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 21.93
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 27.86
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.34
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 46
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.83
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1
      name: Open LLM Leaderboard
datasets:
- kenhktsui/minipile_quality_score_v1
- kenhktsui/simple_wikipedia_LM_quality_score_v1
- kenhktsui/refinedweb-3m_quality_score_v1
- kenhktsui/TM-DATA_quality_score_v1
- kenhktsui/openwebtext_quality_score_v1

---


# Model Card for nano-phi-115M-v0.1

Inspired by [Phi2](https://huggingface.co/microsoft/phi-2), and open source small language model attempts like [smol_llama-101M-GQA](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA).  
Pre-trained with training 7B token **from scratch**, with application of quality filter to datasets resulting in 0.26B token.  
The control is [kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1), where full dataset (0.6B) is used.  
Not much degradation in performance despite only using **42%** of the data due to the effective quality filter ("quality_score_v1" > 0.5).
In fact, upon inspection, the 6000 steps chkpt achieves similar performance as this model, signaling underlying **effective training due to high quality data**.
It just took 1d to train in Colab with a A100 40GB (**<USD$ 50**).  
It achieves quite competitive results in evaluation given its training token, and training data size.  
Yet, there are still large gaps (particularly in ARC, HellaSwag, MMLU and GSM8K) between nano-phi-115M-v0.1 and phi-2, where author will attempt to narrow down the gap in the future.
No alignment has been done yet.  


## How to use
To use the model, you will need transformer version >= 4.37.2
```
pip install transformers>=4.37.2
```

```
# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("text-generation", model="kenhktsui/nano-phi-115M-v0.1")
pipe("I am a machine learning researcher. I work on", max_new_tokens=50, repetition_penalty=10.0)
# [{'generated_text': 'I am a machine learning researcher. I work on the problem of finding patterns in data, and it is not easy to find them all at once!\nThe first step was searching for pattern matching algorithms that are used by many people who have never seen an algorithm before (or even if they do).'}]
```

## Some metrics
- model
  - hidden_size: 768
  - num_key_value_heads: 8 (grouped query attention)
  - num_attention_heads: 24
  - num_hidden_layers: 6
  - context length: 1024
  - total params: 115M
- training:
  - global steps: 14,000



## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

| Metric                | kenhktsui/nano-phi-115M-v0.1|kenhktsui/nano-phi-115M-v0.1 (6000 steps)|[kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1)|[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)|
|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Model Para            | 115M     |115M |115M  |2.7B |
| Dataset Size          | 0.26B     |0.26B |0.6B  |250B |
| Training Token        | 7B     |3B|7B  |1.4T |
| Context Length        |1024      |1024|1024  |2048|
| Device                |1xA100-40G|1xA100-40G|1xA100-40G |96xA100-80G|
| Training Time         |2d4h      |1d|2d4h  |14d|


| Metric                | kenhktsui/nano-phi-115M-v0.1|kenhktsui/nano-phi-115M-v0.1 (6000 steps)|[kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1)|[microsoft/phi-2](https://huggingface.co/microsoft/phi-2) (Reproduced)|
|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Avg.                  | 28.68    |29.03 | 28.75 |61.53 |
| ARC (25-shot)         | 21.93    |22.27 | 21.67 |61.52 |
| HellaSwag (10-shot)   | 27.87    |26.88 | 26.89 |75.13 |
| MMLU (5-shot)         | 25.30    |25.01 | 24.76 |58.23 |
| TruthfulQA (0-shot)   | 46.01    |48.03 | 47.69 |44.46 |
| Winogrande (5-shot)   | 50.99    |52.01 | 51.46 |74.51 |
| GSM8K (5-shot)        |  0.0     |0.0 | 0.0 |55.34  |

Details:

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16
|  Task  |Version| Metric |Value |   |Stderr|
|--------|------:|--------|-----:|---|-----:|
|arc_easy|      0|acc     |0.4263|±  |0.0101|
|        |       |acc_norm|0.3864|±  |0.0100|

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 25, batch_size: 16
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.1826|±  |0.0113|
|             |       |acc_norm|0.2193|±  |0.0121|

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 10, batch_size: 16
|  Task   |Version| Metric |Value |   |Stderr|
|---------|------:|--------|-----:|---|-----:|
|hellaswag|      0|acc     |0.2733|±  |0.0044|
|         |       |acc_norm|0.2787|±  |0.0045|

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16
|    Task     |Version|Metric|Value |   |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc|      1|mc1   |0.2521|±  |0.0152|
|             |       |mc2   |0.4601|±  |0.0154|

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16
|                      Task                       |Version| Metric |Value |   |Stderr|
|-------------------------------------------------|------:|--------|-----:|---|-----:|
|hendrycksTest-abstract_algebra                   |      1|acc     |0.2300|±  |0.0423|
|                                                 |       |acc_norm|0.2300|±  |0.0423|
|hendrycksTest-anatomy                            |      1|acc     |0.3111|±  |0.0400|
|                                                 |       |acc_norm|0.3111|±  |0.0400|
|hendrycksTest-astronomy                          |      1|acc     |0.2171|±  |0.0336|
|                                                 |       |acc_norm|0.2171|±  |0.0336|
|hendrycksTest-business_ethics                    |      1|acc     |0.2500|±  |0.0435|
|                                                 |       |acc_norm|0.2500|±  |0.0435|
|hendrycksTest-clinical_knowledge                 |      1|acc     |0.2226|±  |0.0256|
|                                                 |       |acc_norm|0.2226|±  |0.0256|
|hendrycksTest-college_biology                    |      1|acc     |0.2292|±  |0.0351|
|                                                 |       |acc_norm|0.2292|±  |0.0351|
|hendrycksTest-college_chemistry                  |      1|acc     |0.1700|±  |0.0378|
|                                                 |       |acc_norm|0.1700|±  |0.0378|
|hendrycksTest-college_computer_science           |      1|acc     |0.2500|±  |0.0435|
|                                                 |       |acc_norm|0.2500|±  |0.0435|
|hendrycksTest-college_mathematics                |      1|acc     |0.2500|±  |0.0435|
|                                                 |       |acc_norm|0.2500|±  |0.0435|
|hendrycksTest-college_medicine                   |      1|acc     |0.2023|±  |0.0306|
|                                                 |       |acc_norm|0.2023|±  |0.0306|
|hendrycksTest-college_physics                    |      1|acc     |0.3235|±  |0.0466|
|                                                 |       |acc_norm|0.3235|±  |0.0466|
|hendrycksTest-computer_security                  |      1|acc     |0.2600|±  |0.0441|
|                                                 |       |acc_norm|0.2600|±  |0.0441|
|hendrycksTest-conceptual_physics                 |      1|acc     |0.2511|±  |0.0283|
|                                                 |       |acc_norm|0.2511|±  |0.0283|
|hendrycksTest-econometrics                       |      1|acc     |0.2281|±  |0.0395|
|                                                 |       |acc_norm|0.2281|±  |0.0395|
|hendrycksTest-electrical_engineering             |      1|acc     |0.2276|±  |0.0349|
|                                                 |       |acc_norm|0.2276|±  |0.0349|
|hendrycksTest-elementary_mathematics             |      1|acc     |0.2460|±  |0.0222|
|                                                 |       |acc_norm|0.2460|±  |0.0222|
|hendrycksTest-formal_logic                       |      1|acc     |0.1508|±  |0.0320|
|                                                 |       |acc_norm|0.1508|±  |0.0320|
|hendrycksTest-global_facts                       |      1|acc     |0.3000|±  |0.0461|
|                                                 |       |acc_norm|0.3000|±  |0.0461|
|hendrycksTest-high_school_biology                |      1|acc     |0.3387|±  |0.0269|
|                                                 |       |acc_norm|0.3387|±  |0.0269|
|hendrycksTest-high_school_chemistry              |      1|acc     |0.2906|±  |0.0319|
|                                                 |       |acc_norm|0.2906|±  |0.0319|
|hendrycksTest-high_school_computer_science       |      1|acc     |0.3100|±  |0.0465|
|                                                 |       |acc_norm|0.3100|±  |0.0465|
|hendrycksTest-high_school_european_history       |      1|acc     |0.2182|±  |0.0323|
|                                                 |       |acc_norm|0.2182|±  |0.0323|
|hendrycksTest-high_school_geography              |      1|acc     |0.3232|±  |0.0333|
|                                                 |       |acc_norm|0.3232|±  |0.0333|
|hendrycksTest-high_school_government_and_politics|      1|acc     |0.2021|±  |0.0290|
|                                                 |       |acc_norm|0.2021|±  |0.0290|
|hendrycksTest-high_school_macroeconomics         |      1|acc     |0.2487|±  |0.0219|
|                                                 |       |acc_norm|0.2487|±  |0.0219|
|hendrycksTest-high_school_mathematics            |      1|acc     |0.2741|±  |0.0272|
|                                                 |       |acc_norm|0.2741|±  |0.0272|
|hendrycksTest-high_school_microeconomics         |      1|acc     |0.3319|±  |0.0306|
|                                                 |       |acc_norm|0.3319|±  |0.0306|
|hendrycksTest-high_school_physics                |      1|acc     |0.3179|±  |0.0380|
|                                                 |       |acc_norm|0.3179|±  |0.0380|
|hendrycksTest-high_school_psychology             |      1|acc     |0.2477|±  |0.0185|
|                                                 |       |acc_norm|0.2477|±  |0.0185|
|hendrycksTest-high_school_statistics             |      1|acc     |0.4722|±  |0.0340|
|                                                 |       |acc_norm|0.4722|±  |0.0340|
|hendrycksTest-high_school_us_history             |      1|acc     |0.2696|±  |0.0311|
|                                                 |       |acc_norm|0.2696|±  |0.0311|
|hendrycksTest-high_school_world_history          |      1|acc     |0.2152|±  |0.0268|
|                                                 |       |acc_norm|0.2152|±  |0.0268|
|hendrycksTest-human_aging                        |      1|acc     |0.1973|±  |0.0267|
|                                                 |       |acc_norm|0.1973|±  |0.0267|
|hendrycksTest-human_sexuality                    |      1|acc     |0.2824|±  |0.0395|
|                                                 |       |acc_norm|0.2824|±  |0.0395|
|hendrycksTest-international_law                  |      1|acc     |0.2231|±  |0.0380|
|                                                 |       |acc_norm|0.2231|±  |0.0380|
|hendrycksTest-jurisprudence                      |      1|acc     |0.2222|±  |0.0402|
|                                                 |       |acc_norm|0.2222|±  |0.0402|
|hendrycksTest-logical_fallacies                  |      1|acc     |0.2822|±  |0.0354|
|                                                 |       |acc_norm|0.2822|±  |0.0354|
|hendrycksTest-machine_learning                   |      1|acc     |0.2768|±  |0.0425|
|                                                 |       |acc_norm|0.2768|±  |0.0425|
|hendrycksTest-management                         |      1|acc     |0.2039|±  |0.0399|
|                                                 |       |acc_norm|0.2039|±  |0.0399|
|hendrycksTest-marketing                          |      1|acc     |0.1966|±  |0.0260|
|                                                 |       |acc_norm|0.1966|±  |0.0260|
|hendrycksTest-medical_genetics                   |      1|acc     |0.2800|±  |0.0451|
|                                                 |       |acc_norm|0.2800|±  |0.0451|
|hendrycksTest-miscellaneous                      |      1|acc     |0.2746|±  |0.0160|
|                                                 |       |acc_norm|0.2746|±  |0.0160|
|hendrycksTest-moral_disputes                     |      1|acc     |0.2081|±  |0.0219|
|                                                 |       |acc_norm|0.2081|±  |0.0219|
|hendrycksTest-moral_scenarios                    |      1|acc     |0.2469|±  |0.0144|
|                                                 |       |acc_norm|0.2469|±  |0.0144|
|hendrycksTest-nutrition                          |      1|acc     |0.2647|±  |0.0253|
|                                                 |       |acc_norm|0.2647|±  |0.0253|
|hendrycksTest-philosophy                         |      1|acc     |0.1897|±  |0.0223|
|                                                 |       |acc_norm|0.1897|±  |0.0223|
|hendrycksTest-prehistory                         |      1|acc     |0.2377|±  |0.0237|
|                                                 |       |acc_norm|0.2377|±  |0.0237|
|hendrycksTest-professional_accounting            |      1|acc     |0.2482|±  |0.0258|
|                                                 |       |acc_norm|0.2482|±  |0.0258|
|hendrycksTest-professional_law                   |      1|acc     |0.2464|±  |0.0110|
|                                                 |       |acc_norm|0.2464|±  |0.0110|
|hendrycksTest-professional_medicine              |      1|acc     |0.4265|±  |0.0300|
|                                                 |       |acc_norm|0.4265|±  |0.0300|
|hendrycksTest-professional_psychology            |      1|acc     |0.2614|±  |0.0178|
|                                                 |       |acc_norm|0.2614|±  |0.0178|
|hendrycksTest-public_relations                   |      1|acc     |0.1818|±  |0.0369|
|                                                 |       |acc_norm|0.1818|±  |0.0369|
|hendrycksTest-security_studies                   |      1|acc     |0.1959|±  |0.0254|
|                                                 |       |acc_norm|0.1959|±  |0.0254|
|hendrycksTest-sociology                          |      1|acc     |0.2289|±  |0.0297|
|                                                 |       |acc_norm|0.2289|±  |0.0297|
|hendrycksTest-us_foreign_policy                  |      1|acc     |0.2400|±  |0.0429|
|                                                 |       |acc_norm|0.2400|±  |0.0429|
|hendrycksTest-virology                           |      1|acc     |0.2048|±  |0.0314|
|                                                 |       |acc_norm|0.2048|±  |0.0314|
|hendrycksTest-world_religions                    |      1|acc     |0.2222|±  |0.0319|
|                                                 |       |acc_norm|0.2222|±  |0.0319|

hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16
|   Task   |Version|Metric|Value |   |Stderr|
|----------|------:|------|-----:|---|-----:|
|winogrande|      0|acc   |0.5099|±  | 0.014|


hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16
|   Task   |Version|Metric|Value |   |Stderr|
|----------|------:|------|-----:|---|-----:|
|gsm8k     |      0|acc   |   0.0|±  |   0.0|



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kenhktsui__nano-phi-115M-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |28.66|
|AI2 Reasoning Challenge (25-Shot)|21.93|
|HellaSwag (10-Shot)              |27.86|
|MMLU (5-Shot)                    |25.34|
|TruthfulQA (0-shot)              |46.00|
|Winogrande (5-shot)              |50.83|
|GSM8k (5-shot)                   | 0.00|