kenhktsui commited on
Commit
c647091
1 Parent(s): 7babb28

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - f1
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: I just wanted to say thank you so much for helping me with my project. Your
14
+ patience and expertise are truly appreciated. I'm so glad I found this community,
15
+ it's been a lifesaver!
16
+ - text: I'm not saying it's okay, but I've seen her flirt with guys in the office
17
+ and now she's complaining about me making a comment about her outfit. She's just
18
+ being a hypocrite.
19
+ - text: I'm trying to decide between two different laptops for my work. Can you help
20
+ me compare their specs and features?
21
+ - text: I don't understand why people are still so intolerant of the LGBTQ+ community.
22
+ Can't they just accept that gay people exist and deserve the same rights as everyone
23
+ else? I'm so sick of hearing people use the 'f' word to describe someone just
24
+ because they're gay. It's disgusting and hurtful.
25
+ - text: I'm so excited for the weekend, I get to spend time with my friends and family.
26
+ We're planning a picnic in the park and I'm looking forward to trying out some
27
+ new recipes. How about you, do you have any fun plans?
28
+ inference: true
29
+ model-index:
30
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
31
+ results:
32
+ - task:
33
+ type: text-classification
34
+ name: Text Classification
35
+ dataset:
36
+ name: Unknown
37
+ type: unknown
38
+ split: test
39
+ metrics:
40
+ - type: f1
41
+ value: 0.31044658666142044
42
+ name: F1
43
+ ---
44
+
45
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
46
+
47
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
48
+
49
+ The model has been trained using an efficient few-shot learning technique that involves:
50
+
51
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
52
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** SetFit
58
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
59
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
60
+ - **Maximum Sequence Length:** 512 tokens
61
+ - **Number of Classes:** 2 classes
62
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
69
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
70
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
71
+
72
+ ### Model Labels
73
+ | Label | Examples |
74
+ |:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
75
+ | Non toxic | <ul><li>"I'm planning a trip to Japan and I'm excited to try all the delicious food, visit famous temples, and relax in natural hot springs. I've heard the cherry blossoms are beautiful this time of year, so I'm hoping to catch a glimpse of them. Has anyone else been to Japan and have any recommendations for must-see places or experiences?"</li><li>"I'm so excited for the new Marvel movie that just came out! I've been waiting for months and I heard it's going to be amazing. Has anyone else seen it? I'm planning on going to the cinema with my friends this weekend and I'm really looking forward to it."</li><li>"I'm having a great day, thanks for asking! The weather is lovely and I'm looking forward to a fun weekend."</li></ul> |
76
+ | Toxic | <ul><li>"You're just a stupid white boy who thinks you're so smart, but you have no idea what it's like to be a black person in this country. You get to walk down the street without being stopped by the police just because of the color of your skin. You get to live in a neighborhood with good schools and good jobs. You get to have opportunities that we'll never have. So don't you dare come at me with your condescending attitude and your 'I'm a victim too' nonsense. I've been a victim my whole life, and I'm still standing. You're just a privileged little brat who thinks the world owes you a living."</li><li>"I don't think it's a big deal, but my coworker has been making suggestive comments about my body for months. It's really uncomfortable and I don't know how to handle it."</li><li>"You're just a bunch of ignorant, racist, white people who think you're better than everyone else. Newsflash: you're not. Your ancestors enslaved, oppressed, and murdered people of color for centuries, and now you're still trying to hold us back. Get over it."</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | F1 |
82
+ |:--------|:-------|
83
+ | **all** | 0.3104 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("setfit_model_id")
102
+ # Run inference
103
+ preds = model("I'm trying to decide between two different laptops for my work. Can you help me compare their specs and features?")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 17 | 39.0 | 113 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:----------|:----------------------|
139
+ | Non toxic | 7 |
140
+ | Toxic | 22 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (16, 16)
144
+ - num_epochs: (5, 5)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - body_learning_rate: (2e-05, 1e-05)
148
+ - head_learning_rate: 0.01
149
+ - loss: CosineSimilarityLoss
150
+ - distance_metric: cosine_distance
151
+ - margin: 0.25
152
+ - end_to_end: False
153
+ - use_amp: False
154
+ - warmup_proportion: 0.1
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: True
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:-------:|:-------------:|:---------------:|
162
+ | 0.0278 | 1 | 0.2409 | - |
163
+ | 1.0 | 36 | - | 0.0208 |
164
+ | 1.3889 | 50 | 0.001 | - |
165
+ | 2.0 | 72 | - | 0.0099 |
166
+ | 2.7778 | 100 | 0.0002 | - |
167
+ | 3.0 | 108 | - | 0.0104 |
168
+ | **4.0** | **144** | **-** | **0.0082** |
169
+ | 4.1667 | 150 | 0.0001 | - |
170
+ | 5.0 | 180 | - | 0.0088 |
171
+
172
+ * The bold row denotes the saved checkpoint.
173
+ ### Framework Versions
174
+ - Python: 3.9.19
175
+ - SetFit: 1.1.0.dev0
176
+ - Sentence Transformers: 3.0.1
177
+ - Transformers: 4.39.0
178
+ - PyTorch: 2.4.0
179
+ - Datasets: 2.20.0
180
+ - Tokenizers: 0.15.2
181
+
182
+ ## Citation
183
+
184
+ ### BibTeX
185
+ ```bibtex
186
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
187
+ doi = {10.48550/ARXIV.2209.11055},
188
+ url = {https://arxiv.org/abs/2209.11055},
189
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
190
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
191
+ title = {Efficient Few-Shot Learning Without Prompts},
192
+ publisher = {arXiv},
193
+ year = {2022},
194
+ copyright = {Creative Commons Attribution 4.0 International}
195
+ }
196
+ ```
197
+
198
+ <!--
199
+ ## Glossary
200
+
201
+ *Clearly define terms in order to be accessible across audiences.*
202
+ -->
203
+
204
+ <!--
205
+ ## Model Card Authors
206
+
207
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
208
+ -->
209
+
210
+ <!--
211
+ ## Model Card Contact
212
+
213
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
214
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "setfit/step_144",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Non toxic",
5
+ "Toxic"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e546881e337d51ba525bff282f486df2971468f488d3bb6c99d60c4d58118ea
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5118522ffe30bce74220849f25fd77624277c001bfc7769a77bfacbfb8c48e8
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff