File size: 2,971 Bytes
0e08b7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
base_model: MediaTek-Research/Breeze-7B-Base-v0_1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: hon9kon9ize/yue-alpaca
type: alpaca
- path: indiejoseph/wikipedia-translate-zhhk-zhcn
type:
system_prompt: ""
field_instruction: zh
field_output: yue
format: |-
[INST]
翻譯下面中文至粵語廣東話(Cantonese)。
{instruction}
[/INST]
- path: indiejoseph/wikipedia-zh-yue-summaries
type:
system_prompt: ""
field_instruction: content
field_output: summary
format: |-
[INST]
用粵語廣東話(Cantonese)總結一吓。
{instruction}
[/INST]
- path: indiejoseph/wikipedia-zh-yue-summaries
type:
system_prompt: ""
field_instruction: content
field_output: title
format: |-
[INST]
粵語廣東話(Cantonese), 呢篇嘢主題係咩?
{instruction}
[/INST]
- path: indiejoseph/wikipedia-zh-yue-summaries
type:
system_prompt: ""
field_instruction: content
field_output: category
format: |-
[INST]
粵語廣東話(Cantonese), 呢篇嘢講緊咩? 係咩分類?
{instruction}
[/INST]
- path: indiejoseph/wikipedia-zh-yue-qa
type:
system_prompt: ""
field_instruction: question
field_system: title
field_output: answer
format: |-
[INST]
粵語廣東話(Cantonese), 以下係關於「{system}」嘅問題。
{instruction}
[/INST]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: loras/Breeze-7B-Cantonese-v0.1
save_safetensors: true
#eval_sample_packing: False
## You can optionally freeze the entire model and unfreeze a subset of parameters
unfrozen_parameters:
# - lm_head.*
# - model.embed_tokens.*
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
|