kenzykhaled commited on
Commit
213f152
·
verified ·
1 Parent(s): 5078ce8

Initial upload of ASAG XLNet regression model

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - xlnet
6
+ - automatic-short-answer-grading
7
+ - regression
8
+ - education
9
+ - short-answer
10
+ - assessment
11
+ - grading
12
+ datasets:
13
+ - Meyerger/ASAG2024
14
+ metrics:
15
+ - mse
16
+ - rmse
17
+ - mae
18
+ - pearson correlation
19
+ model-index:
20
+ - name: xlnet-regression
21
+ results:
22
+ - task:
23
+ type: regression
24
+ name: automatic short answer grading
25
+ metrics:
26
+ - type: mse
27
+ value: 0.035
28
+ - type: rmse
29
+ value: 0.187
30
+ - type: mae
31
+ value: 0.142
32
+ - type: pearson correlation
33
+ value: 0.912
34
+ ---
35
+
36
+ # ASAG XLNet Regression Model
37
+
38
+ This model evaluates student answers by comparing them to reference answers and predicting a grade (regression).
39
+
40
+ ## Model Details
41
+
42
+ - **Model Type:** XLNet for Regression
43
+ - **Task:** Automatic Short Answer Grading (ASAG)
44
+ - **Framework:** PyTorch/Transformers
45
+ - **Base Model:** xlnet-base-cased
46
+
47
+ ## Usage
48
+
49
+ ```python
50
+ from transformers import XLNetTokenizer, XLNetForSequenceClassification
51
+ import torch
52
+
53
+ # Load model and tokenizer
54
+ tokenizer = XLNetTokenizer.from_pretrained("kenzykhaled/xlnet-regression")
55
+ model = XLNetForSequenceClassification.from_pretrained("kenzykhaled/xlnet-regression")
56
+
57
+ # Prepare inputs
58
+ student_answer = "It is vision."
59
+ reference_answer = "The stimulus is seeing or hearing the cup fall."
60
+
61
+ inputs = tokenizer(
62
+ text=student_answer,
63
+ text_pair=reference_answer,
64
+ return_tensors="pt",
65
+ padding=True,
66
+ truncation=True
67
+ )
68
+
69
+ # Get prediction
70
+ with torch.no_grad():
71
+ outputs = model(**inputs)
72
+
73
+ # Get predicted grade (normalized between 0-1)
74
+ predicted_grade = outputs.logits.item()
75
+ predicted_grade = max(0, min(1, predicted_grade))
76
+ print(f"Predicted grade: {predicted_grade:.4f}")
77
+ ```
78
+
79
+ ## Training Data
80
+
81
+ This model was trained on the Meyerger/ASAG2024 dataset.
82
+
83
+ ## Use Cases
84
+
85
+ - Automated grading of student short-answer responses
86
+ - Educational technology platforms
87
+ - Learning management systems
88
+ - Assessment tools
89
+ - Teacher assistance for grading
90
+
91
+ ## Limitations
92
+
93
+ - The model is trained on specific educational domains and may not generalize well to all subjects
94
+ - Performance depends on the similarity of input data to the training data
95
+ - Should be used as an assistive tool for grading rather than a complete replacement for human evaluation
96
+
97
+ ## Ethical Considerations
98
+
99
+ When using this model for automated grading:
100
+ - Be transparent with students about the use of AI for grading
101
+ - Consider potential biases in evaluation
102
+ - Provide human review of edge cases
103
+ - Allow students to appeal automated grades
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlnet-base-cased",
3
+ "architectures": [
4
+ "XLNetForSequenceClassification"
5
+ ],
6
+ "attn_type": "bi",
7
+ "bi_data": false,
8
+ "bos_token_id": 1,
9
+ "clamp_len": -1,
10
+ "d_head": 64,
11
+ "d_inner": 3072,
12
+ "d_model": 768,
13
+ "dropout": 0.1,
14
+ "end_n_top": 5,
15
+ "eos_token_id": 2,
16
+ "ff_activation": "gelu",
17
+ "id2label": {
18
+ "0": "LABEL_0"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "label2id": {
22
+ "LABEL_0": 0
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "mem_len": null,
26
+ "model_type": "xlnet",
27
+ "n_head": 12,
28
+ "n_layer": 12,
29
+ "pad_token_id": 5,
30
+ "problem_type": "regression",
31
+ "reuse_len": null,
32
+ "same_length": false,
33
+ "start_n_top": 5,
34
+ "summary_activation": "tanh",
35
+ "summary_last_dropout": 0.1,
36
+ "summary_type": "last",
37
+ "summary_use_proj": true,
38
+ "task_specific_params": {
39
+ "text-generation": {
40
+ "do_sample": true,
41
+ "max_length": 250
42
+ }
43
+ },
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.48.3",
46
+ "untie_r": true,
47
+ "use_mems_eval": true,
48
+ "use_mems_train": false,
49
+ "vocab_size": 32000
50
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7fd04b521819628b7210e5f239a8a890e72ddab1a454cadd3298c1edb6044b
3
+ size 469261516
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<eop>",
4
+ "<eod>"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "cls_token": "<cls>",
8
+ "eos_token": "</s>",
9
+ "mask_token": {
10
+ "content": "<mask>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "sep_token": "<sep>",
18
+ "unk_token": "<unk>"
19
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f8c1c0bc2854d1af911a8550288c1258af5ba50277f3a5c829b98eb86fc5646
3
+ size 798011
tokenizer_config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<cls>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<sep>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<pad>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "<mask>",
53
+ "lstrip": true,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "<eod>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "8": {
68
+ "content": "<eop>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ }
75
+ },
76
+ "additional_special_tokens": [
77
+ "<eop>",
78
+ "<eod>"
79
+ ],
80
+ "bos_token": "<s>",
81
+ "clean_up_tokenization_spaces": false,
82
+ "cls_token": "<cls>",
83
+ "do_lower_case": false,
84
+ "eos_token": "</s>",
85
+ "extra_special_tokens": {},
86
+ "keep_accents": false,
87
+ "mask_token": "<mask>",
88
+ "model_max_length": 1000000000000000019884624838656,
89
+ "pad_token": "<pad>",
90
+ "remove_space": true,
91
+ "sep_token": "<sep>",
92
+ "sp_model_kwargs": {},
93
+ "tokenizer_class": "XLNetTokenizer",
94
+ "unk_token": "<unk>"
95
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fecb7fd8880f0171d83b7bceea56341321593b0cea8e8df4b89edb1be3c3e327
3
+ size 5304