Update README.md
Browse files
README.md
CHANGED
@@ -18,4 +18,4 @@ Graph neural networks is the preferred neural network architecture for processin
|
|
18 |
This tutorial implements a specific graph neural network known as a [Graph Attention Network (GAT)](https://arxiv.org/abs/1710.10903) to predict labels of scientific papers based on the papers they cite (using the [Cora dataset](https://linqs.soe.ucsc.edu/data)).
|
19 |
|
20 |
References
|
21 |
-
For more information on GAT, see the original paper [Graph Attention Networks](https://arxiv.org/abs/1710.10903) as well as [DGL's Graph Attention Networks](https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/9_gat.html) documentation.
|
|
|
18 |
This tutorial implements a specific graph neural network known as a [Graph Attention Network (GAT)](https://arxiv.org/abs/1710.10903) to predict labels of scientific papers based on the papers they cite (using the [Cora dataset](https://linqs.soe.ucsc.edu/data)).
|
19 |
|
20 |
References
|
21 |
+
For more information on GAT, see the original paper [Graph Attention Networks](https://arxiv.org/abs/1710.10903) as well as [DGL's Graph Attention Networks](https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/9_gat.html) documentation.
|