{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "qf-uHjOnuw5g" }, "source": [ "# Node Classification with Graph Neural Networks\n", "\n", "**Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
\n", "**Date created:** 2021/05/30
\n", "**Last modified:** 2021/05/30
\n", "**Description:** Implementing a graph neural network model for predicting the topic of a paper given its citations." ] }, { "cell_type": "markdown", "metadata": { "id": "THU5mq3Buw5i" }, "source": [ "## Introduction\n", "\n", "Many datasets in various machine learning (ML) applications have structural relationships\n", "between their entities, which can be represented as graphs. Such application includes\n", "social and communication networks analysis, traffic prediction, and fraud detection.\n", "[Graph representation Learning](https://www.cs.mcgill.ca/~wlh/grl_book/)\n", "aims to build and train models for graph datasets to be used for a variety of ML tasks.\n", "\n", "This example demonstrate a simple implementation of a [Graph Neural Network](https://arxiv.org/pdf/1901.00596.pdf)\n", "(GNN) model. The model is used for a node prediction task on the [Cora dataset](https://relational.fit.cvut.cz/dataset/CORA)\n", "to predict the subject of a paper given its words and citations network.\n", "\n", "Note that, **we implement a Graph Convolution Layer from scratch** to provide better\n", "understanding of how they work. However, there is a number of specialized TensorFlow-based\n", "libraries that provide rich GNN APIs, such as [Spectral](https://graphneural.network/),\n", "[StellarGraph](https://stellargraph.readthedocs.io/en/stable/README.html), and\n", "[GraphNets](https://github.com/deepmind/graph_nets)." ] }, { "cell_type": "markdown", "metadata": { "id": "RK6CHiyAuw5j" }, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "cCWyYWzLuw5j" }, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers" ] }, { "cell_type": "markdown", "metadata": { "id": "cTFeuvsYuw5j" }, "source": [ "## Prepare the Dataset\n", "\n", "The Cora dataset consists of 2,708 scientific papers classified into one of seven classes.\n", "The citation network consists of 5,429 links. Each paper has a binary word vector of size\n", "1,433, indicating the presence of a corresponding word.\n", "\n", "### Download the dataset\n", "\n", "The dataset has two tap-separated files: `cora.cites` and `cora.content`.\n", "\n", "1. The `cora.cites` includes the citation records with two columns:\n", "`cited_paper_id` (target) and `citing_paper_id` (source).\n", "2. The `cora.content` includes the paper content records with 1,435 columns:\n", "`paper_id`, `subject`, and 1,433 binary features.\n", "\n", "Let's download the dataset." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "7OHK8dAguw5k", "outputId": "1428c9be-d01e-40b5-8091-fc5dc5698c12", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading data from https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz\n", "172032/168052 [==============================] - 0s 2us/step\n", "180224/168052 [================================] - 0s 2us/step\n" ] } ], "source": [ "zip_file = keras.utils.get_file(\n", " fname=\"cora.tgz\",\n", " origin=\"https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz\",\n", " extract=True,\n", ")\n", "data_dir = os.path.join(os.path.dirname(zip_file), \"cora\")" ] }, { "cell_type": "markdown", "metadata": { "id": "n3H5HwUsuw5k" }, "source": [ "### Process and visualize the dataset\n", "\n", "Then we load the citations data into a Pandas DataFrame." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "wloojBfEuw5l", "outputId": "6260336f-fea2-47dd-e653-a55cdf995218", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Citations shape: (5429, 2)\n" ] } ], "source": [ "citations = pd.read_csv(\n", " os.path.join(data_dir, \"cora.cites\"),\n", " sep=\"\\t\",\n", " header=None,\n", " names=[\"target\", \"source\"],\n", ")\n", "print(\"Citations shape:\", citations.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "lRztKFR8uw5l" }, "source": [ "Now we display a sample of the `citations` DataFrame.\n", "The `target` column includes the paper ids cited by the paper ids in the `source` column." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "6-Kdix_1uw5l", "outputId": "639e4995-89b1-4d52-cd42-9c9718a0c8d8", "colab": { "base_uri": "https://localhost:8080/", "height": 207 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
targetsource
1393674151909
5347696345696342
444136526850
53126712691154124
4945523574653441
\n", "
" ], "text/plain": [ " target source\n", "1393 6741 51909\n", "5347 696345 696342\n", "444 1365 26850\n", "5312 671269 1154124\n", "4945 523574 653441" ] }, "metadata": {}, "execution_count": 4 } ], "source": [ "citations.sample(frac=1).head()" ] }, { "cell_type": "markdown", "metadata": { "id": "wMCOpUwFuw5m" }, "source": [ "Now let's load the papers data into a Pandas DataFrame." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "buamcPX1uw5m", "outputId": "37ef5b90-4eff-4be2-bee9-cd963a19c5ef", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Papers shape: (2708, 1435)\n" ] } ], "source": [ "column_names = [\"paper_id\"] + [f\"term_{idx}\" for idx in range(1433)] + [\"subject\"]\n", "papers = pd.read_csv(\n", " os.path.join(data_dir, \"cora.content\"), sep=\"\\t\", header=None, names=column_names,\n", ")\n", "print(\"Papers shape:\", papers.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "T6UNxHJUuw5m" }, "source": [ "Now we display a sample of the `papers` DataFrame. The DataFrame includes the `paper_id`\n", "and the `subject` columns, as well as 1,433 binary column representing whether a term exists\n", "in the paper or not." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "yrJ3ffMquw5m", "outputId": "17f2d3f5-cb6d-4246-9889-b0f44490d5c6", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " 918 ... 264\n", "paper_id 1130586 ... 552469\n", "term_0 0 ... 0\n", "term_1 0 ... 0\n", "term_2 0 ... 0\n", "term_3 0 ... 1\n", "... ... ... ...\n", "term_1429 0 ... 0\n", "term_1430 0 ... 0\n", "term_1431 0 ... 0\n", "term_1432 0 ... 0\n", "subject Neural_Networks ... Theory\n", "\n", "[1435 rows x 5 columns]\n" ] } ], "source": [ "print(papers.sample(5).T)" ] }, { "cell_type": "markdown", "metadata": { "id": "egoSvcgSuw5m" }, "source": [ "Let's display the count of the papers in each subject." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "fM7yhCOUuw5n", "outputId": "a180a770-e47f-406f-f6f0-1daf06a322ae", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Neural_Networks 818\n", "Probabilistic_Methods 426\n", "Genetic_Algorithms 418\n", "Theory 351\n", "Case_Based 298\n", "Reinforcement_Learning 217\n", "Rule_Learning 180\n", "Name: subject, dtype: int64\n" ] } ], "source": [ "print(papers.subject.value_counts())" ] }, { "cell_type": "markdown", "metadata": { "id": "wLmuoP3Wuw5n" }, "source": [ "We convert the paper ids and the subjects into zero-based indices." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "vhJU_kkcuw5n" }, "outputs": [], "source": [ "class_values = sorted(papers[\"subject\"].unique())\n", "class_idx = {name: id for id, name in enumerate(class_values)}\n", "paper_idx = {name: idx for idx, name in enumerate(sorted(papers[\"paper_id\"].unique()))}\n", "\n", "papers[\"paper_id\"] = papers[\"paper_id\"].apply(lambda name: paper_idx[name])\n", "citations[\"source\"] = citations[\"source\"].apply(lambda name: paper_idx[name])\n", "citations[\"target\"] = citations[\"target\"].apply(lambda name: paper_idx[name])\n", "papers[\"subject\"] = papers[\"subject\"].apply(lambda value: class_idx[value])" ] }, { "cell_type": "markdown", "metadata": { "id": "pWBiHhc1uw5n" }, "source": [ "Now let's visualize the citation graph. Each node in the graph represents a paper,\n", "and the color of the node corresponds to its subject. Note that we only show a sample of\n", "the papers in the dataset." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "5gGaQLP8uw5n", "outputId": "1c1e9d57-57f8-45ac-96fd-8e32ae169af6", "colab": { "base_uri": "https://localhost:8080/", "height": 751 } }, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAALeCAYAAACdlBZfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVfrH8c+9U5NJb4TeOyIgKCIgxYYVC4p1sSu66rrq/my7FtR17V2xF0REBEUEEekISO+9BtJIb9Pu3PP7IxjARspkJuV5/+FrJzv3nIcQMt977imaUkohhBBCCCGEqFV6uAsQQgghhBCiMZDgLYQQQgghRAhI8BZCCCGEECIEJHgLIYQQQggRAhK8hRBCCCGECAEJ3kIIIYQQQoSABG8hhBBCCCFCQIK3EEIIIYQQISDBWwghhBBCiBCQ4C2EEEIIIUQISPAWQgghhBAiBCR4CyGEEEIIEQISvIUQQgghhAgBCd5CCCGEEEKEgARvIYQQQgghQkCCtxBCCCGEECEgwVsIIYQQQogQkOAthBBCCCFECEjwFkIIIYQQIgQkeAshhBBCCBECEryFEEIIIYQIAQneQgghhBBChIAEbyGEEEIIIUJAgrcQQgghhBAhIMFbCCGEEEKIEJDgLYQQQgghRAhI8BZCCCGEECIEJHgLIYQQQggRAhK8hRBCCCGECAEJ3kIIIYQQQoSABG8hhBBCCCFCQIK3EEIIIYQQISDBWwghhBBCiBCQ4C2EEEIIIUQISPAWQgghhBAiBCR4CyGEEEIIEQISvIUQQgghhAgBCd5CCCGEEEKEgARvIYQQQgghQkCCtxBCCCGEECEgwVsIIYQQQogQkOAthBBCCCFECEjwFkIIIYQQIgQkeAshhBBCCBECEryFEEIIIYQIAQneQgghhBBChIAEbyGEEEIIIUJAgrcQQgghhBAhIMFbCCGEEEKIEJDgLYQQQgghRAhI8BZCCCGEECIEJHgLIYQQQggRAhK8hRBCCCGECAEJ3kIIIYQQQoSABG8hhBBCCCFCQIK3EEIIIYQQISDBWwghhBBCiBCQ4C2EEEIIIUQISPAWQgghhBAiBCR4CyGEEEIIEQISvIUQQgghhAgBCd5CCCGEEEKEgARvIYQQQgghQkCCtxBCCCGEECEgwVsIIYQQQogQkOAthKizAoZJRno+brcv3KUIIYQQNWYNdwFCCPFHsjMLuef2jykudKOU4uEnL+HUgZ3CXZYQQghRbTLiLYSok159fia5h4rxePx4vQZPPfo1gYAZ7rKEEEKIapPgLYSok7KzijBNVfHaMEx8XiOMFQkhhBA1I8FbCFEnDT+7Bw6nDQBNh46dU4mItIe5KiGEEKL6NKWUOv7bhBAitJRSfPPVCqZ+tYis7L1Mmf4crihnuMsSleQ3AuQVl5EY48JqkTEeIYQACd5CiDouIyOD7t27k5OTg65LgKsP1u/O4M7XvsYfMImKsPPuP0bRJjUh3GUJIUTYyaeYEKJOa9q0KUlJSWzcuDHcpYhKun/8t5R4fHj9BnlFZTz60axwlySEEHWCBG8hRJ22b3Ma7bN7c3/fcTxw5hOUFpaGuyTxJ0xT8fAHMzlUWFbxNQVk5heHryghhKhDJHgLIeq0f509DqPIxDQUGxZt4ZWx74W7pDrH7fNT5gn/IUPfr9jC/HU7j/ma3WpheK+OYapICCHqFjlARwhRZ/m8fvIy8iteGz6DHat2hbGiuueVrxfx2U+rATi/f1f+fc2ZaJoWlloycovw+I5s+ahrGoN7tuO+y4eEpR4hhKhrZMRbCFFn2R02mrZrgq6XB0m708YJg7qGuaq6Y9X2A3y5YC0B0yRgmsxetZ25a3ce/8JacnLnVjhsR8ZznHYr940aIruaUL5Lz0c/rGDEQ+9y2eMfs2bnwXCXJIQIA/ltKISo056d/SidT+5IbFIMA0aezNhXbgh3SXVGRl4RHDW67fH4Wb5qd9jqObF9M56+8Vy6t25Cn47Neeeey0iJiwpbPXXJ7FXbGf/9MrLyS9idmcffX59KXlHZ8S8UQjQoMtVECFGnpbZJ4dWfnwp3GXVSr/bNUEed7qmUYsFXa7lkQA+6dGselpqGnNieISe2D0vfwWIETA7mFBIXFUGsKzh7x6/afuDYaTi6zq6MXBJiIoPSvhCifpDgLYQQYZSfV8JnHy6muLCM80b24cQ+bSp9bYvkOG4+rQ/vfL8MUykiMn1obsXalXvDFrzru9yiUsY8N4m8olICpuL/Rg9j5Gk9atxul1YpOGxWvP7y8O03ArRMjqtxu0KI+kWmmgghRJh4vX7uuOEDZkxbzbw5m3n4n1+wYe3+KrXRv0cbktIMYnd6sJeY2GxWUptJoKuuV6cuJjO/GLfPwGcEGDdxDhN2LMYwAzVqd+SAHnSI00GZREc4GDfmHFITooNUtRCivpDgLYQQYbJzeyalJR4CARMAr9fgpx82VKmNrt2bc8U1p2Kx6FgsOqcP78bpw7vVRrmNQlZ+ccXfB4CJyVub5vDg2ok1alfXNdKXfM1DZ7RmwYtjGd5HtlgUojGSqSZCCBEmMTGRGEeFPJvNQnxi1RcjXnvDYK64egCmUjidtmCWWGllRj77Slfi0KNoE3UyumYJSx01dUH/7qzfk1E+H1tTEBnA6/Cx+NBWygwvkVZHtdo9ePAga9as4fzzzw9yxUKI+kSCtxBChEnL1olcesXJTJ64DJ/PS/OWyVx2Zf9qtWV3hO/XeZEvk8/33kZAGWhoNI88gQtbjEPT6t9D1fP6d0XT4fkff6TQWoLetRRNAw0Nm169mwml3Ez56mNGjhyJ0xmcxZpCiPpJU0qp479NCCFEbdm6ZS/Dhp1FWtpWLNb6F1YXZL3BuvxvUJSP3ls1J5e3fplkZ4cwV1Z9O4ozuGX5eAAM0+TOTmdzRZsBVW7HLH4FSt/BbxjklfQjtfOn9fKGRAgRHDLiLYQQYWaLjYJmrfnm5/VceFrPenfgjKnMitANoFE+N7o+6xjdlKmD72NbUTqpzjhaRyVXuQ3lWwelHwAGNiukxG0Ez3SIuCj4BQsh6oX69dtdCCEamE17M7n22Yk06Xs2z321kLvemEp9exDZK+FibHokhk+hKzvJzg4kO+r3Xt4AcXYXpyR1rFboBsBMh6NGtzW8EEgPUnVCiPpIgrcQQoTRJ3NW4fEZaLoFrz/A2p3ppB0qDHdZVRJvb8E1bcYzf3w2vR3Xckmr5+rt4sqgsvUGjr6JsoO96tNVhBANhwRvIRoJv89PbkY+plm/pwA0NDaLfvSp75hK1bupJgBF/iwOpefTKXkAFi08O6vUNZolFS3hM7D3B1tvtPhX0ewnhrssIUQYyeJKIRqBtfM28u+LniVgBIhrEstLC54gpVU1H5+LoNqbmcd1/5uIaSoUcGafjjx23dnhLqtKFma9zYaC6ZSWlBIVFcUlrZ4nNaJLuMsSQog6R4K3EA2cUoqLE8ZQWlgGgG7R6XPGCTwz85EwVyZ+lVNYyqrtB4iPjqBf55ZoRw+B13G+QBnv7LgYkyMnO7aM7MMlrf4XxqqEEKJukl1NhGjg/D6DsmJ3xWszYJKxOzuMFYnfSop1cXa/zuEuo1rUH+xeYiqjctcqHxi7QY9HszQJdml1nlKKBet3cyCnkL6dWtClZUq4SxJC1DIJ3kI0cHaHja6ndGT7qt0YPgNl1dkTa2XB+l2c3rP+7zwhwsthiaJTzBB2FS8hoAx0zcIpSdce9zoVyEHljgJVAMpARd+P7rouBBXXHc9+MY/pyzZjmAEsus5zN5/PaT3ahrssIUQtkqkmQjQCpYWl/O3cJ8nZlYWvdQKeXs1xOm0sfulOdL3+TGsQoeM1DOwWS6WmvShlsrN4EcX+bFq6+pDsPP4NnVn4ELinAb+OjtvRUhah6fE1K7ye8PoNBt7zOgHzyEdwt9ZN+Oz/rgpjVUKI2iYj3kI0Aq5YF/o53ShKP/I4328E8PoNIhx1dweKgGkyf90uCks9nNa9DU3io8NdUoNX5PUw5puvWZ+Victm553zL6J/i5Z/eY2m6XSMOb1qHQWyORK6AXQwi+E4wTttXy5bNx+kZetEunRrXrU+6xCt4r9HgrdFboKFaPDq355VQohqGXFyF5z28nttm9VCt9ZN6nToVkpx95vf8O+Pf+D5yfO57IlP2JuZF+6yKk35N2Pm3YqZdyPKtzLc5VTakwvnsyk7C1Mpin1ebp4+FX8gcPwLqyricsAJgMIG1pZg+esgvWLZLm4f8y6vPT+T++78jK8mLgt+XSFit1n525knoQJ+7FYdp93KXRcPqpW+TFMxZ9YGPhw/n9Ur99RKH0KIypERbyEaiTFn9cNpt7Fg3S7aNk3gjgtPC3dJf2l3Ri6rdxzA4ysfFdWAz35azSNXnxHewipBBTJQeVeBKt9JRuWtgMSv0GydwlzZ8e3IzcF/1F7vftOk0OslKTIyqP3oEWeRm/9vFs25jwtHXo8WdQfaXxy6k3Ewn2efmIbXe2SU/IO353Hp6FPq1S4wR+sYUYq5ZQ4P/e8lerVvTquUuFrp55X/fc/c2RvxePxM+WI5d903grPO7VkrfQkh/poEbyEaCU3TuHJob64c2jvcpVSKUqBi/Fi654NdofY5MVU9OfzH98tvvhAA32KoB8F7WNt27MjLxW0Y6EATVxQJERG10teG7Um88G5LRl734F++LzOjgNvGvEdZqfeYr5tKoRTUt9ytlAFmFuPfeYW7xlzBhad2r7W+AobJrO/WYh6eS+71+Jn02RIJ3kKEiQRvIUSd1CTFBf3z0fQAaKB1dNOsjT3cZVWO3gSlFFPfTWLprBhadQpw4zNxRLnCXdjx3db3JHYWrWDBzmKaxTp489zz0Gsp2e7YsYOOHTse930L527B5/Uf8zWb3cIll59c7xYHq0AmKnc0ZiCXT170YI1vVrv9AZquwVGLOB3OujvFTIiGToK3EKJOOlCWh9NupfTX+cVWxW4jI7xFVZb9FCa9NZDPn8/E69bZsgp2bV3Jq0svCUn3u/PzWJl+kFaxccddGPlbSw69TedWs2nf0ouGhRWFWbSNezmo9QVMk7e+/ZlJa/KJjetGTmEpSbF/flficNrQLToY5U88rFadK689jWtuqJ050bVJFT0GZia6ZhLh1MD9L1TMWX85zaa68nJLuHfsJ6DK10zY7BasFgtj76lfJ6MK0ZDI4kohRJ3UNCIO46ipJQ7dRueYpmGsqPI0TWPe1w687vJfsX4fbFu5C3epp9b7Xn4gjQsmfsoTC+dx47dTeW7Joipdv6dkOYYqn9KhCJDh3kSwd519e/pSPp+3hlJlI9Nt4bZXvvrLPs46tydNm8UREWnHGWGjZ+/WXDVmYP2c2x3IgGMOHTJAuf/s3TXy5ks/kJleQCBgomkaGhrjP7uFHj2rdjMmhAgeGfEWQtRJcXYX/+19Ff9eN4nSgJdBKV24uk39GeFMaZ3M/q0HMQPlIcvutOGIqP2pMs/+vAi3cWQB4vjVK7nrlFNxWCv36z7O3pwSI6fiREqXNSHoAXfhht0Vi2ZNYF9WAaUeH1ERjj98f0SEnTc/vIlN69Ow2Sx0O6FlvZtiUsF5IZTsBdyAHayd0fSoWukq43Do/pVS4HL98fe4spRSTF+6mSWb99KpeRLXndkXmzX4o/VCNFQSvIUQddZpyZ356Yx/o5Sqd6Obd795E/cMepSi3BJA8cike9H12n/IaJq/XYBatdHqM5vez5T991Hkz8JhcXFB8yeCV9xhbVIT2JOZh3E4FDrtViIdf31TYrdb6d23/p/qqLluQGl28MwGazu06Ptqra/Bw7uyb28OXo8fq1WnRasEomNqtlD249krGf/9Mjw+g4Xrd7F5fxYv3HphkCoWouGTkyuFEKKWBIwAOQfziE2OwRlZs5HGylqwdw+3f/8tHo8Hp8PB5d1P4LEhw6vUhlIKv+nGpkfUyg1PfnEZt70yhV0ZuUQ6bLx0+0Wc1LFF0Ptp7JRSfDVxGYvnb6VZiwRuv/tMYmJrti3kRf/+gLRDhRWvdU1j+et3YQnBTaUQDYEEbyGEaGC2HMrmojvG8tAdd/K3wafX2acFbq8fp90alvrcXj9rd6UT6bTRs23TOvs9qmv+9r+JbNiTWfE6wmFj8Ut3yPdPiEqSqSZCCNHAdE1Owb55K30Tk+p0IArXyakFJW6ufmYCRWVeTFMxsEcb/nvTeXX6e1VX3DT8BO58cw9RUdGYCsaNOUe+b0JUgQRvIeoQX6CMPN9+om1NcFnjw12OqMd0XSdQG0e9NwCTFqzlUGFpxRzzxRv3snlfFt3bpB732tJSL5M/X0ruoWKGndWjQcw7r4oXnnyEC3v14aobLic1Ppr46OCeaCpEQyfBW4g6Ite7l8n7/oEigKkM+jvG0t41iLjk2HCXJuqRgGny6tTFWPqO4qmpK3kutRWtm8hN3NHKPP6K0A3lJ1+6ff6/uKJcIGDyj9s+4sD+PPz+APN+3MRj/x1F31Pa12a5dca0adPYunUrkyZNwuEIzZoFIRoaWQ0hRB0xN/NlvGYJPrMMQ/lYUPAyV7W6lTfv+TDcpYl65KMfVjB54To0RxS7soq46cUv8cvI9zEuPLUbEXYrSpnYLDpJsS5OaHv8PeIPpOWRcbAAv7/8++n1Gjz9wnfszy6o7ZLDpiC/lJf+O4MH7vqUhx54iXfeeUdCtxA1IMFbiDrCHSjk6K3fdBsYAYOZ7//ExiVbw1eYqFeWbtlXsUe2Ako9Pg4VlIa3qDqmfbMk7jmrC1rGZm6/YACf/t9VOGzHfwDscjmO3RcbyHG7GfO/iZR6fLVYcXgEDJO7b/2I2d+vY83KfbRIHg5GcrjLEqJek+AtRB3RI+48rFr5SFLADVkLbChDQ9N1ctPzQ16PUorXts1k6JzHGTHvGZYc2hbyGhqCMo+PFyYvYOyrXzN5wbqgnwL5W51bpGA/6kATXdNIjJF5uL+1Y90KhnaIY8zZ/Yj+k4N7fispOZrR152GbtEwdTBtGqVNbPgDJjsP5tRyxaGXkZ5PXk4JhlF+s6GUzo8z14e5KiHqN5njLUQd0Tv+UiItcWxIm8uCDzaxfbwNTSuff3rCoC4hr2dm+lom71uGx/RTanh5cM3nTB58L02c9X/Oudvr5/N5q8nOL+Wsvp1qdQ/pO1+fyqZ9WfiNAGt3HcTj83PtmX1r3K7XMLBbLL/bUeLOi05jb1Yey7fsJ8bl5Llbzq/UaG5js2DBAsaOHVvl6667cTB5ESaTf1yN2w7oGkYgQHJc1U+fVErhNgwirOHZUvF4YmIjCBx1IJPVqpPcJCaMFQlR/8lvYyHqCE3T6BJ7Bl1iz6DzqM18sXsadqeNMU+MJiE19IvjNhWm4TGPLDiz6Dr7Sg7V++BtmoqbXvySXem5+IwA05du4sXbL6R/19ZB78vt9bNhTwYBs3yU2+MzmL5sc42Cd2ZJMddN+4rd+fnEOyP46KJL6J7SpOL/j3DYeOPvl9TL0z5DQSnFoYO5/PLzCj7/fGC12rh91EAWbd7KnkMl2Cw2/nHp6TRLrFog3VdQwDVTJ5NZUkxiZCSfjhxFx8TEatVTW2JiIxl7z1m8+fJsdF0nOTma628ZEu6yhKjXJHgLUQf1HNyNnoO7hbWGE+JaMf3gKjyB8vAdUCZto1LCWlMwHMgpYE9mHj6jfIGcx2/w5fx1tRK87TYLVouFgFk+51rXNVLio2vU5v0/zmJPfj6mUuS6y7h5+jR+vvHW371PQvfv+X1+Hjn/v6xbsImTjKHMfGse1zxyWZXbcdisxKT/wuXdT+Cev9+B0171j9K7Z31HRkkxplJkl5Zy07dfs+D6m6vcTm07f+RJDB7WjeIiN6lN47BYZIaqEDUh/4KEEH/o7KYncnWbgcTYIjByirknZSjJzvr/mDnSYcc0j8yztugaMa6q79KglIFZMh4z/07M0s9Qyvzdeyy6zjM3jsBhsxLwe0mIiuChK4fVqP49BfkEjponnlVaUuvzxhuKGePnsGnJVgL+AJrS+eKZqezZuL/K7RiGwfRvv+WqUZdWK3QD7C8qxDzq7y2tsIivF2+oVlu1LSYmguYtEiR0CxEE8q9ICPGHNE3j1o5n8uOwR+j6VhkfDhvPPwY/yv6tB8NdWo0kxbq47sy+2Cw6ZsDAZrVwzRknVbkdVfgwlLwO3tlQ/Byq+Pk/fN+QEzvw47O3ULBoAm/ffg7NEms2VWdQqzY4LOVhz6ppnJhad487V0rxw8ptjJ+xjJXb08JdDln7DuF1H9l9xGq3knMwr9LXK6X4afUO/u+NL2jTexAtW7asdi2DWrWGX+/VTLCWwf8mzZObKCEaOAneQoi/NGP8j+SvcePJ97NpyTb+MfhRvG5vuMvCE/Dx8e4FPLvpG1bm7qrStX06NkfTNHSLFcMIcP8731V9r2vP94Dn8As3eKb96VujIhwkRzvIPZRdtT7+wGOnD2N4amusRV6au+28NPicGrdZW56dNI8nPp3NO98t5a43pjFj2Zaw1jPgwn44Iu1A+Y2lpmt07lf5w2/e/X45//54FnO3HkLrOIj3Zi6vdi3PDDsLW44P3Qu2InAd1DBM85hRcCFEwyPBW4hGwus3WLPzINsPHKrSqNov36/B7ymf562Uwu/1k7G75gGyJpRS3LHiA97d+RNT0pbzj1WfVGm7w2k/b6yY422YikOFJezJqPzIJwD6b+Zqa3+9ADY1NZWsrKyq9fEHdm/LYu/rW2n9vYn920IeGjsBr/f4py6GWsA0mbJoPW6fgVbsJbDzEO9OnBfWmk4Y1JVHJ93LiUO7c+qFfXn156eISaj8nPsJc1fjPrxHekBpTPhpdbVrWbV8OdbFy4neHsCVoRNhtXFB/25YdPlYFqIhk8WVQjQCRaUern32c/KKywiYirNO6sR/rj2rUlMU2vZsxaof1+E7HL7NgElis8rvsrInM49xE+aQW1TGRQO6MeasfjWeGpHpKWB7UTq+w4sWvaafSXt/5rTkzpW6PiE6EqtFrzg23AiYxEQ6q1SDFvs8qmAsJaVlOB1ObInP/Ol7VSCLv19fQquUj1D+tmi27lXq62g/zlyP11v+5zZNRUmRmx1bM+hxYqtqt1kbdE1D13X0fblEz96K0jVK52xn4aDeDL7s1LDUpJTi5OE5nHx6U7D3Q7M3r9L1DpuVYrzHvP7jfkxQZaC5/vRn/d133yXGm0UL0hl41qW0TU3g/FOqv6C6oMTN7oxcWiTHkVKNrQ2FEKEhwVuIRuCL+WvJzCvGfzhozl61ndFDe9Ol5fF3Kbn64UvZsWo3K2evwxnp4MEJdxMdX7kPdrfPz43PT6KwzINS5Y/qY11OLhnYs0Z/ngiL45hH8joaMfbKHxJz87n9WbR+N9n5RRgBk+vP7k9qFUY+ATTHAEhewAuv3kzrdgO54cY//jMpsxiVezHD+uei6+mo3Ksg8Us0W+VuEn4rLj4Sq82CcfjY8kDAJCo6olpt1SZN0/jHpYN496IX0AyTX+PnK2PfDV/wLh4HZVMAL2BDxT6LHjGi0tc/dOVwHnr/+4qbtoeuHP77PrzLUQW3gfKCtS3Ef8KabC//mvMDhR4Po7r34KauPfj666+JjY1l1qxZxMbWbN7/pr2Z3PbKV2iaht8weXLM2ZzRp1ON2hRC1A4J3kI0AsVl3orQDeU7eZS6K3fEtd1p5+nvHyZgBNAtepVGq3dn5FHs9vJrRvb4DBZt2FPj4B1nj+TGDkP5cNd83GVeNN1Ku8JWld67Oj4qgin/+Rtfz5zL888+za1v/7NadWh6LFFx/Vi/Yfefv8m3EpQHi+XXGwUPyjOr2sH70itOYd6Pm8nNKcYMmIy4oBdt2tXNY7xHD+nNlw47xcVHRol9lfy5CzalDCj7HPh1Ln+gfHFsFYL3kBPb8+Wj17IrI5f2TRNpkRz3mz4Ch0N3afkXjD0UHHqSv01rT6m//M/9zopf+GT6LzQdPJoX77i0xqEbYNyEOZR6jkw3evzT2RK8haijJHgL0Qic378rUxavx+MzUAGD6IgourdJrVIblqOOIa+sqYs3VBwe86sOzZKq3M4fub7dUGZM3cOevGzMYjvv6StxqQiuOL1Xpa6326ycN/RUbrxyBYZhYLVW79dh165dmTNnzp+/QY8DdfTCTTuaHvenbz8eV5ST8Z/ewu4dWUS6HLRsXbcOXfmty/95IZ89+RXeMi9Ol4OL7gjXYlCN8mVNR/1daPYqt9IiOe53gbuCKisf6a5gsLfgEJp2ZAGnqYEvEqJbdmFDoZ0LqlzBsTbuzWRn+rHH1Xt8hhygJEQdJas4hGgEOrdM4YP7rmD0kF40JZd+zbZwwLsMb6CkVvvduCfjd1+7YkjlgvHx5Be7ObCvFC3DgmPDIdSGdL5bVLV9kKOjo2natCk7duyoVg1KKXaU2EhP7MO9b39LVn7x799k6wXOcwAnaJFgbQ+Rl1erv4ombRY6d2tW50M3wOh/jeT/Pv07l99/Ife+ezs3PnN1WOrQNAtE3YvPZ8HrswIRaDEPBqXtEn8OX+67m7d3Xk2RGYFRke2dtEjsd8yx65hgcQO6hfV/8O+jKjw+g7GvTjnm5taia5zTr4uEbiHqKBnxFg3GobJSPlizijK/n9E9etI1qW4+fg+XLi1T6Hx5Mi1O/JYDZWuZnb4Dm+7kqrbv4LIm1EqfXVs3YW9WPj4jgFIKu2aSGFP5udh/xRVhR/P4iZu8Fs1XnnTyt2bjufdynJGVOxAn3+0m4dKR/HPBXO6yWjinY9Uez09asJbJS7dji01h4frdbEvL5psnbsB61EEjmqZB7H8h6mZQHrB2QdMa16/egRefwsCLTwl3GehRN3LtNc/z7NO30bbTSDRrcBakfnfwMbI921GYfFUcT2+3h+4pLbBHn0tS1J083PNnHl44Dz3ShbUQHPkaDpuFXu2b1ajfQ4UlBALHPlFqnhTLY9edVaN2gyFgmszevZN8t5vTW7eleUz9P3xLiGCQEW/RIJT4fFw48VPeX7OKT9ev5bIvJ7I9N+f4F1bTzrxcXln+Mx+uXU2ZP7hbuSmlGL9qBSMmfMyYaVNIKywMWttZnvpYfKgAACAASURBVG0UaDtwRFrwKzeeQBHr8v98/+maum/UEPp1bondasFfkk/h8ilBG4lz2KyMjE9C8wbKF+8ZJlqJlxUz11TqesM0GTV5InnNUtnq83DvjzOZuaPyWxICzFu7C8/h7eVMpcgvcZNd8PtRb03T0Kwd0Gw9Gl3orirTVLw/6xeuf+4Lxk2YQ3EQ94xPS0tj/pIc2nS5M2ihGyDHuxt1+DScUgU/Gak4m/2AHn03mmbhl6+mcEFmDoG3P6ZtiYOYCCeDe7bnnksG16jflLgobNYjH+NOm5VzT+4a9i0JlVLc8t007v9xFuMWzeecCR+zIzc3rDUJUVdI8BYNwsr0g5T6/eXbwynwGH5mbK9aiKqsLTmHuOiLCby2fCn/W7KQyyZPrPrhK39hwoZ1vLL8Z7bl5rA4bR+jJk/EF6T2A8oPRwVfkwCGWXuL3VxOO6/deTHLXruLIXH57N+6jrS04J1g2LV1Exy2I3PPNbRj/nx/Ja2okIySYszD7/cYBpM3b6pS/61T4rEdNfddKYiPCs6IfmP19ndLeX/mctbtzmD6sk3c9frUoLU9e/ZszjzzTPQgB9NERxu0wx+npgFO35HdgkpLS/n000+ZP38+t1w3mlnP3cmCF8fy7E3nVfu4+V85bFbeuecy2qYmEBPpZMTJXbjhnJNr1GYw7M7PY+mBNMr8fjyGQZnfx7urV4S7LCHqBAneokGIdtghK0DsVo3YrRquDJ1oR+WmG1TVFxvX4zb8mIA3ECCtsIBNQTiR8Fdzdu/CbRwZRS3x+zhQFJxR79SILsTammLVHGhYsGkR9Ig7NyhtH88999wDkTbGz55Mhjs/KG0OvfI0YhKjcbocOF0OUlolcfKIys0hj3M4CRy1JaFN12kaXbUtBf8+8jQ6NkvCatFx2Kw8c+MIIhy2KrUhjjV71faKpwh+w2T9nkx8fqNGbe7clsl1o97giw8O4qRP0A8cOr/54zi1Vvh8GmlpFs5u/R927cji2ste55KzX6JTq8vo0aMXDz4YnDnlR+vcMoUp//kb81+4nUevOfOYaU7hUtvzy7PTcrj/jMe5qvVtvHzbO5QWuTFNOfFT1A/yzFM0CC6/Ffsh+HW3YGsRJHurdiBKZUVYrVg0rSK0mUrhqOaOGH+kY2Iiyw6mVYxym0qRFOkKStsWzcblrV9lc+EP+MwyOkYPJq6Kh4hUl5EcQff3bmGWymD+opd4sPtIzm3ep0ZtxiRE8+6GF/n5mxVYbRYGjDwZR0TlbrjiIyJ4aODpPL14AVZdJznSxb39T6tS/9GRTj578CqK3V4i7LYah57szEKef3o6GekFDBjUiVvuOAOLNfxBKpSaJcZw4FBBxT7tkQ7bMU8VqipgmDxw9wSKi9yATuZBP++/NZex95wdpIph0d48XvnpBNxGVwgE2Jb/CxETDlGY7wYg0tmMEzqd0OAXPCql+H7Hdnbk5RDj9eJVCofTiUXTublPv6D188AZj5OxOxszYPL9+3OZ8e1a7J1b88AjF3L68OofQiREKEjwFg3CwZwiImw2SgPl0yY0Bdn5tbNjx429+zJ16xbcfj+l7jKa+gN0SQzOFnkA95wygPVZmazOSMf0G6Ss8DN2znjG3DKEM845ocbt23QnJ8ZfFIRKq+Z/m79Fc9hAA69p8PSmaYxo1rvGYSQqzsVZfxtSrWuvO7E353XsTIHHTavYOGyW6gW86EqG/b+ilOLeOz7hUFYRpqmYMW01DoeNG24bWuO2q8Is/QRK3wMtAi3mMTRHaA+7eeTqM7j6qY8pLPUSEeHkhVsvqNHPSEFBKd6j9rj2+wNs2XgwGKVWmLhxfcVTKiwWtmRk0NLjw354IEDXLOzeeSiofVbWlpxD3P/jLHLLyhjZpSv3DxiEXks3AOMWzeeLjRtwG35UwOSSzl3o17Ydg1q3oXl0cBZXuks9FaEbQAVMKCzG5zX437hv6XVSG2LjZLqXqLsa11CKaLC6tWlyzKNGh81Kn44taqWvZJeLOddez0vnnMsrQ85g3X+fY8uWLUFr32W3M+my0Uw943I6fWNg22WQlVnIy8/OYMum4AaGUCo2PHDU571hBggo888vCJHEyEjaJyRWO3QHS3GRm9yckoqfY6/XYOXyXSGtQXnmQfELYGZCYA8q/zZUoGZb3lVVs8QYhsYVMDg2j3nP3cbJXWq2CDIu3kWky14x9d/usNKzd+sgVHpEssuF5agwa7XbSYmPqrhhsNut9OwdvMWcleX2+7lqyiQ2H8omq7SET9at4aO1q2ulL6UUn65fi9sov8nR7DZW5eUwukfPoIVuAGekg+iEo07O1YDI8pNbrRad3Jw/2NJTiDpEgrdoEJomxPDGXRfTo00qHZol8Z9rz+KkWgreANEOB8Pbtuf8Pifxn8ef4Lr/vMGFj37AvW9/S36JOyh97N9xCIvl2IV72zanB6XtcLii9ak49fL5z5phMiy1B1Y9vGG3LnFFOXE4jjyEtNkstG2f8hdXBJ/yrQSO+vnVLODfGtIaAFas+IXB/ftit9X8oazFovPca9fStn0K0TFOTh/Wjb/dfHoQqjziXwMGk+xy4bLZcVgsPDJ4CK++OoauPZoTn+Di9OHduPXOM4PaZ2UcKCrCOGoPcbdhsCRtX631Z/3NolWHJfgP1TVN45mZD5PUPKF8t6DoKGjbHE0Dm91Ksxa1szWqEMGiKaVkRYIQNfDYJz/w7ZL1oFuxWnS6tEzhk39dWeN2N284wAN3T6h4TO502njyuSvodVKbGrcdLvMyNzJn7xo+f/ldNn30A5HOiHCXVKds3nCARx/4gsICNz1ObMW4564gKrp21ir8EeWejip8hCPh24mWNB3NGtwR4t8q8eeQ69tLvK0F0bYmpKamsmrVKlq0qL2b52DzGga78/NIjIwkxRV1/AtCoNjrpf/7b1dMg3FardzSpy/3VHEtQ2V9vmEd4xbNx6rrBEyT9y64mFNb1t5Iv2maTP1yBbO+W0t8gou77htBi1Z1/1Ap0bhJ8BaihkY89N4xJxZqGqx8456gLKT6etJyPhw/HxRcff1ARl9bOx+YoTZo0CAeeOABLrigpgdmNzwej4e4uHg8nuA8OakKpRSq+Bl8hR+j6Q5s8ePQIy+s1T7TStfw7YFH0TULLSyFDHZa2Lh2L6eeOQXdHpxTThsbpRSq7APw/MiCtbn8a/MgCrRozmzXgZfOPhd7LU6r2pabw578fHqkpNAiJrbW+hGivpLgLRqsYreXFybPZ8fBHPp3bc3tFwyola22xr46hRXb0iqObW4SH83Mp28Kej8NyZtvvsnixYv5/PPPw11KnaOUwmaz4Xa7sdlCuzWh3+fn7X9+zLT3ZtCxZzvGTX2YpGa1++j+o13XUehPp4nFy8VR2di0wx9JWgRa0kw0S81Od2yMzJLxUPIG4MbrU1jsnbA1+a7B76oiRH0gc7xFg3XPm98wc8U2tuzPZuK8Nbw8ZWGt9PP4dWfTNjUBDUiOdfHK2NDvGFLfjBo1ihkzZlBaWhruUuqkpNRYikuKQt7v+/83gR8+mIfutbJ7dRoPnPFErffpNz0AxBZDYf7R02p08FXuFFLxG54ZgJt0bySPHDiNm7a14uv9i8Jd1TH27c3hu2mrWPXLbmT8TzQmMuItGhy338+DP81m+uat6D5wHdTQDY2miTHMGHdjrfXrDwTCvjNGfXLOOefwt7/9jSuvrPl8+IbCEyji6/33k1myE7vNwXkt/kPbqFNC1v+N3e9h/5YjO+foFp1pBR8T4aq9eebLsyfy1tPLyVwTjw4MPnUv99+9BE2LQEv4BM1+Yq313VCZ+Xfgdc/nks1nkW84MNFx6jYe7D6SEc17h7s81qzcw6MPTAI0NA3Ou6gPt90V+sWnQoSDjHiLBufxBXP5YdcOlBUCTihppdB1jeaJwdvS6o9I6K6ay6+4kven/cT3v2yhxO0Ndzl1wqLs8eR692GxaQTw8f3BJzBMX8j6b9ujFVbbkZ/jqDgXzsjaOQH2V77NvchZn0LAb8Hvt7Dkl1YsX9USXDdJ6K4mLebfHDDa4jatmIc/5j2mn7lZm8JcWbmPxs/H6zHwevx43H6mTV6Bz1uz00mFqC8keIsGZ/nBA3gPn/qIDqYdUuKieOy64J1UJ2rG4zP4bp9JTnQHxk2Yw+VPfkpxmSfcZVXa3t2HeOuV2Xzwzjzy84I3XSbfl4bJkQCiUHgCoZtyctebN9Ohd1s0TSM+NY6nZz5c6/OC83NLUerIR5HHo1MQ+C969N9rtd+GTLM0IanJRAyOPKmw61Zau4J30FdNyHN20ZjJyZWiwemekkJ6cRH+w/vXprhczBh3Y71eWGSYJrN2bqfQ62Vom7Y0C+KBFOGwZOMesgtK0W0OPD6DfOVm1optjDq97o9w7t+bw99v/gCP24/FqjN7xjo+mHg7ka6ajwx3iB7IIc9ODOVFw0KUNRGXNXT7EsckRvPasmcIBALH7CFfm/qc3K7iJEWFwmKx0Ltfh5D03ZDFO6J5uMclPLVxKqZSdIlpxo3th4W7LAB6nRzHpg17cTicWKw6Iy7ohd0hcUQ0DvKTLhqcp4aeSW5ZGasz0mkWHcM7519Ur0O3qRRjpk1hbVYGplI8u2Qh0664mnbx1Q9k+VkF7N2URvMOqaS0Sg5itZVj/m7IS/3B1+qm+T9trngsHjBM3GU+Nqzdzymndaxx273jLyNgBthRPJ8YWypDmtyJpoX+wWSoQjdAi5YJPP/6tTx4/1scPHCQBx65gqbN4kPWf0M2ollvzkg9gTLDR4wtIqy/B5WxF4zd7M+I4KFHb+flF9/F5WxGarM4+p7SLmx1CRFqErxFgxPrdDLx0ivCXUbQbM05xNrMDMp+PYoZ+Gjtap4YekaV2tm5dg/v3PcJeRkFZOzOxO60Y/gM7v/oTk4fdWotVP7nBvZoS2KMC7OwBBRERTg4u2/nkNZQXVFRDixWHdNXPp3JVCooo91Qfipfv6TR9EsaHZT26gtPgkZmP9gTWUj/M0O3mLQxsOlWYu3h/ag33d9B4UMorCRpJbz96jWMvFz28BeNk+xqIkQdt+VQNpdNnlhx+pwGXNOzF48PGV7pNvKzCxnT8e+UFf/+UBZXTCTTCj4OVrmVVurx8eOq7QRMk+G9OxIXVT9OsXSX+fj7zR+QfiAXv2EweGgPHnnyknr9VCWcNmVncflXX5T/fAcCJEfH8NN1NxBlt4e7NBEkZlY/UIVHvmBpiZ78U/gKEiKMZHGlEHVc56Rk+jZrTqTNhlUpNL+fMSdWbUuw7St3oel/HAw9YdpRxOW0M/K0Hlw6qGe9Cd0AEZF23vroZm65ewCHin6U0F1D07dvq7ipxGLB7fezJjM9vEU1cr9s3c/Fj33EiIfe5fO5q2veoPL+9WshGhGZaiJEHadrGh9ceAk/7t5FXmkJz0x4lquXvYjDZuMfXc7jwhZ9j9tGSqskDP/vt+tyRDoYfvXAoNecdqiAaUs2YrXonN+/G0bApGlCDM4wP/IOFpvNwtkj+jP6qpUYhhHyEyYbkoSICBw+HdNjYkRAwGoS56z6jZhSipW5k1hXMBWb5mRY6j9o6ZIj56uixO1l2pKNvDZtMf5A+eL0179ZQvPEWE4/sX31G468BsomAG7QIsB1Q3AKFqIesjz22GOPhbsIIUJpxsHV3L/mMybvW0rTyHhau0K/uLCqdE2jQ0IieVo+SyLS8WsmfjPALzk7GZTSlQRH1F9eH58Si9VuZd38Tei6Tud+7el/QV/OGTOUax69LKgjtum5hVz51ARWbE9jza50Js5dw/Slm/hi/loGdm9LQkxk0PoKpynbtvBLajITt20hNTqazkl1/+eoLlqz/gBrl6dhLQZnvs7A7m25vl+fKv9M7ixexMLst/CaxXjMYnYUL6Rb7FnYLQ3j5622lbi9XDHuMxas31URugGMgEmT+Cj6d21d/cbtA9CsrcDaBi1yDHrkJUGoWIj6qWEMPwlxHD6vnwnjprB62UY2tiug9KJo0DUeXvsFH506lvbRTcJdYqXsKsnC4MiHoq7p7CnJpkN06nGvvfy+ixh55wgMf4DI6Nqb2jFn9Q68fgOlqDgK2u0zcPsM/vPJD0x48Opa6ztUVqYf5MmF8yDKRa7Xw4M/zaZDQiLdklPCXVq9YgRMxn+3DEzQKQ/aJbvLqnUjmO7eiKGO7AWvaxZyfXuJstWNvavrup/W7CS/pAyfETjm6067lU4tanZTqWkaRJyHxnk1akeIhkCCt2gUnr7qZVbMXIPP48eyWMNR4MN7fRK6prGl6GC9Cd49Ylti1614zPIdTgzToFN000pfb3fasdfe6d8ARDrtWHQd46hRs1/lFpXVbudVsLv4Z9bkTcFhiWZgys3E2ZtX+toN2VkEjlmXrrExO0uCdxWZpvm7bSR9fzAlqjJSnB2wag6Mw/OHTWUQb2tR4xobiz+617HoGhefdgIj+nUJfUFVoJSSdRai3pDFlaJRWDZ9JT7P4e34vAr7vGKg/Bd2u6j6E5ZOTurA3V3OJcUZS/QBG46n4Oazx3P3LR9RVPT7HUvC4bxTutK6SRyRDhu6rlV8oDvtVs49uW58gKeVrmFm+lMccK9jd8kSJu29E2+gpNLXd0lMwnLMB72SqSbVYLdZuaB/NyLsNjQNnDYrN46o3naCXWLOxJ7dkYAPnHo0ZzX9FzH24z8JEuWG9epAfHQkEXYbEXYbzZNimf/CWO6/fEidDbXpuYVc8vhH9L3jZS55/CPScwuPf5EQYSbbCYpG4bKUGyjMKa54bXZ04n+9HXd2OofLW4d2D+tgUEpxxQUvVxxXbrXqDBjUmUefujTMlZXzGwHW78kApVi6ZR9b0w7Rv0srrhrWB/1PdlcJpflZr7Muf1rFa7seyfnNH6elq/K7xby3eiWv/bIUXdN4YMAgrjyh7p+6WReZpuKHlds4kFPASR1b0Kdj9UepL774Yi666CLGjBkTvAIbkRK3l3lrd6JpGkN7dcDlrNtbOl7zzOdsTcvGVApd0+jcMrlBTGUTDZtMNRGNwkMT/8F/Rj4LGpS5Sxk4qjd9XGeTWhZVLx9T+v0BCvKPTNswDJPdO7PCWNGxbFYLJx0OUCd1ahnman4vxpqKRbMTUD6gfFqCy5pYpTZu6tOXm/ocf0cZ8dd0XWNEEJ6EFBYWMnfuXD788MMgVNU4RUU4uODU7uEuo9L2ZedXTFUylWLngRwMI4DVGrqTV4WoKplqIhqFPsNPYFL6u7y+/L/c9f19fJPl578T53Dv29N55ou54S6vyux2Ky1aJVSMHtvtVnr1bRvmquqPnvEX0jSiK5qyEvArTk68lgRHq3CXJapBKYXyzGbrmoe57qpTiYuLC3dJIkRObNeUiiETU6EX+XnthVnhLEmI45KpJqLRufP1qfy8aW/Fa5tFZ/aztxLrquVVh0F2KLuI58Z9y4H9uZx0cnv+/s9zsDvkIVZlKaUo9h2iS8furFi6lubNK7+4UtQdZuH/gXsWXl8ZFosNW/KHaPaTw12WCIHiMg9n3/w6PqeGpcwkKs1LXHQEU2b+M9ylCfGn5FNaNDoB8/e7bfx2Z4X6IDklhv+9ek24y6i3NE0jxpHCqf0GM3fuXK699tpwlySqSJlF4J4O+HHYAfyo4tfQEj8Nc2UiFKIjnbRzO8jac2RRZULCX59pIES4yVQT0ejccm5/nHYrdquFCLuNM/p0Ir4eHVkugmvwgNOZ8fEPbF66DXkAWN9owG/+zjSZ39uYPPzkJbiiHDidNqJjnPzfYyPDXZIQf0mmmohGaXdGLsu27KNJXDTDeneod4srRXBkp+Vwa+/7KMwvxBXpYuiVA7l3/G3hLktUgVn0JO68z7DZbFitFrT4j9HsclR8Y+LzGuTmFpOYFI3dLg/yRd0mwVsI0Wi9ese7zBg/B/PwYT/2CDvj1z1P8w6VP5RIhFdGRjq33dCLyV+8is11+GhyIYSoo+TWUAjRaLlLPBWhG8q3tvO5fWGsSFTVV19NITb5HOyxo8NdihBCHJfM8RZCNFoX3XEOjkgHmqZhj7DTulsLWnWTY8brky+++ILRoyV0CyHqB5lqIoRo1Hat28uir5cRlxTLiJuG4YhwhLskUUn79++nT58+pKenY7fX7VMWhRACJHgLIYSoZ4q9Xl5e/jNzV63CdTCD755/IdwlCSFEpcgcbyGEEPWGUoqrvv6S7bk5+C0a9tYt+HLTBi7vfkK4S2sw1szdwM41e+nYpy29hvYIdzlCNCgSvIUQQtQbOWVl7MjLxX/4ICyfMpm8eaME7yD5+pUZfPDwRAJ+A4vNyo1PX8XFd50b7rKEaDBkcaUQQoh6I+o3c7ktmkZqVHSYqml4Pn36a7xlXgx/AG+Zl8/GfRXukoRoUCR4CyGEqDcibDaeHnYmDouFSJuNFFcUDw86Pdxl1Xt7CvIZ/OG7rHuoK/se6YU/sXyRsW6RmCBEMMniSiGEEPVOvttNrruMVrFx2C1yTHxNjZjwMdtzc1AApokzw0O717dyz/hbOePqweEuT4gGQ+Z4CyGEqHfiIyKIj4gIdxkNRlpRIRWjcLqO1jyaV35+ivYntgljVUI0PPIMSQghhGjk+jVrgV0vjwR2i4WB7dpI6BaiFshUEyFqQJklqNIPwMxFi7gAzd433CUJIUSVFXu9/HveHNZmZdKnaTOeGDIclxxKJETQSfAWopqUMlC5F4GxD/ABTrT4d9Ecp4S7NCGEEELUQTLVRIhqUv6dBPxplIduAA/KPTH4/ZhlqLLPUaXvowIHg96+EI2JjDUJIcJJFlcKUQ1KKZ7+Yjn/HObHcvhfkcKCpiUEuR8fKm8UGGmAASVvQOI0NGuroPYjREM1dfEG3p/1CxYgYtFu8hbvoEmbZMZ99yCtu7YId3lCiEZGRryFqIbtBw7x/aoiPl/aE4/fQonHRok3Bi1qbHA78q2CQDrgAQxQZaiS11H+DTJyJ8RxLN+yj+cmzyc9t4iMwjyy+1uhiZWsvdn8+6Jnw12eEKIRkhFvIarBZwTQNY035vbnu3WdiYv00KPDMP7ZOim4HWlWOLLJF0qZaJ4ZKM8P4DgN4l5H0+T+WYg/snTZNsxtWSR39jP8+nVomkIbbbLyNheZq7PDXZ4QohGST2xRryjPXMycCzBzRqK8S8JWR9dWTWiVEo/TZuVAfgLbs1sxcmAt7GhiOwlsJ4IWiRH49ZAQP+AG38/gWxH8PoVoANYv3MzsOz4iav5OBg5fi8NpYHcEsEUoej9XitHJwfs754a7zEZHmaUo/xaUWYBpKjbvy2Lj3kwCpkn6gTxW/bKbgvzScJcpRK2RXU1EvaH8m1C5V1I+7QLAiZY0Dc3aLiz1eHwG05duosTjZVivjrRuEl8r/SgVAN9iVNk0jLIZWH/N35oLLfZ5NOfwWulXiPrstj73s2vtXgDOWFiAM+nIR13AB5O29MEa52DxWU+gaVqYqmxclH8rKu8aIIBSAd5aeAUTl8SCBs18Nsq25GOzWlBK8dzr19KpS9Pw1aoUS6ev5FBaLr2Hn0CrLs3DVotoWGSqiag/fCsA88hrTQffGghT8HbarYw6/cRa70fTLOA4HSyt0L1zMc0yTBMsVgVaBBIZhPg9r9tX8b/Tv7PT6nIv1kgwTI00XwIq1oqMOoWWKnwYVBEAGnBNv4l8MO9GUIr8DQVoCnxeA4DXX5zFq+OvD1utL9z0Fgu+XIoZCGDE2rnmgxsZdtqJNI+JCVtNomGQqSai/rC0BiwVL82AF+Vfg/JvCl9NIaRZ22JJmkKZNwVTgVJlkH8byjMv3KU1ekopvlq4nmv/+zn3vv0tGXlF4S6p0bvywYtxRDpQKDa+4GD5q6UUZsayMTeVVbkdcVps3NB+iIx2h5KZe8xLl8MPqPJlLL+5Cyot8YasrN8qyivmpwmL8JR6KGwRwc57uzFu83LO/OxDZu7YFra6RMMgI96i/nAMgcjRUPYxSpkEAgaa+ytwfwvx49Ec/Wut68ULtrJs8Q5atkrkktGnYLNZjn9RbdBTiYrIh4pxbg+q9C0059BKXb5/60HKispo36sNNrut1spsbGYs38KLUxbg8Rno+7PZtDeT6U/egN0mv2LD5azrhpDcIpHRZ1+DFqXYPOsQC2ft4ZMfp1LUWqO1K5l+ie3DXWbjEnkplLwHuFE4WLKjJbqmo3RFIMFGZKnC5zVwOG1cNjrMB5EdnoV7aFRblMOCH/AbBg/NncOIjp3DW5uo1+RTQdQbmqaxMuMaXvm6GQHfdm4d8guDO++jPHy+U2vBe+b0tbzx0g94PX7sDisb1u1n3POja6Wv49KOBP70gmiyilx0aO4i9jiX+U2D5257myUTlqIAr8OCb3Qfbr1kENeccVKtltwYzFmzA4+v/BG5qRSlHh8Hcgpp1zQxzJU1Xqap2IqBMawPxVl78OzZz6yZ3zPghFPDXVqjpbnuZFeWRmHeHDKKWpCUejdXDUsnoBSjBvZkw7I97N+bQ9+T23HKaR3DVmdMQjRnXz+UnyYsQjmPHWTxGP4wVSUaCgneot7Yn53P3W9OOxxwknjwqzN57/ppdG2WC5qz1vqdNvkXvJ7yX7Y+r8HK5bspKXYTEWnHYgntyLemRaBct/P1wgU8P+sUbBYTXY/kw/tz/zTkHSzL46aJL+P/dCuat3wUR/NqmCv286btZ7q2asJJneQgkZpolRyH3WrBZwQACJgmCdGRYa6qcXv564V8tWg9se16Et2yC30uvYoBAwaEu6xGbePeTG59ReHxn46GomvzL3j9znOJje2Fplloc3FwDyCribv/n737Do+iWh84/p2yLZtOQhJCCB0CSBEQpIuKgqAoChbwKioqYsGL5epVUBHs/uwFxIpUAREVpPfeews1JJDets7M+f2xGMQrSknYJMzneXxkk90570Ky886Z4lIvfgAAIABJREFUc973k0G0730F36fuYI7IxKPrOFSV2xpdFuzQTBWcmXibKozN+4+dth7TEBIbDtckJdGDFPpkmY0bHhGCJJ288ygEeuoR+kTfgyRJNB55PVurCZwWK8M7d6V5fNnvwtdDBvPmrzp+XeDTQELjjckL+fTxW//y+aO3z6AgtxC7LCGdXEgpGQLJ40c3BHvTMs3E+zx53V72bz7EjSm12Lg/jR0HM5CAF/tfS2SoI9jhXdJmrdpRchdCtljZneX7h1eYytrybQfw+jVA8NLN8+macgDVNQWh1YMq45HKcALlXEmSROvrW9CaFvy6bw9r047SuGoctzRsFOzQTBWcmXibKoykqpGndWtUFStJ1W9BiumMpMSW2bhDnryOJx76GmEIPOmZaBmZGELC1TCCGfIJRE5g1rv/9CksvPs+Yp3OMosFwO/XMYTE77uRBFBQfOaNSCc8+fjr2bCFyQifgaSDUGW89WOxyBIpyXFlGm9llXsinyFXPEtRbjGapnPbv3vRtmkYs99bwMR5qaxIqc6TYx4iKi4y2KFekiKcDvKKPSWPQ0OsQYym9O3NzianuJhpv21l8/5j1E2M4eW7ryM6vPzeaYmPDsdmVUmJP0yXBgewWzRAA20vuH+AkLuCHeJf6l63Pt3r1g92GKZKQhkxYsSIYAdhMp2N+Ohw/LrBpv3HkCW4pUNT7ry2B5JctoluZJSTXjdfTss2tYmSDHau2I0wBPnt4vDUPbW62q6qtKyWSM3Isqnn/TuLqrD1QDon8grRDYHdqvJQzytpkFT1L59fpHnYVnQUdxcnQtOR420UN07GF6nywt096NzU3GB2Pr74z3g2L9yGz+NH13R2rdmH4pZJW3+cohwX6aknWD93Mz0f7BbsUC9JjZLjmL12J36flxCHnTce6ElizD/thij/hBA8v2AuIxYv4Icd29lZlIX/uI/07ELW7TnKLR1KZymEIQRbThwnrTCf2BAninzhRdDqJsaw7WAGTksqnRqkYlV/Lw9rgNoMyXbFBY9hMpV3ZgMdU4Xj13UQgQT0Ytu1Zi/Duo7A6/JR0CaWrD41EdZAHHZVZdYdA6gdVfbrFP2azoSFGzl0PJdOl9Wmc7MzJ89CCCYfWsnSzF0UpWaw4c0pHN53AI/HQ05ODiEh5XeGrDwbece7zF25E2FTsBzNJ0RRcITayM3IL3mOJMEvngmoZnWToJg+cxYffP4Vn3/2KaMnLuBgRg4t61VnxN3dCLFXzBnw7SeO03fqRNxaYBkNBtiywJEtI8sS6z564oLH0A2D+3+aztpjaUhArahoptx6Oza1dH6Oc/MzCPf0RhL5gB7oR1DlByS1bqkc32Qqz8yzganCsVzkDY1/1PCKevznu8f5ZsRkZF3BUzWJZfnpyJLMfzt2uShJNwQuOu6+9uxa1EuSRL+a7ehXsx2ileCm8aswPH6ys7PZuXMnLVuaVU3OlRCC1EYxFDnrIwRIQlBty3GqJUSTsXk/siZQMwqJios0k+4gEELw9tTFTFy4F6q35ZEPppFd4MIQgiVbU3l1wnxevbd7sMM8LwVe7+mzzxIIJVBgNLFK6czoLz18iLXH0nD5A5vK9+dkM2PXDvo1aVoqx4+KiEeEzkAUjQE8SCF3mUm36ZJhnhFMZeJ4eh6p+0+QlBxD9aTys1O9NLTvfQXte5+6JerXdRRZRq4AjTgkSeKLL76gcbOWOFM6M2rqSoYoEVzV3DzpnYv9x7LZlZWHOFnP3TAMkh+6ivX7j1FU1QKShCOziJEvDghypJem39bvYdqyrRgCkBQy84v4vfa9T9PZtC8tqPFdiGbxCYRZbXg0Dc0wkAF7gUxibATvDb6pVMYo8nlP64irGQaFvtLdnCop8UgRL5TqMU2misBMvE2lbv2aVIY/OwVFkdE1nSef60XXaxsHO6wyE8wZ+LMlhCipCBMZHU3TO54mq9DNgTw/z4/7lVH39aDL3yxXMZ3OEALpj6mJBDsOHyOn0AVWhRCnF8LDcUealU2CYf+x7JKKJn9mUeQz7oeoCEIsFmbe3p8xG9ZS4PXSr0lTmlaNK9UOnB1qJKN5fYBAkmVsisr1dYNXV9tkqkzMxNtUqoR/G++/PhGv51RZqA/e+jVoiXdqejYrdhwiNsLJtZfXR5bL/6x0aUrPKeDRD6dzICOHGrFRvD+kNz6/hlsHWQn8+nv8Gj+t2m4m3uegbrUYUpKrsvPQCdxeL5KhI7vzkVWdG29fSVikCwk46kukGf2CHe4lp0XdROxWtST5tlpUqkaGcjy3iMtqxfNi/2uDHOGFqRISwrMdOpfZ8fdu3Ubuh5/wwEcfYA8J4Y4mTakeXvE3pppM5YGZeJtKjTByETkD8HpPXzvpP8PMU1nbvP8YD7//A7puoCoK8zbs4c1BvYISS7A8O/ZnDmbkIgQczsxl2Gc/8dGjt6DrRslzVEUmLiosiFFWPLIs8cnjfZizbjd79h9k1FODCWtyGa0GVSU8shhFDexZPyB9jVfviU0p28o7ptNd2SiZf9/amS/nrMVuVXm671Vc0bBGsMOqEFwuFwMGDOC9V0fR77oe//P97IJiFm7ej92qcu3l9bGZexhMpnNi/saYSo+2D5C49aZtfPV9C7xeC6rqJ6pqcFrsfjF7TcmMl183WLr1AJn5RcRGhAYlnmA4eDwX42ThIiHgSGYeMRFOHuvdgbenLkSRZBJjInjwhgtroy2EQNONoFSaCRaLotCzTSNo04jFk5oxd91ausV2KEm6ASRkPHr+RUu8DSFYk3YUj6bRJrE6DovlooxbHvXp2JQ+HUtnM2Bl59U0Xl26iFVpR3AdOkzT1q3p1+9/79ScyCui38hv8fo1JCTGz9/A10/dzi9rdrFix0HqJ8byr26tLqnPAZPpXJmJt6n0KNVBaNzSaxfVEgrZsi2WvGInX01ZyVtvhTFs2LCLG86flpUYhoEiXXgt2oqkRZ1EVu48iF8zwNC5rFYSAHdefTmfjnqWh4Y8Tt8bu6Mq5//3sjn1GE98/CMFLi8Nk2L58NFbiLrEujbW/dcANndsy8q0Y3SJzsOiGsgoONUowiwXp0GRbhgMnDmN9enHkAgsR5h5+wDCbbaLMr6p4nph4Tx+2rMLr64jHHaq9frrii8zlm+jyO1DNwJ3zI6cyGP0hPnMWb8Hj09j6dYD7DxygrcfvLTuLJpM5+LSykJMZUpSEiBiNOCgbat0BtwTw+Z9LtxuN2+99RafTR7NnGOvs/j4x7i03JLXCeFBaIcR4szdF8/HQz2vJMRmwWGzYJEl8vZtYOPaled9PKEdQPjWIoziUoyybI2893q6NKtLXFQYatFx6hhHgcAM9Y7NG7iq7eUXlHQLIXjsoxnkF3sQQrA3LYvRE+aXVvgVwpH8fH5JP4pstbIjM5kluxui+ZKoF96F25LfR5YuzuzfmrSjrE8/hsvvp9jvJ6OoiMnbt16UsU0V2+JDB/HqOgCSqrLpxPG/fJ4sBbYU6xZBYU2D9GQvP2/cXXJn0evXWLx5P4Zhtgcxmc7EnPE2lSrZcQPC3gMwcEoKEybAL7/8wvB3H6Og3m/sKlCQUdhXuJS7a3+Jqu1C5A4EoYNkhehvkCwppRJLg6SqTHnxbtbvPUpsRCjujOb069ePd999lzvvvLOk/fzZVAMwCj+E4s9AsmAIGxv3v0loZC1SGieWSqx/x+fXGDl+Hku3HSAuKoxRA7tTO6HKWb021GHj9ftvAGD37t20b9+e22+9BZvNhhCC+Pj4C4rN7fXj8pwqM6bpBqnpORd0zIqmwOtBleWTiYvEtrRk6oal8O+m/7s+tjRluPM45s6lblg84RYHbk07rdKKbhh4tODsrzBVLMkRkWS7XSXL0uKcf70cr3f7JkxYtJHcuGJ0VYAk4cGPIqSSz1GHzXLJbWI3mc6F2TLeVOokSUL6w5KOevXqUfMqP7liPwCCwId79ZDmhBY8DiIb0AAv+DcghdxZarGEOWzUrx5L9ZgIatasSY8ePRg4cCCb1rj57L1lTP5uJVXjIqhd98zLAYSeDXlDAB/gw9A97N6+nVdeKaAg302rNmVbDeT/pi1h1uqdFHt85BS4mL9xL/2vbnnO5cNiYmLw+Xx8+ukYVKkKGemZ3DvwrguKzaIqzFm3m0KXByFAlSV6tm1E25TkCzpuRRJpd/Dj7p0U+fwYQmBXVZ7v0KVMq0DMSlvP4+u+Yl7GViYdWkG72Po0ik7gh53bKHS7kSSJEIuVl666mgi7/Z8PaLqktUuqwbwD+yjy+Yh2hDDuxpuJdf7vvoQQu5XuVzRk7Nb1gbasgOYAe6GM02ZFkSRGDexOzfjK1bvBZCpNZst400WxKvNr1uZMxBCBjZaqZOP2mh8TldsL8Jx6ohSFHLe6TGP5/psFfPHJEmQpcMPHZlMZM/5BEqpF/eXzhXYYkdXztDhXrUtk+KirsVgUxk9/jKjostk85zfcjFzwKCHRx8jPc7J0dgv87lB+HXU/UWHn3uo9Iz2HO29+C1WxARI3923Lw493u6AYM/OLGDl+Hlv2HETkHGHul29UiNrmpanA6+Gz9WvJdrm4JaUxVyRWL7OxDGHQce5w/IZe8rVmUcmMafMgBV4PVz06hPadOzOsZy9qRESWWRymysfl9+NQ1X+8qG/z2UeccLuQZBmrLHNtzXoMbtqa+OjwS25/h8l0rsw13qaLokV0HyItCVgkB4pk5bLInlSxJYP9aiAwI+f2wPzlFrze0l3r/We52f6SpBtAUWWOHc098wuU6qDWA6wAeLwKP/3aEAjM7vv9ZXc7f0HG+0RVO4I9xEdsXB7X9F6NVZEId57fLObU79dgUUMQQkEImVnTN5Ce9jfv/SzERoTy3uDezHjpXjbN/IKCvLwLOl5FFG6z81S7jrx2zXVlmnQD6MIo2dz2u0K/G4Awq42s3+bxxJXtzaTbdM5CLJYzJt0LMrbx7MbvGb1uCuljxxBvseJQVa5MSmbUtdeSUiPOTLpNprNgrvE2XRQ2JZQ7a31OtvcAVtlJpLUaAFLE6wjlQ/BtQrVezpiJS3n53Wv47MvvWJuaic2q0qttI5x2a6nF0qJlTX79aRNeT2D2vbjYRUzVM58wJEmG6G8Rrq/IPr6Xt9822LA5FptdpUnTJGKrhpdabH92zL0VSQ7MbMqKICKqmEO/fcHhQz2pVasWEKhXvjctk5QacTSu+fdrtouKPPwxZ5MVCZfr/FpBezWNbLeLqs5QVFkmxBlKy1sepveIb2hQM5GX77mOalXMphulzSKrdKqawsqsvXgNP4oB18Y3ZV7qPp6Y/QvyE4/wytaNfFqjBjbV/Ig3XbjZxzYyatsMPIYf4ddp+J+ezLn5sVLtlmkyXSrMpSamcsUwDIY++1+W5ISj2uyoikx8VDgTnu+P3Vp6ScSPU9cydeJqQkKsaPJO1m9ayK+//kpCQsI/vnbPrnRWL99LlZhQut3QDLUMa9b+fPQlUotWYqAhDCjK0imY1ZpZs2axfPlyftt8iPemL0UE9jnxn9uvpteVjc54vK++mM63YzYhyxYsFoXEpGg+/eoBFPXcbn6tPXaU+2ZORzMMwqw2JvTpy8yF25gwfwN+QyBLEnFRocwaeZ95ci4DmqEz/sAyvtgzD4/mw6LayNwfiXaymoRNURnUshVD27YPcqSmyuDB1WPYmHug5LFVVpneaRix9n+edPAbbtLdO7DKIcTZG5qfB6ZLnjkdYjpn69PT2JedTdO4eFJiq5bqsWVZpnHnG1k2ayW6IdANncz8ItbvPUr7xjVLbZybbm3NTbe2BgIl8UaNGkX79u2ZPXs29evXB8Dt8/PuD0vYmppOszrVeOKWTtitKvUbJlC/4T8n6KXh6oQn8aS9RLp7B+G2OCKPt+SZr18hKSmJ6x8chBbXHqGdunb+8MdlZ0y8Fy9ezFPPDuL9d78kJ9NCZJSTm29rfc5JN8Dgn3+iyBeYKfdqGk/PnY1lr4H/ZOJnCEFWfjEFLi8R57ksxnRmqqwgEBiKBJKC2yvQhM7vqwe9usaurKzgBmmqNGJsoShI6Cc3xgsETvWf68O7tXwmHHwYj1GEEAZ1wtpzXcKzZvJtuqSZibfpnIzdsI53Vy0HQADvdOvB9XXrleoYVouCqsj4/9DW3HIBtab/iSRJPP/888THx9O5c2eeeORddm/PJc/vJT0avIrg4PEccovcJaX5Lha7EkafGm+d+kId6N7pNu579hm2N25AxAED+Q8l5P54/6rQ7+blrVPZnn+UqpqDXwe9xcSJE7n66qsvKCYhBLke96nHwO60EyQt9BIu6RTVsGFYZew2C2EOs3lLWcnxFeEzAvsLFIuOJJ3693eoKlfVrBXE6EyVyWMNe7Ap9xDFmhdN6Py7YU9CziLx3pg7jWItG4PAcrn9hcvJjN5HVXvpnjNMporETLxN5+TdVctx/6E28GvLFpd64t27XRMmLtxEkTuwybJRchwt65fthjWA++67j7SDEnNm7USRLQjAcULC28iB16+zcsfBMo/hbMTFxXHzY4+ye+kiPLECx4nA14WuU12c4JtvviExMZEJyk52eDPQhEGmP48unzx2wUk3BC5UOtZIZtXRI3h1HUkzUPd58bsMVATh+z2obWN556EbzXq+Zei6hGZMP7IWr+FHVWRq1tGIKkom2+XmtkZN6Nf4smCHaKok4uwRTOv0bw4VZxJtCyPGFnZWr/Mbbgyh8/vcgCRJ+A3P37/IZKrkzMTbdE7+vCHA4/Pi9/nZsWIPFptKwzb1kOULm52ODHXww/B/sXrXYWwWlbYpNVAu8JhnqyjfiiJbgMC5QjYEsk+gWwVOtXwkkYdP5DJ56npCc2V0u8AbqRO7yY9S4GWP/xDetF0cO3aUzi9X5bYaWexzRzA+swEZsqvUYvi4x428uWIZ2zKPk7nqOMrmwEWShITqh1kvDcRqMz9eylLjyCQ+bD2QqYdXEWaxM7D2VcScxZpbk+l82BQL9cOr/ePz5m/Yyzfz1hFisxIrZxDWwcBql1FkC6FqDHH2Bhch2rJxzLWNdPcOom3J1AptE+xwTBWUeWY0nZMhrdvy0dpVGEJg6DqHx0/htuGrMIoDSxCadmrEKz89e8HJt9NupWvzuqUU9dlLrh3Lts1H8PtP1UhWbApOu8q2GR8ztj4MvN0G+mEk+9VItk4XPcbHPppBVk4xEqAWCWLXeJB1QLJgk5Jp0bgJ336Wi7fg/7DJGh0j0kkJyePL7D6lFoPDYuHFzlcB8OqWaSxTd6Od/DuLinZisV5adbzPVX6ei+MZ+SRWj8IZev5r4JtFJdMs6tJpVmQq39buPsILX83G49cAgdCcfHLtcLTovdhkJ02jbkSVS69C1cW0K38e8zPexRA6sqTSIvoW2sUODHZYpgrITLxN52Rw6zY0j09gb04WzeMS2JCfwPjl05CMwGzwlqU72bRgG5df0zTIkZ6fgYOuInXPcbZtOYLNpvL8y7fQsHkSYQ4bqY9cz7EdPfDlylgtBsI9HRExGtlx8dZ9CyE4mplfcudBNkASUsmtXFm28MusVQy9fxM2ObAkyC7rdIo4RsOk28skpseGdScnu5jtW48QWzWcl1/va26e+htrV+3npeemoigSIPHG+3fRIOWfZxJNpvJKCEGWt5BFW/edTLoBJEKdTnQ9mQ5VOwc1vtKwKusbNBG4s2cIjfU5k7ky5l7zs850zszE23TO2iXVoF1SDQB2WkNQZaWkoYcsgbuo4q7hc4RYefvju/F5NSxW5bQP1Tq1Y6kVqiLx+4nFA66v4CIm3pIkUS8xhn3HstANgSHEyR11gTgNQ8OTqLG9sJhGIYF/DwBZDiEhpEqZxBQW7uDtjwaUybEro9demlFSQx7g7VGz+PzbQUGMyGQ6fy7Ny+A1X7CvKAN/lpVAQ7TAHS/NECREn9168PJO105vWiWb/QdN58n8yTFdkM63XYnNYUOSJBRVwR7qoPlVjYMd1gWz2v6ibbJkQ+KPX5NAuvgNYt5/pDct6iZiM8CWlge7UsHnRwiBS83G29fCa0cup0i3UKRbMLBB+BvmzEw58eeGRQUF7jM802Qq/75OXcy+onR8hoZRw4UUp6HIMqoi81DPK6mdUDYX/BfTypUr+erZNQhNxiI5UCUb7WLvNz9TTefFnPE2XZCE2nF8tO51Zn8xH6vDSq+Hr8MZ4Qx2WGVCkuyIsGeg8C2QLICEFP6fix5HbGQonw+9jcLcIob3foNtBcVUOZ7BiOlP8auyne8zVrPPY6X3jh7Ud/i4q95tdHZ0uOhxmv5a564pLFu0C69XQ5IF1/dsFuyQTKbzlubKwWcE9ndIMoS39/JW0340jkoq1aZnF9PKI4c5WlhAq2qJLJo+g2eeeYZx48bRrl5Tjnt2E22tQZyj4m4SNQWX2bnSdM58Xj8b529FkiSad22C1WYJdkgXldAOg5EBakMk+fyqSHh1Py7dS6TFecGzJkKIkmNsyDnAE+u+wmMEljLYFQsT2j9OYkj0BY1hKj26ZjB14io2b0xl6rQxrN00k4iIi3/nxGQqDYuP7+CFzZPwGH5kJKJtoUzrNAy7UjHPC6OXLmb81s0AeH1emP4TMz/9jJSUlCBHZqoszMTbdE68bi+PXfk86anHAUioE8cHK0dhtVfMnerB8EvaRkZtn44Qgnph8Xx0xf1n1QXubP2atpFxqQuxyCpDG95A6yp1Su3YptJ1++2306ZNG4YOHRrsUCoMn65jVcyqOeXJb8c2M+3IGqJtoTzWoDvxjshgh3RePJqfyz75AP0PaVHz2Dim3dH/osYhjDzwbwG5KpKl4UUd21T2KuZ9IFPQLP1hNcf2Z+ApDuzuPrYvg2XTVtP1zo5BjqxiyPO5GLV9eknHwb2FGYzZN48nGpbeBs3uiS3ontii1I5nKjtDhw7l/iF30fu+9sQ4ahJmqRrskMqt3dlZ3DPjB04UF1ErKppvevehWphZt7w86FatGd2qVfwlU381DSmVYdfkv4xBO4DIvg0wQGgI50DksCcuagymsmVurqxEhBBsWriN+eOXknk0u0zG8Hv9p3XR8Xq95OXkl8lYlVGOrxBFOvVr5xc6h4vL5t/KVP5VbSy4Z2wyPx0ZwTep93KgaHWwQyq3HvxpBseLixDAwdxc/v3br8EOyVTJLF+8GPfaDVgAm6JgV1WeaNvuosYgCt8BURT4Dw8UjwnMgJsqDXPGuxJ5f/AY5n23JLDeV5J4b9kr1LqsdJtrtLupNeOe/x5N0wGBUAweHzkYd1Q+d955J2t2H+HIiVya1UmkXmJMqY5dGVQPqUKYaser+zEQCK/G8flb8Df1Y7H89ZpIIQxAQ5LM5TyVzfyMd1FtEgIfmoAFGe9yX92JwQ6rXDpWVFjyZwPBgdzcIEZjuhiEUYBwTQThRnLciKTWOu37K5ftYeYP64mIdDDwoauoGnf+eyU+/fRThg8fzsSJE9GTkzhaUECb6kmkxMRe6Ns4N6KI5flV+Sy9MZIEj1TbRZvYilui1/S/zDXelURORi79aw3G7w0sYZAkaNf7Ckb88FSpj5V7PI953y4B4JoBndhzcDcPPfQQjnpXIuIaghQouvfmoJ60b1Lr7w92CTruzuOdXT+T6Smga1RDvn/yTYqKinjnrc9YPG8fsizTt/+VJFaPxnDPhvynAR9Y2yNFfYwkld56cFNwfbqnN16jqOSxKhw8kvJTECMqv26bMoH1R4+AomBTFLrXq8873XoEOyxTGRHCg8jqCXoGoIFkR6oyDUmtDcC61fsZ8ewUvF4NWZaIjArhq8mP4HD88wSFIQRLDh2kyOelTbVERj7/X+bMmcOsWbOoW/fid0z+o11Zs3hg/RK8IjAvapcNvr7ySWqFmcvQKgtzxruS0DUjkG2fJATkZJfNjFBUXCS3Dbux5HGbuDasWr2ado9/hNBOtVr/4MflZuL9F+Ickbze4q6Sx3fO6sxzz77M049NQJGtSBIsXrCDceP7Eak/BQTW0+Nbgyj6DCnsseAEbip1TaNuZGPONDThAV1hwTcHyHSM4LnnnsNqNe9w/FGzQ2nsys4kpmFDWiVUo5U9ge8XbODqFvWIi6ocTVpMf+BbD0Y2cLLuvXAj3DOQwp4EYNG8HXhPTjQZhsDj8XNg/wkaNan+t4cVQjDopxmsSjsCQuB1uaieup+VK1cSFRV13uG6/H4+XLOK1NwcutWpy80NG51XxarNRdEIyQoi0LBHwsbW/MNm4l2JmIl3JRGTGE3r65qzYd4WNJ+GkAQzN0/G9pSfESNG4HSWbW1tVVWRZQndOHUDpbCgoEzHrCxkWaZt6xvYtPI3dF0gROBCatOWtbRLkbGWLAn3grY3mKGaStmVMfdSxVaTDPcu4h0NuWVIPQYPHkzLli0ZN24cDeo0ZMWMtahWlQ63tMEecmne7Th8+DD/99prrFq1iuSatej/2vcsz9yHYQg+nbWKic/fRbUqZknGSkVycNqGIlSQQkoehTgVhNCRpJNdMv0GUVH/fJ7bnnmClUeP4NZOdo+1WLhm2JMXlHQDDPzxBzYfz8Cr6yw9fJAin4+7m537JvfqziooksrvFxxCCixRNFUeZuJdSUiSxItT/83iSSvITs+j1XXNCIm1MWzYMBo1asQHH3xA7ZotmD55DSEhVvrf25G4hNIr+aTIMvd0a833CzZiCIGh6+xdOIU77ljKu+++S3x8PHB6zWnTKWHhdiwWFV0PnAwKfcU8s20Ps+sKFAsoMgjsSLarghypqTRJkkSD8K40CO8a+EI4zJw5kwkTJnBTj94083REEQqSJDHp9Rl8tPa1S6p0Z7GWjVcv4rHHH+Xxxx+nbt26rNl1mLSsfDy+wGynphv8uGI7D/e6uJvgTGUnx3uYVZk/U1QYx+XWY9RyqkhKFFLIHRzdm84b93/AxtWbCK9bHyk2HsPQxHSWAAAgAElEQVQQDLivIwmJ/5w8a4aBME7dmZUkCe0C4y3y+ViffqykDKFb05i8Y9t5Jd7tYupzc1JrJh1aCcBdyR24PNq8c1yZmIl3JaIoyv+U9fv222+ZP38+jw95noSo7oCCLEusWLqHryYNJizcUWrjP3JTe1rVr87hE3k0q1ON6tGDeOWVV7jssst46r8jWJMXysHjudSMj+L9R26mWhWzFNjvOl/diDmzNrNjexoA0a2rsF4voN+CG3np8mXEOtzk0pMr4m4OcqSVz6KDB5ixawcJYWE83KoN4bbgzipLksSdd96JP1XmuxE/oJ1MEo4fymTdb5tpd2ProMZ3sazN+p7V2d9i6IJmg9083n4wAIoinzYPKksSimwW6KosirVcJh16FJ/hAknwq68at0bfR0TI9UguC4NbP4KrwI0dJ9LBLAY93pMufdsRHhHyzwcHdi1ZSvGRoziqJyIkCaui0P+yCyuFaPh8CN0AOTCpJEsSsSHnd5dZkiSeaHgDQ+pfD4AqmzXrKxsz8b4EXH311Tw2xGDK+FVAYD2c5tfZsS2NNu1KdyNJm5Rk2qScqqQyevRo7rrrLv715mSE3QOyzMGMXJ4eM4vvnr2zVMeuyFRV4bX37uLQgUxkRWa3nsv2334ltVBlwOJe2FWV5zp0po15t6BUzT+wn0d/nYVH07DIMgsPHuDnOwaUi0QuLDQMi0Ut2TDt8XrxerxBjuriKPAfZ3X2d+jCDzJUqW5nc9EPdAwZRPM61ageaWd3WjFOp5MQm4VbOzYNdsimUnLMtZXAEpPA5dXuHdW46aM0hBhHXEEhroJilJOpi9flZceSHdz4wDX/eFwhBK+99hqffPIJU2dM54DNSqHXS7c6dakRcW53f31ePxariiRJrF27lgEDBlD7mqs5nFIPi6zgsKi81KXrub7105gJd+VlJt6XiNjYCKw2C76TJ/HiYhe/Za3imbnf4TN0bkm6gn+n9CyTZSBNmjTBEbUIlzewjMIQgkPHzVJgfybLErXqBDbQJOhR1Iuuwt6cbCQgJsRJ74aNghtgJTRh6xY8WuB3wm8YHMnP43BBPrUiL2y9Z2m4un9HJr0xA1eBGyGBrvp44Jl7GFt1LF26dAl2eGXKoxcgo/D7ggAh6RRrWUBgWVv28snc0O1mOnXpypWNkgl32oMXrKlUOdVojJMbC4sL7axe2BhdBxAc0yFKUkqWflvtFqrXT/jL42iGzqRDK9iRf5SmETWYM3IcmzZuZOXKlSQmJnLFecSWn1XAf64fyb5NBwmNdFLzphjGz/qGDz74gL59+5LjdnGiuJiakZHY1b8uD2symYn3JeKGmy5n4bztpO47gWEYJLSw8aPYgqwHfgRmHl1Hk8gkrq/WvEzGb1o7gfV7juLXDSyKTLPaf/1haQqwKgqTbr2dZYcPoRk6HWvUxHGGOt+m8xcTEoIiSSVrM3UhCLeWjw2METHhjNn2Dit+XIfFqtLhliuYO38u/fv358Ybb+T1118nLKxyVvOItibjKTTALlBUCVWykRJ+LQBLly4ldf8+fn3i/jPWvjdVXAmOxjSKuI7t+b/gLgpDUaSTiTcQEUq9f3Xk0PerQAhS2tY/rcLWH43ePoO56VvwGH7mHt5ESG2ZJe8tITQ09Lxj++CRsRzYehhhCApzitj6bSEbDmwgMTERgGhHCNGOs1vyYrp0mXW8LyGGITh6OBu73cJuOZ0XNk3EZfhKvn93rU4MaXB9mYxdUOzhpe9+Y/vB4zSuGc+IAdcSFmLOUpmCK7O4mJsnjSff66HI7ebuuvV56cbyvY4+Ly+PJ598kgULFjBmzBjqVWvIgu+X4ox00uuhboSEld6+jWAZP348r745nDen34+weGgS2YOaoYE5yq5du9K/f38GDhwY5ChNZalYyyHfVcwdL/1EkcuLAOxWlZH3dqdDSjI+t4/QyDOvo+7424t4jVPbJqOsTuZ0ff6CYnrgsic5uP1IyWNFVZiW/WWl+J0zXTzmjPclRJYlatQMdJMUboEhnbrmsssWWpThzulwp523H/zrmQmTKVhinU7m3z2QvTnZzJw4iRWffwHlPPGOjIxk3LhxzJ49m8EDhlArpylCB4vVwpwvF/Lpxjex2iruTPDKlSsZOnQoCxYsoEmtJgC4PD6mLdvK9p27OJx+ggEDBgQ5SlNZc6rROMOj+XJYP16ftJD8Yg/9ujSja/PAvqR/+hl3qna8vlPNqSIsFzYTffjwYVILdiPJdiRDRlFlqtWNN5Nu0zkzZ7wrGaHtA+0IWBohKXF/+9x12ft5c8dMPLqf/rU6clvylRcpSpOpfMhKy2bfxoNUqxtPXK0Y6tWrx+TJk2nbtm2wQzsr7z78Kb98Nr/ksSPMzqhfnqdJ+4ZBjOr8HTx4kHbt2jF27Fh69Ah0pXT7/Nz56niO5xbi8XqxW1V+HHk/sRHnv2TAVPmtztrLUxu/Q5FkhIAPWw+kSWTSWb22wOvlnZXLOZSfS/e69XGtXc9TTz3Fk0OfJDI7gTU/byCxXgJDP3+IKgnB3w9iqljMxLsSMYq/h8LXQFIBAynqSyTrudcRNZkuBdtX7ObZ60eiKBKaT+ehd+/hGAeYMmUKv/32W4WoNz/uvxOY8uaPaP7AIlghGfR76wbuf+LeChE/wOaMdH7YuQOnIvPt0GE8cPfdPP744wghWDVrPUu3HeDH9Azc/sCyAYsiM6R3BwZc0zLIkZvKuzyfi2PuHJJCqhBmObuZaSEEN00az+6sTPyGgazrqCvXMOn5F2jW7MLKDppMYCbelcbetBMkic5Y1VONAVCbIMdMC15QJlM5NrjV0+zdcKDkscVm4dsTn9H65eFISYnEhITw6Q030SKhGl5NQ5XlclFm8I/yMvMZ3OoZivNdGLpBjZbVWJE3F0VVeOWVV7j++uvLdQK+Mf0Yd02fgkfTkHQDh6axfuhT2FSVdwd9yoIJy3DFh5PXuTbCEiivZlUVHu3dgbuuvjzI0Zsqo2yXi/Zffo5PP3UubVY1jum39w9iVKbKxFzjXQkIIRjywQ/Mesw47etebx7m6jOT6a95ik+via1rOq+tXIaSlIihCaT5efz7+y9xdwkjM1IDQxC3SeMyEc2I124jvhQ7v56vyNgIvtj+LtuW78YZEUJKm3oI8RrTp09n2LBhjBw5kpEjR3LVVac6nnp0PzZZLRcJ+aTtW0vKOQpFRrI72ZWVSV1HOL99vQjNr+PX9UD1OCGwWlUinQ56tjVLa5rKRqjVyh9/MxRJolq42ezNVHrK1/SN6by4vH5yCr3M2tQAt0/FEOD2KQx7cRevvfYafr+fvNxiNqw7QHqaWT/bZALo90xvbCGB9uuGpNPomrrsys5CB6ps9OM8olNYXeZEqA8DgSFDRlOF3emZvPDUpOAG/weOUAetr2tOo7b1kSQJWZbp06cPW7ZsYfDgwQwaNIiuXbvy47K53LToDbrMHUGvRa9zsOhEsEMnRFHAODVhoAtBmM0GJy8KtCpOirrWA4sCkoQQgrce7EmEWbfbVEZsqsprV1+HTVEIsViIc4by345X/fMLTaazZC41qQSEEPT87xecyC3k+qa7qFUlj3WbYOqYhTidTsJDE0mK6YmqKvg1nceGdee6G8y1aibTut82s3nRdlxSIa+OHc59X41leuo+wpb50O0KrgSBJ/7U/JfkEyQs8xGaDbOXPhfEyM+epml88803fKCtwVI9CmQJCajlrMrEjk8ELa709HRuuLUP7t69UEOd6ELQr9FlDD/Z8e+DR8cyaelmXK2TQQ0sM3FYLTzVtwu92zcJWtymS0OB10OWy0VSeAQWxewiaSo9ZuJdSRzJzOP5cb+SlpVP20bJvNj/WlL37eXrr79m8ZxCQh2nGtZYrAo/L3y2XNxqNpnKi9GjR/PTzz+T1Pch9u44AZKE32lQnAgogBBIfqj1i5d6NaryyVcPBDvkc9J13ssUaZ6Sx4oOX9a5m4YNL34FlC1bttCrVy8GDRrEk08/xbbME4Tb7DSoElPynIKCAppf3ouILjcgnWyU47CqvD/kZlrWq37RYzaZTKbSYCbel4CBt3/MkcM5JY9lWeLnRc+iqsG7ihdCUOjzEma1mRcApnLBMAx69uxJYVJnimVryde94Qa+KIHiEVRZ4+byaokMH30bMbEVa93nMxvHszxzNz5DQ0Um9ISPbc9+R0xMDH379qVv377Ur1+/zOOYPXs2d999N++//z633377GZ83ceJERo4cSVF0A6o07oAsy9zX/Qoe6mmWPb2UuV0+FFXGajW3qJkqJjPxvgTMmrGBT9+fi9fjx2ZXadexAc+9FLwmIbuyMhkwfQr5Xi9VHCGMv+U2akdFBy0ek+l3axdsYMioyfhrx4IS2AIjhABhIHSNI7M/J3X7RiIiIoIc6blzaz7e2vkTW/IO0ySiOsMa3YhDtrB8+XKmTJnC1KlTqVq1akkSXrduXXbk/caqrK+QJJmOVR+ibliHcx73l9U7+WTWShRZomFIMV//36v88MMPtGvX7m9f16dPH3755RdatGjB4iVLkWWp3FWVMV08um4wavh0li/eDRLc+0AX+g34+58hk6k8MhPvS8SKpXvYsDaV5Fqx9LixBYoSvBNY16+/4GB+HgAS0Di2KjPvMDvRmS6+fbszWL5kN5HRTrr3as6b//qQBTNWU9AjBT0mFMmvk79rLW5/Pr6Mfbhzj3P06FEiI4Nf0aS06brO8uXLmTx5MlOnTqVZ5xp0fyESSQ1sflQlG/1qfkiM7ew73G5OPcbD7/2Ax3eyconu5937utGlTfO/fV1RcTHRUYHGJHv37iU5Ofk835Wpspg9axMfvjMHr8cPgM2m8v6Ye6ld9+8bxZlM5Y15r+YS0a5jfdp1LPvbyGcjo/hUG18BHC0sCF4wpkvW9q1HeOax8Xh9GlarysK524lTZRSfTuT0rQhFQpEl8qpsJDPrEIqiIJ2srFEZKYpCp06d6NSpE++99x7T1r/FUeaWlFbzeLx8+PVIalo70rhxY1JSUggN/evukTtW7mbe+KWkhkho2ql6yA6Hg0LjzK2+cwpcDPlwGruOZFL/9ufoHKebSbcJgPS03JKkG0BRFY5n5JuJt6nCMRNv00XXOC6G9cfSQUhIkqB1YrVgh2S6BE2btAavNzAT6/Nq7NuTwZ0v9mLVT+sQhsDlcpHJcVq0a86hGQfw+/3YHCGVIvE2hMHEgytYcmIndcLiGFz/OpyqreT7iqJwReNrOHF0KZoIbMi0WFTseizz5s3j/fffZ9euXcTGxtK4cWMaNWpEo0aNaNy4MeSpvNLnHbwuH1pyFNrV9cBy6lRTK6HKX8dkGAz/ejZ707IAsDoj2CuHlOHfgqmiyMnJ4Zc54zFEdWQp8LMkhKBBinnuMFU8ZuJtumiKi70sX7yLDPtebOEWNLeKxaFhRGcGOzTTJchutyBJ8HserWkaNVMS+WLH/7Fx/lZkm8Q9T96FI10QV6M2EW36YAuP4dZRk/j48T40TKoa3DdwAcbtX8g3qUvwGH625R9mX2EGn7UZdNpzkp0taV3lDtZmf4+ETPuE+2n28E3wcOD7uq5z8OBBduzYwfbt21m0aBEff/wx/s0WquqBqiPqoVzsm9PwXF4dEHj2rqXfDZ/i9XrxeDyn/V/TNBrd8RzW8FOJeXaBC003UIO4NM50cbm9fn5YuoW8Yg/dWtZn7+Y1DBo0iFtvvZWHHrqZ6ZPX43BYeXDINURX+es7LiZTeWau8TaVEP49CNd4kGxIzoFISnypHbu42MtDd39Obl4xJ4YV8MfWYNUcUczo/FSpjWUynY30Y7kMGTgOTTfw+/ykZ23kmRf6nFZpY9myZfTp04dmtw8j0yOhFGtYjuUTXjWc2RMqbknO25a8wyFXVsljGYkl3V7CKl/4XMxTN73Ahp92IJ/sz6ZYFR4Y24/4WlWx2+3YbLbT/v/7ny0WC69+P5+fV+/E69dAGMieAmaOepBq1cyZzUuBX9fpP/p7Dh3PxafpyMIgb+Ukxr73Bl26dAl2eBWKEIKfPpnD6l82UOuyZAa8eCs2h+2fX2gqc+aMtwkAoR1A5PQF4QZkhHsmxM5GkktnE9myRbvIy3Xh9WgoB2X0JANUsMsWro2/rFTGMJnORUK1KL6cPJjtW44QGeVEM3rRo0cP0tLSePLJJ/EZGm3bXckjjz/JjEMSkiQDAtv2dPRlqbz9wCcMGzs42G/jvMQ5IjniysYINGPHrliwSOdeXlT4tyAKPwIJ3NJAnnhqLAs3LqJZbAc0j46u6fR8qBt9+p9dFaWn+nYBYPWuQ9SMiyYiewetWrXiu+++o3r9y9iTlknD6lWpmxio932kOJuvUhfhN3TuqtWBBuFmgl6R7T2aRVpWPr6T+wIMSeaOx4ebSfd5GD9yKhNf/xGvy8umBdvYv+kAo3/9b7DDMmEm3qbfeX4D4SWw3VFHCC+SbzXYryv1oZwTbfiv06naIpwedVpwd+3OpT6GyXQ2wsMdXNnh903HiaxYsYLuPbqzIPI4OdUt1LAWEWlzoCgx6ELCCLVR2K0h0ePXs2D8Uu595Q6qJEQF9T2cj/807s3A5R+T7SogJMTB6OZ3nvPsvdAOIXIGnLxYB+FeQGx0GzZu34BFsbJvQyph0aEkN0o662PaLCr/veuaP3zlZrq0b8P9z46mSqvu2KxWdEPw0r+60bJJNe5Z+RFFmgcBLDqxnW+vHEJyaOw5vQ/Tmem6ztyvF3PiSBZhNePZuD2d0DA79zzQharxpV9S025VMYxTN+EVWSIyzFxOcj7mfrsEr8sLgM/jZ92czTzYfBiv/PQsVZNi/uHVprJkLpwzBcjhwKlqAy5XEb/NXYWuB2Ye3Ho+Od5D6MJ/hgP8vQ5dGhIZFYLdbsGhWKmxIYavOz3CvXWuQpHMH0NT+ZCUlMTwHz4lM1bCJvn4pN580rPt6OLkbLAkIZxWhCyBJGHoRnADPk+JIdE8YbQi7Kut/Nb1ea6MPY+KR74VCHHq/VutVl4d3pOwsDDsITaadEg5p6T7TK655hqSOvRGFxIurx+vX+PtqYtZn5OKLn6fswfN0FmaueuCxzOd8krfd/jwsXF8+84vfPzJIlYu28v8Odt45L4vKC72lvp4teKj6daqPg6ritNuJSo0hLu7tSz1cS4FVRKi/udi+uD2I7xy29tBisj0O3PG2xTguAVcU0BPBSFw6415+bU5DHtuKv/5YAA5CYuQUbApofRNfp8wy7nNKjmdNj79ZhDLFwdOjB06NyTEaa43M5U/uZIHyapQ256HKhm0qpVGZqETr6YiYSDlejAMP5d1aUJMYsVs/CSEYNeeVOrEJmFXrP/8gj/RNI3Zv66lU3MPoc7AyV1VLSCXTWm3P29E8nh8RFqdGAYIAyQZVFkh0mJWQSkthblFrJ61Hs2vQ3IVONm8yDAEPp/O3l3pNG9Zs1THlCSJ4QO60adjUwrdXprWSiC0Aq5L9up+VFkJ6qTS0M8fZGinF8nPPFWu19ANDu1MC1pMpgAz8TYBIEk2qDIZtJ2Ahdi4BixbBj/Oms7+6I9QhYQOaJqXpSc+pUfiC+c8htNpo1uPZqUeu8lUmlpVqcN3B5aS6XegSgbDrl+GpsusTq1OqOTl2Lz1FNcoJNW5tUw3Vx46kMnoETPIyiykfaf6PDqsO6p67uuw/yy/2MOD/zeFvUc9yGpDFm/eT+dmdc769XPnzmXo0KHEx8fRbmxnYFXgG7ZrwdblguP7K/df34ZPf16Jy+3BZrFweOVPfPSuRnFOBAKBWttD446xXF/t7xvznK/8Yg9fz11HXqGbG9s1onmdxDIZpzxRLcqpCx6fHwyjJPnWNZ2oaGeZjCtJEpfVSiiTY5c1zdB5dtP3LDuxC0WSearRjfROah2UWJIaJPL9oU946uqX2LNuP5pfR7UopLSpF5R4TKcoI0aMGBHsIEzlgyTJSEockhKDJElIkkRSnXi2FsxA8PstZYFNdtI4sntQYzWZykqCI4qkkBh2FxbiFU6ahhygY71UaqrradPkEb6b9iV+q4e0tDRSUlKoU+fsk9azpWsGg+4eQ8axXDweP4cPZuHz67RodfZdI8/k9UkLWLPrCIYAgcSizfvpf3XL/ynZV1Dg5tCBLGw2C1abyr59+7j33nsZN24cb7zxBq+++iohUTeB4zYk5z3IIb3L7EKkWZ1qNK4Zz5j33+LbN5+lXeuWTF5zACQFkLAU2xl2ZXdqxpX+HQifX+OOUd+xYvtBdhw+zpy1u2lZvzrx0eGlPlZ5YrFa0HWd3Wv3YTV0jFAnlhA7siJz6x1t6XJN42CHWO5MOrSCGUfWoQkdA8Ga7H1cn9CcMIsjKPEoqkL7m6/gwNbDuApcNOmQwn/GP2ZWNwkyc8bb9LdClEiirTXJ9h3EEH5UyUajyOuDHZbJVKauSbiMaxIC1XaE8PLh+2/xyqvvoSj38N5773H77bczduxYhgwZwtatW7HZSvdElptbhNvlLakx7vVqbN5wqFSOffhEHtqf1qbnF7uxW8NKHm9cd4AXn5mMLMsIwyCpXh6Tpo7h6aefZvLkyae9X0m5OJsZ26Ykk71tCS3qVONIZj52ux2vP7AHxefzs2bzTto3vvALkz/bk5ZFzsl64gAev8bMFTsuiVnvf43ox5W9WpF5JJsGV9TFa4DDYTXrZ5/BwaJMvMapfVAWWSXDk0e1kOBtwA6PDmPkT/8J2vim/2XuajP9LUmS6FPjLZpG9qKWsy1d45+gSWSPYIdlMl00kmTj0cefZ/To0RQWFvLWh5+T2LYXn85aQb1Gl/Hmm2+W+pgRkU4slj/Oixg0aFQ6pfKublEXuzVwbEWWiI1wEhNx+rKB11/+EY/bj6vYi9vtJ3WXhW3btvH000+X+kXGuVAUBV3XaVE38bTZdRmJ90Y+R9u2bRk3bhzFxcWlNub2zRspdrlLHquKTGSovdSOX97Vb1mH9r2vIKZaNInVo82k+ww8Hg/bZyzBONkN9/efzjohEkb+Kxj5/0H4twUvQFO5YS41Mf0jVbZSM7Q1DSK6Emsv/dvqJlNFcPnll1MlsRariqJxVquNERKDbklk9U8LqFO7HvXqX3gFj98pikyLljVZvyYVn0/D60+neh03HTt2uOBjN6kZT35uDpu2bueaK5vz+gM3nLaBLS8vj2/HLeOPrdXCwsIY+OC1Fzz2hTh2NIcJ4+dwQ48bqJEcw0FLGgcOnyDMrvLWoFt4/YVhVKtWje+++46hQ4dy+PBhqlevTkzVqry2bDHDF89nyaGDtE1MItT6vxtKs/KLGf7NHL6cvZZ8lwe7v4CBAwcy4duv6NT1WrLdBjaLQmxEKCPuvg671fIXUZouFbuOnGBvWhaRoQ72793DddddR5Ru496+d5GlF1PTGcuoZjcR77oL/GtB2w7umWC7Ckkxy/ldyszOlSaTyXSWxs1ew0c/LkcA1nyN0ENeJAQIg3sGdeWuezqWybhHjhzhijZteOjFdxEhkbRNSea6Vg3Oe031tGnT+Oqrr5g5c2bJ1w4cOMB7773HN998Q4fW96J5q+D3GdjsFnrd3JIHH73mb45Yttat3s+I/0yhuLiYkBAnjmFWMix5+AwNm6TyUP1ruavWqb/7I0eOMG7cOMaOHUt4j+vwN05BAxRJIjkyirn97znt784wBLe89BVpWfnohkDGIGfLIh65pQtDhgzBZrNx6HguhW4v9RNjsFrMVZqXsrenLuaHpVtQZBnd7yN15oe8Ovw5Bg4ciCRJpO1LZ8zT35JYYy//GrYaVfWcfKUEzoeRw54Iavym4DIT70pM1w2KCj2EhTuQ5YrZ2tpkKk8mLtzIe9OX4vXrRO5yoXhPfXzKisTsJc+V2QbDga+OY8PBLGTVgt2q8nCvdgy45txqHGuGwRvLlzBx/Vocfo2pgwaTtnMnb7/9NgsXLvx/9u4zPIqqbeD4f2ZrNo0kpEAghF5C7006SEB6taAiUqQI9sJrl0ewUKSICAIq0hWQJig19N57KEkIhPS2bcr7YWMg0oIkBML8rosPk505c2/YzJ45c5/7MGDAAEaMGEGxYsVZtmg3J45fplqNknTqXrdAryEvPf0dURcTAFD1KqnvWnMkSpb1CGR+05E3HSdJEi1mTuey43rNaVWWUb+bieB0Zk8iF40WPJ54HkF3vUNdqURRfh3dL//elOaRdDUpjS4fzs5eXVNVFVqElWTCiN4AZKRk0K/ccNKTMqhYM52xC8/h5v7PdcKE4PkmgvsLBRS95mGg3bYXUmdPXeGdUfOwZjrw9HLjm6n9KBHiV9BhaTSPtM6Nwli85TBXk9Juek2WJDIzM3F3z/sya4qicjgmFVHvSm+wOSTmb9ifo+OtqionjsWQnmYjrHpJ3G9RJ3/q7p3MO3IIqyiSbjTQ8rtvUX6Yw6iRI5k9ezYeHtfzd3s83TDP38d/5cyaRAmAnPUvq+MtIuBvunWFEb1eT+1SoVw7dwan4poc6Wky8/vatQi4fmeqquKUZF6a+if2rM6UQSdStriWDqC5mdXuzLFwlCCI6E3Xq5acPXABxSmjKion91vYsqIIrXqmYTAaQRcKlt4FELXmYaLleBdSI4fMISE+HUVRsdkcHDsaQ8cutbmSmEZkbCIebiaMeVATWKN5nBj0Oro1qUqt8sGElPTj4M6zIICsSBjcLxN54QCtWrXKl3P/9Ne+HNVIEmIuMOfL0Vy+fBkPDw/mz9nHzGkbiNh0kpXL9tOybVXcLEbi4uLYu3cva9as4cfTJ0j/p2ygIKAzGNk6fQZtmjXDeIu854eFm5uR/XvPI0syoghNK1UmyjMexe7E1+LFl7Wfw+s2JdsalihJRNRF4jMz8TabmdWlO2EhpfDx8cHX1xdfX1/8ixalSmggGw6eBVwrKP5vQActjzsfHDp3mYm/bWH7sYuUL447+SkAACAASURBVOGPp+XRKW1ntVr59MP/40y8FZO7F4oKZoOet/u0pLif6+ZPcsosn/YnsiQDAvu2FKVouacp3/g1BI9XXGtm/EeyJGPLsGMwaZ/LR5mWalJIdWwxFodDyt42mgT6vNOK71bvQa/TYdCJzHm7LyEBBVfmSKN51B3cf5aXXhhJSKg/DjmO3bt3s23bNipWrJjn51q/7zQfzv0Tg15EVWHaiK7EXzzNqlWr+HPNVgI82yOK/3whqzi5yOGTvwFQuXJlKleuzNWwypzSCUhZS6N4GI3sHTgUo+7hvwk/uO8CG9bvZdacyRw5vpHl61Yzdc4MVv/6G0bx7g9vHbKMQRTvmAokKwqZNgcebqZ8XRzpcXXi0lUGfLMIm0NCFAS83E0s+7g/Xu4PT5WYTJuDjYfOoSgKLWqWwzNr4vH+/ft57rnnqFGjBhMmfctfR6KIT0mnTe0KVA0NytHG4m9W8OP78xFEqNKoIv9bMxrjfXaWN8zfytcvfYciK1R9ohJjVr6n1eN+RGkd70Lq/95cwP6953E6ZPR6EZ05kZjQwOwcRkEQaFylFN8M6sTmv4+Tmemg8RMV8A8o3ItCaDR57fDhw7Rq1QqLxUL79u05f/4869aty5eO27XkdGISUigT5Jejs3LmVCyvDZmL3X79ZrtGnQDe+r8uBAQEZMeS7nAw8I/f2R0TTRGzG9917Ez94BJ5Hmd+UVWVChUqsHDhQs6dO8fChQtZsmRJQYelyaWpK7bx45rd2Sti6kWRF5+sy9DOTQo0rn9Y7U6e/t8vxCWnI6sKFjcDC99/llnTpjFhwgQmTpzIM888k6u2MtOs2DPtFAnwvudrgawqbLhylGRHBo39K2JJ1/Fc6FAcNgcARrOBnm90ov9nT9/ze9QUPC3VpJBq9EQFUpIzUVWV5q2rMPrz5/l10yFuvM9Kib/K9oVH2PDncfbuimTV8v00b10FT8+CWWVLo3kUBQYGEhQUxF9//cXFixex2+34+/sTFnb7lf0yUjM5uesMklPCy9fztvv9m7vZSJCvFyZjzhHeIkXcidh8kox0O7LiqkTy/ie9KRUalONL36jT0bNKVUbUb8SQuvUJ9nowN9o2h8T4JZuYumI7Z6LjqVux5E0rZeaGIAjExMRw+vRp3N3duXLlCl27ds2HiDX5IfJyAntPRyNn5dsrqsrRC1fw87ZQOSSwgKODDQfOsnr3CWwOCUVRsUsS88+s59L6LaxZvZqmTXNfztNgMuDmYb7nTreqqry27ycWXdrBjvgzLIvaTflMX7bP3YEiuX5vsqRQJMCb5r0b31PbmoeD1vEupAwGHQ2blKdj19rUbVAWi9nIvjPRJKRmIisKRr1ICUcGMSfTUGQBWVaQnDJGo4Ha9fJ+9TeNpjCrUaMGp06d4sSJE7Rs2ZLpS37G0qwcF6zxlPEIRC9eT+W4fO4Kg2q8wd+/bGH51D8xmg2ENb6/1BRRFGgTXh1PTzMVKhbjlZFtKVch6Lb7P+g0itGz1/Dn3lNcTUrnTEw8kbEJtK1T4T+15eXlxRdffEG1atXIzMwkPDw8j6PV5JfyJfyJOHqeaynXFziSFZUriWn0bFa9ACNzOXs5nr8PnUH5ZyqFALoSChM/fp8qxfL/e/HqxWvM+XEZf7qdxoGErCo4FZlVG1fjttWJqLpuVk0WE73e6kyZ6qXyPSZN3tOqmjxGvh3WlZ//2seluGRa1ihLoM7MO6PmYbO6lrgVBAFRW8tUo/lPJk2axPbt2/l92zrKffkMs85vwqQ3sjx6L7MbvpLd+Z7x9s+kJaajKq6nTz+Onk+HgW1w97Lc1/nNZgPd+zS47/eRH3Ycv3B9eXdJZvuJC/+5rXr16pGWlkZkZCSenrl/WqApeCaDnllv9KHpa1OyJwoLgPdDkuPdrFoZLO4GUtNsgABGBXMpBd0D+GKMu3SNwTXfJKOIjDShBJizzqmqNGvWjPee78aUV38k6UoyHQa2oc2zzfI9Jk3+0DrejxGTQc/L4de/mGVZoWLl4pw+cdm1IIhRT6fudQsuQI3mEWY2m/njjz9oM2EYqk4AUcCuOLmUEc+p1MuEFXGtbHljpxtcN7y2DPt9d7wfZoFFPEm3JuTY/q9EUaRLt27sPneWNs20zsejxmjQ8f7TrRm3cCN6nYgoCrzTp2VBhwXAhatJGFQ9yAKCu4KlaToV/YpRvUj+jyxvWrgde6YdNUVGvz8TqZYFvVGHyWjizYY9CfYI4IvVo/M9Dk3+0zrejzGdTmTcxGfZse001kwH9RqWpYhP3tcg1mgeF6GhoYS3fZKdagwCrhFuSZEx3rAwS/eRHTm1+yx2qwNRL1CpQXl8g4oUVMgPxLiBHXlh7C9k2CV8vTz4cmDH/9xWmt3OoaqVuBpSnIUmA97bt/JW4/xZMVSTP7o2qUqDyiFcTUqjbPGi2ZVDCpKqqgyb/BspGa7RbtGmp25iMF89WRqdfBrEyvl6fqPZiKgTEZwyljGxiM2K0PGdcPo+0ZpAs3e+nlvzYGmJBY85nV6kafNKtA2vrnW6NZo80Lt+O4QbHk1Liozuhkttk671+WTZ21RsXRpDRZmxa0cX+tJ1ZYr50dYvlZbeCawbO+i+FqeZeWAv8U4ngsmIDMw+uJ/IpMS8C1bzQBTz9aJm2eCHotMNkGFzkG51ZG+XLXqNz9pMQkx9GzWhD0r69/l6/rYvNMe/hB9unm5Y3M1UozjD23bROt2FkDbirdFoNHkoKjMevahHUl05zbLNwfoTuxhcv3P2PnXa1sAjxEz79u0xmh/ehWvy0rFjR+ncufN9Lz0fn5mBQ7m+kqVeEEmyWe83PM1jzt1sJMjHg9jENBRVZVTb7Zj1DlCzOuPpk1DdX7yvBXDueH4vC9MPfs2hTccwGPXUaBmG7hGor6+5d9qIt0aj0eShUHd/DDeMeOsNBmaN/RZJknLsV758eRISEkhISPh3E4WKqqoc33GKMzsuEBp8/5UhulSsglnvGjNSZRl3g4EqRQPuu13N400QBL5/rRc1yxYnoIgHwUUNNxcbUJ35GoPZYqJBh9rUblNd63QXYlo5wceIzSGxaPNBNh+OxMvdTFFvLbVEo8lrJSx+2GQnR5MvISJwbeFOvKJsJCYm5qgD7JBlfj9ziguohAYF4e9eOP8evx02kxlv/YSYYGL/imM0790ITx+P/9xesJcXtYOK45Bl0k6eoo2k0q558zyMWPO48rSY6Nw4jOfa1MHLIwhsGwAJcANTS0SLVjNec/+0lSsfE7Ki8OKXCzh7OR67U8Zs1DN9ZE+qlymWYz+HInHFmkxRkycW/cORe6fRPIr+ubROmTKF6dOnc/XqVbZs2UKVKlVQVJW+SxdyIDoKWRBwMxj4pVsvahUrXsBR5624S9d4sdJInLaskqWiQNt+zXlr9rA8af/YsWO0bt2ayMhILJbCWxVGUzBUxx5U+1YEXUlw644gaKPQmvun5Xg/Js7HJhIZm5hdS9fmkFiw6QDVSgexcPNB1u87g6+vmYPFjuDQOQGVL2s9R4Oi5Qs2cI3mEfXPhMnhw4ezfft2Ll26RP/+/dm2bRuX0lI5FncVOetZtlWS+PHgPiYXso63w+bMkdOtKiq2THuetR8WFkbjxo2ZOXMmr776ap61q9EACMZ6CMZ6BR0GAKkJaSReSaZ42cDHZl5IYaXleD8mzEY9iqpkb6uKwrKli+kz8mMmLt3CgbMxbNh7joQNRjIlB1bZyXsH5xdgxBpN4SAIAj/88ANJSUmkpqYyYcIETDo9yr8eNgpK4atsUrxcEOVrl0HQu96byWKk+8j/XkrwVt577z2++uorHA7H3XfWFGoZNgeTl0Xw/qzVbD58rqDDyTMb5m/l6ZKDebXx+/QrM4wrF+IKOiTNfdA63o+JEv5F6NQoDLNRj7vZiK+XO9/93zDiVQ8ckqtDripAhg4cri/JTMmOfENnXaPR/DceHh4sXbqUuLg4xowZQ9rly3QoWwFBAWQVQYYDWy+SlJZZ0KHmKVEUGbf+Q5ylUmn8XG0mRnxOWOOKeXqOevXqUblyZX7++ec8bVfzaFEUlYHjFzPv7/2s3XuK92atZv2+0wUd1n1zOpx8/dJ3OGxOrGk2kq+lMvXVHws6LM190Drej5H3n27ND6/1YuyADiz7tD/NG9WlXo0q6P5d3sugYhT11PMrh07QPiIaTV6oXLkyU6dOxWAw0K9fPxqYi+NzWY/7ZRHPcwKKVWHLkfMFHWae0xt07Lu6nVcnDKJczfuvanIro0ePZuzYsciyfPedNYVSXHI6568k4pCup1Mu3Xq4gKPKPVVVuXrxGteic1Y5OnroGE7n9WoqiqyQEJv0oMPT5CEtx/sxExYalGP7rV4tOHHpKteSMwBo/1Qp4n2KUM4ziMHl2xREiBpNodW3b18iIiJYsGABmzf+jclhQrFnPVXSC5iNhe+SfPbsWfz8/PDz88u3czRr1oyAgAAWL15M37598+08mofHzhMX+e6PHehFgWFdmhB16jA2ux1BdE2A1IkCvl6PxoRbWZb5qNtXHPjrMKoKzfs0okzHIKZPn87RI0dpVKwd9msSkkPCZDHR/qVWBR2y5j5oVU00yIrCteQMvD3MuBkNBR2ORlOoORwOGjRowJmz53jy9QlEJ6Rhs1qpUSGUWW/0xqAvXJUT5s+fz5IlS1i6dGm+nmf16tW8++67HDp0qNCvBPq4Ox19jRe/WoDNkVUbX5HI3LWYri8OZXNkKnqdDovJwE/vPE2gj2eBxakoKgf3XyAzw07Rcj6cTEuklLf3TdWLNvy6lQmDv8eW4Zp4LAsySlgqg98bQPfu3VGcCr98toToU7E06V6ftv2aa5/xR1jhG17R3DOdKBLkW3AXJ43mcWI0Glm+fDlVq1bl1G8TmfrzEp7q+BSL313zyHW6FUUlITUDD4vptjft+/bto06dOvkeS3h4OO+//z4rV66kU6dO+X4+TcHZdzoaRbk+ZqjX6/liyky6Na3O1aQ0EtMyKR3kV6BPkFRV5ZP3F7N/z3lUVDJVmYSn3JHMAkPq1mdE/UbZ+yZdTUF2Xk+Tsri5MertUbR5upnrByYYOK7fg34LmnyiJfBqNBrNAxYSEsKiRYs4c/o0m5YvQJ8Zz/xf5xV0WPckOd1Kn89/ptMHP9Lyje/4c8+pW+73oDregiDw/vvvM2bMGLQHuYVbcT8vdDcsK2nQGyjh7wNAoI8nlUMCCzxt6/TJWPbvPo/N6sRulRDtKvpjVqySxOTdO3HeMB+hbvua6LJuugUBdDodNVuGFVTomnymdbw1Go2mALRv355XXnmFzz//nNKlS7N+/fr/1E7k4Yv89csWIg9fzOMI7+zbZRFcjEvCIck4JJmPfv6TDNv1kn5xthTGHVvO5YY+uFd8MPXJu3XrjmwrSd/O3/DOyHnEXtYmoRVGzaqXoUODSuhEEZ0o0Lt5DepVLFnQYeXgdMoINxYuUEHM6murqpqjnGipyiX4asNHNO1en2a9GjFp+xiKBuffnAhNwdJyvDUajaaAKIpC1apViUuz4xFShW/GjqFTwyoYDbkbrfv7161MGDgdUSeiyAqjZgymzbPN8jlql8ETl7DnVFT2ttmoZ8mHL1Dcz4t0p42eW8eT7MhAQcUsGpjZcDAVvPK3A75w3nZmf78RWVIRRQEfPw/mLR2BTq+NMRVGVocTgYdzUrIkyQx7aRbRUYk4nTKyqBL7pBuij4FularwWSuteMHj6uH7tGo0Gs1jQhRFZvy6lOFTViDodHyzeDOrd53gh9d751jx8R+SU2LDrxEkx6XQ4Kk6fP/GXOzW66PM37/x0wPreD9ZtyJHzsdic0iosoS3m4VAHw8AjiRfwq44UXCN69gVJ39dOZLvHe9d284iS65zKopKepqN+GupBBYrkq/n1RSMh7kYgF6vY9KM/qxbdYiMDDsB1YpyTkklxLsIT5YtV9DhaQqQ1vHWPDRWnDrB/KOHCXB3590mzSnmqU341BR+a/ZfQDS4loC2OSVORMVx4WoiZYrlfNSsqiqjO37B8R2ncDokfv5kMTpDzsmYsvTg6lh3a1IVRVFZFnGIHZvWYzwZw7ajbXAzGcn0tJMpXb8h0As6ihjd8z2m0mX8OXksBucNE9WK+Ob/eTWaWzGbDXTuUTd7u3UBxqJ5eGgdb81DYe3Z07z79zpskoROENgdE8OmFwZg0msfUU3hZjLoEQT4J+lPVdVbVje5fO4Kx7adzB7hlp0yZWuUIvrMFayZViwWN579vx4PLG5BEOjZrDo9m1Xnifm/kFGzJW9MW4YjQCQjUALRGw//DAzuTlS7SnhgrXyPacArrTgfeY2jh6JQkShbRcJkenhHRTUazeNHS3zTPBRWnj6FTXLVZJVVlXSHg3NJiQUclUaT/15qXw9PNxMWkwFkJ6W9RUr635waoTfoc1TrEASB0GqlePuXocSYzvLJ8nfoMeqpBxk6AEsnrkQwVAKzGZuHQJqvjCKLKE4dqbGeKE4RR4rIJ7P/ylHJIT9Y3E2Mn/Y8qza9y+yFA/h14VSOHTuWr+fUaDSae6FNrnxEpFvtfLNkM2di4mlcJZRBHRui1xWe+6axEVuYc3A/DiXri1mSmdmkOa0aNCjYwDSa++SUZXYcv8iBMzGkZFipWDKAns2q5yiHlpRuZf+ZaOJjY3i1fx8OHz5MYGDgTW192X8KW5fsJCMjAw9PD6buHouxiJ5q1aoRFxf3IN9Wtr4lBxMV4Ia1TkmsgWAvCvyTni4oeARkYLwmohzzJCSgCD+9/TRe7uYHEtv06dOZO3cuERER6HSPVo10jUZTOGkd70fEy+MXceR8LE5JwWzQ06NZdd7o2bygw8oz6Q4HTy9dyNnEBFSgtc7I4g8/5oUXXqCMUoX1c7fg7mXhzdlDqdFcq2+qyX/pVjtTlm8jMjaBFtXL8nSrWve0WpyiqKz+Yz+TN+4myWFHyrrUmvQ6WtYqx/9e6nDL4959910uXLjAggULbnpNVVUObjzKZx98TuueLRj22itERUXRuHFjoqKibtFa/nuxwgguXU0ipWcN7D4imcHAP31cQcXbMwNhryfIAnqdQPumlXm18xMUteT/ct6KotC8eXP69OnD8OHD8/18Go1Gczdax/sRoCgq9YZP5Mb/qQAvC2vHDQZAVRLBugJQwdwZQfdo1v9UVZWrGekcPXeFsfM2kGGzY7h8Gf2y0+gU1ze52d3Ez5FTKeLvXcDRagq7F79awIlLcTglGbNRz4DwBgxoXz/Xx0/6ajV/bDlKYjE96HJ22EVBYOfkV2/51MpqtVK9enXGjx9/2xUYp0+fzs6dO5kzZw5nz57lySef5Ny5c/f2Bm8hJjqRuT9sxm5z0qNvA6rXKnXXY/b/fYSPuoxD8TaTVNyD9MYepJZwRyeA4bKMxeqa3KiIKumhKoJJQKcTeatRUwbUrnuX1u/fyZMneeKJJ9i/fz8lSz5ctZ41Gs3jp/DkKhRioijg7e52w09Uos6eoG7dukz+dgzS1Q6oaV+jpn2DmvCUqyP+CBIEAaOi48Mf15KYlondKWMtGoijUnD2Pjq9jujTsQUYpeZxYHU4OXrhCs6sKiE2h8Ta3SfvqY0/Vx7KUV3jRga9Dt0tygUCuLm5MWPGDIYNG0Zqauot92nevDmbN28G4GDcVfSVK3ItI+Oe4vu3lORMhg/4kU1/HWf71tO8//p8Tp+8+99a7dbVmHViIh/OeIU5PwzHunoh0e99gPDHXiwZZkAFVcVeVEUxgIyKQ5b5ekcEV9PT7yvm3KhUqRIjRoxg6NCh2oqWmoeOXZI4nRBPss1a0KFoHhCt4/2IGD+kEx5uRox6HUE+XqyZ9iHjxo3DotuJNTMBcAAOFDkdbP9tBbyHQVR8Mvobcl9lAdTiXtnbDruD4PLFCiI0zWPEpNdjvLGyiKoQ6Htv5S1NJj2GdBlRUkHJ+qeqCCj83zNt7pi20rJlS9q1a8fo0aNv+XqlSpXIzMzkzZXL+WD/bpwtnqD1zz9yJiHhnmK80bEj0SiKmt05dTgkdkacztWxASWL0qBjHSrULEe3bt3Qe/jiUaE+iDpAQFUV3DwMOb5x9KJI4gPqbLz77rucP3+exYsXP5DzaTS5EZWSQrM5M+mx6FcazfqeVWdOFXRImgdA63g/ImqWDWbDV6+weszLrPx8ACGBvrRu3ZqXXhqMu/v1XElrppX/ffE1U6ZM4cqVKznaUJUUVMdeVPnhHTEuFeCTYyldQZVJj41ENAq4+7pxxuM4X/6+kTemr2DLkcgCjFRTmImiwJcDn8Js1LtWxXPa8Ig7ek9tvPbuU5gNeopFy7jFWCmupCGf2oR6YBkdG1a+6/FfffUVS5cuZfv27Te9pigKtcu24vczZ7ArChiNZDgcjN8ZcU8x3sjH1x1FVrK3jUY9Pn4e99zOli1bsHj7oSoK/p7pPFn1NHXLXKG+fzBCVlUTvSji4+ZGWR/fXLWpOo+jXGuLHFuD0xdGEZkYe0+j10ajkR9++IFRo0aRmPhoPhHUFA7n0q6w5NJOdsaf4cNNf5FgzSTD6cQuy7y5bg2Soty9Ec0jTcvxfsSpqh01oSfI0a5tIZC1ewayYMEyVq5cSc2aNenTpw+9ulXDh1dxPfaVwOtzREvngg3+Ng6ei+GTn9aTZrXRrUk1OlQvzvjx45k3fz6lO49EMbghiDrMBj3jBnbkiWplCjpkTSFltTtJSs9EtWfQuFEjvv76a3r16pXr4+OupBAdnUhqWiw9e3XGbDaTmJhIdHQ0vr5373QuXryYjz76iAMHDmAymbJ//mX/Kfy5aicX3qmBarg+ftIytDSzOnfPVWyq8zBq2nhQnQgeQxFMTZg2cR3Ll+xGVVWq1wrliwnPYDDkrhpIutXOql0neO31N7BdOUeLft2ZM/RPBEAQVI5dqMzA8RL1+j9PkKcXrzVskqsJlqoqo8Y1RpKTeXlrOHvjiwE6moeWZ2qHzoj3MOF1xIgRZGZmMmvWrFwfo9HklZ3xZ3h7/y+oqAgIJJ/1JF26/vnVCSIHBg/Dw2jMVXuZkp2tcScRBYEnAiph1uXuOE3B0jrehYCqOsAeAahgaoIguEp12Ww21q5dy8KFCxn5/A7q1jByPYvDhBB4+J6qNBS0XUdOM3zaSmSux9y2dnnGDXzwtYs1j5+DBw/Srl071qxZQ506de75+O+++44xY8Zgt9uZMWMG3bp1u+sxqqrStWtXateuzUcffZT9s3BTXyRJIXZgRWzlvFD1AmaTkTldelA/uMTd25VjUOM7gpqZ9RMzgt8CBEMVxn4xnosXo5j23fhcXx+sDid9P/+ZK4lp2B0OVMnJvMFbqFQyMvuaY7erRFl/okKlRrlqMztWJRE1rhl/XCrJ6D3NyZRdC+JYDAa+bf8UrUrn/sY7LS2NsLAw5s6dS8uWLe8pDo3mfr2wfSonUmOyt62JJpwJnjhUFaNOR/XAIBb17JurtjIkO/22TybB7ponEWD24qdGw3HTa53vh52WalIICIIRwdwKwdw6u9MNYDab6dq1K/Pnz6dunQo3dLoBnID0oEO9L6VLFkd340qWiozF8OjcOGgebTVr1mT69Ol07dqVgyfOsPVIJDHxKbk+fsiQITRq1Bg/z/p8P3E/n45eQkpy5h2PEQSBqVOnMmXKFI4fP579M6ObCQEoNusU/vPOUeqzA1T+9DARH/+B0+G8ezCO/cCNfzsSOFwpLQajiptFuKeb8t0nLxGfkoFTVhB1egxmNzx9vHNecwSBoKD/UHFJKIIqeJJgMyOr12NyyjKLjx8lLiP3EzQ9PT2ZOnUqA4cM4e8zp9kedUl7tK8pMO6+Tj5q2ZpWoWV4oUYt5nTJ/cqzG64cJd6WhlV2YJUdxNlS2Rx3PB+j1eQV3ccff/xxQQeheRAEcOzG1dk2g6k1optrpHj78Qv8umE/l+KSqBQSkGNhj4eJu9mIQa/jwNkYjAY9ZlFm48zPeaJJY3yL+BF1Mga9UY/JTbvj1+SPypUrcy7RztS/T7P12EUWbjpI2eJFCQ26e9qIIAjEXnTj8iVANRITncj+3ZF07Fr7jsd5eXnh4eHBmDFj6N+/P4IgULxcELtW7UMVFAyXM9HZFOwZdi6djCEjJZO6T9a8czBqGliXk33zLZgRzF0QDBWIiIjAarXSrl27OzYhSRLbtm1j2rRpTPp+FpJXMILOdWOsyBIemV6ElToCCDiccOKcLw1bjMdisVCrVq1cL2gjCALL16ZQzLyDtfGVcKoiIKCoKheSk1h64hg9q4ThZsjd0vAhZcrwY2YqK86fY03kWTZfPE+3SlUe2uuepvAo7ubDhivHMAg6DKKevqGNGVClKZ0rVuaJkFAMt/ibiElN5a/IsyTbbJTw8nJdR2Jj+W7FPKLcrAh61+fWIIo08a9EeS+t+MDDTn/3XTSFgej+HKquKKp9C+grIFieBWDtnpN8+st6bA4Jk0HPzhOX+HZY1wKO9vZeaFeXjg0qk5ppIyTAhz9alaFr2x7UlJsiCiKKrPDBwtdp0PHeUwE0mtyIVIqCLp0MmwOAMb+up3nF8yCdB2NdBGOt2x67f89FdKKrgyhLCmdPX0GSZPT6O3dChwwZwrx585g+fTpDhw6lea9GVG5Ynl1/7WHigJkIWaPXDquDgxvuPglUMNZFtTyLlDYLQRDQWVqDOdwVlyzftlOckJDA2rVrWbVqFbu2RRIcVJPSZYKY9On/8dOeGM5ejgfAuDOa32ZdYG/5MtRrlcGTA3tTu+Uw/vzzCG+++SaTJ0/mq6++4qmnnrrtyLrqPAKO3dilIF59bSKNGzfGT9pDhd49OHz1Kgoqsqpic0psOB9JzypV7/q+AVacPonq5Ykky0hOJyfir7HxQiTtypbP1fEazX/VoGh55jYeysHEC5Sw+FG/aLk77n/46hWe+W1R9nZjrS6Q0AAAIABJREFUbx9Slq9k3bp19HiuL35li5OJEwEBb4M7zQJdk7ZPpMQw+9xGAF4u14oKXsXz701p7pmW4/2Y6zf2V45dvJq9rRNFNn49BA830x2Oeri8XOs1LhyKyu58WDzdWJY895HKX9c8Olq9+R3JGbbs7bfDd9K7wUlQnYAevMciut16VcrRby5g365zyLLrsutdxMKS1a/n6rzHjx+nefPmHDhwgBIlXHnciqLQxtgDneIaQzGY9LR+thlvzHwlV2327dOJZ5/py1Od+4B1Eap9O9did5JhNVK62kQw1OPo0aOsWrWKlStXcuTIEVq0aEHVSq04uCuTTEHBHmTE3cvMN+90J+ZqApcvXWFRv1kokiuFQ0XBt6IXs/dOwd3dHVVVWb16NW+99RZBQUF888031KqV82ZFtW1ATR4FyDicKr+tEfn4awe7du1i05VY3vtrLY6sry6LwcC41k/SsULFXL3nuYf2MzZiC/asCisWvYExrdvSpeLdK81oNPntfHIS0SkpVPYP4M31a9hy8cL1F2WZYQYLL/frh7e3N6lOK3/FuuZqtQ2qjofBTFRGAs9t/xar7Eo5c9MZ+bXJqwRbcldBSJP/tGdrjzmPrFzRfwiCguEWq+nllwk7t1Fp6kTCpn3Lz4cO/Kc2nOnO7E43gDXDhqLlbWryyTOtartKDAKCYqdH3YOgWnGlbdggffJtj3393Y6UCPFDFAVkxUbn3rmfGFilShWGDx+eYyEYURTxaWXAqbOjolK0SjHC+jfDmps8byAqOpEiviGoyW+gpn4B9nX4+6YSGhyP7crztHyiFB06dGDv3r20adOGsWPH0qBBA44eSMSqKqSUd8PmrSNBcPL8/36hX6+ufPXuSGT5+sJBAiLRF2IICQlhzpw5AHTs2JHDhw/Tu3dvwsPDefHFF4mOjs4+Rk2f6Ppd4sRokOjZ0c6KFb/h4+ODevoM1thYzDod7gYDFXyL0rbsnUcOb9S+bAXMej06QUBQFCSrlRalSuf6eI0mv/x65BAdf/2J4Wv+oOXcmZw8fz7H6waDgZcGDMDb2xunJHP2QgIVlFJ0Ca6Hh8E1v2vb1RM4pevzt1RVZU/C/a9qq8k7Wo73Y65ySABrdh/AoHMiCjCq3W6ql0pHMN457zS34q6msG3LKRITMige7JNjFHrjhUg+37IJuywjKQq7YqJoVqo0ge73VjvYmm7lxM4zyE4ZUS+QLF5DDbBTp04dbdRbk+dqlQumdJAvwX5edKhbjvI+v5EjM0MXiGB5+pbHWiwmOveoS69nGuETkMbnYz5g0KBBiLnML27UqBFjx44lICCAsLAwAPYd2cOyA4vxfqYriWUCiTh5idW7TtK5UVjORYBuYdy4cQwa+AI++i8Q/jXZ2m6XOXI8nchLbsiyTEpKCikpKej1ejJSTSSLOpxeehAFEASMJgOfvv820yd+xontp0mMTUKWZIxuBloMrE9c2hVmzJjBlClT0Ol01KtXj4YNGzJo0CAOHTrEyy+/THp6OvXr1yc2cykHrDKJsoEAnQNR0OEf+iHr1q1nQP/+LP3kczrVrUenCpUZ2aARxlzmiwN4GI10rlgJL5OJuoHF2PW/sZQKCKRq1dylqmg0+UFWFHovWYhDlnHIMk5FQc60ojObEAUBs07Pk2XL061yFawOJ/3GzWfR5kP8seM4hyMvo0uJZuzYsUyfPwdL7VKQnfutp1NwHULci950zuR0K4qiYrjLdUKTt7RUk8ecqjpIvlCP01d8CfRKJ8QvBXRlEP3X3nfb58/FMXLwnOzRuabNK/HOh12yX5+xbw9f74jIripgMRj4vGUbulaqco/vQWXVjPXsWXuQ0tVDqN2tCi8PehkfHx9mzpxJalQmx3ecplSVEtQPv33+rUbzXyTFjMfg+A5RZ0CRnViN3+AffPca+aqq0qZNG7p3786wYcNQVRWHzYHpLmleO3bsoEePHhw9ehRfX19GjRrFrtOx2EvUAZ0rf9xs0PNGr+b0eKL6bdvJyMjA39+fcmVD2bXKicmY8yZVxQ3RZyqCqSmy6iTNGYdF78v5M5d4qmNPipfrRVqIB+hcx7mZDHz4bFuerFcRySmx+oe/ibt0jYad6lK1SSUAYmNjeeutt1i0aBGCINC1a1defPFFylatzenzUfz6w2QuO3bS/aNSqKKCDoUg0UG3Yn3YsrcqvXv3ZtmyZTRp0uSuv9/c2rdvH+Hh4ezatYvSpV0j36kZNlbsOIZTlgmvV5mYs9f4fvJfKLLCCwOb80RLLS1Fk7fskkTYd9/mWECugq8fk8KfIuLSRYp5eNC+XAVEQWDR5kNMWLoFu9N1s6w47ejPb6NveHN69urFjKTtbIk7AUCrwKp8Ur1XjkEoSVZ4a8YfbDt2AYCXwxswqGPDB/dmH3Nax/sxdy0jnTdXfciZFG8a+F/ms7oRWNxqIPr9et9tf/L2AiKW7XFt+HhhcDMyZ+FQAgK9AdgdE03/5UuxZj0WE2SZmsVLIKsK/WvVua+cS0mSGDduHHPHzaeMIwxBFdAb9fR8vRMvfNLnvt+bRnOjqPOrGfv5K2CoxoUolZUrV+bqacuRI0do3bo165f9zRd9ppAUm0RAKX++XP8hxcoE3va44cOHY7VamTVrFoMGDULyCmZ/sgnR4Oq0Gw06RnVvRt8WOaub2O12fvrpJ6b9MJuUIhUwevni4Uhg8igf6lf5GwEFV6lRESz9EDzfJ9kZw+KLo5AUG7IiM2fkMS4dsFK3XgMCG/XiZFwKgiBQr2JJJrzSOVfVQVJTU3nnnXf46aefKNGwA25l6qHXiZhNRvr1P4DNHIXTqePU4VLYMk20CWjNWwMHsWjRIlq0aJHdjqqqefJUa+LEicyfP5+IiAicskqvz34iITUTWVGxKCIeJzNw2F3XKZNJz9dT+1GpSvB9n1ejudHItatYH3kWmyRh1uv5rGUbelQOu2m/OX/uYeqK7chZg1Zmo47PXgynda3rE4TjbK5SpwFm75uOX7r1MN8s2YzNIWUdr2f2m32oWDIgP96W5l+0jvdjrsuCXzhx7SqSCkZRIrxkNOM7jkTQ5z5n8lYy06z0KfUKtlSr6wdGA1Qrx+sfNiO8Y6vs/ZaeOMakXdsRgOjERFSdDgQBs17P1A6daBl6f6tS9ik5kMSY5Oxtg8nAauv931RoNP927NgxWrVqhbu7Ox988AH9+/fP1XHDhg3jwvwEHMlZedEC+IUGMm33WHxvs2R7amoqVcOq8mqPN/n75wiKhgZwpFogGM3odDq8PdxY/MHz+Hm5I0kSc+fOZdq0aRw6dAhBEKne7//A5ImK60t3aKfGPNvCD1WKQVKLY7VbsNnBarWy2foFyUSC4PqqsGco1EkZTetWrVFVldjEVGRFpURR73vuBO8/fIyXp60FIauzrig0a7eJkIpWVi9qSnKiB4osokgSw1pXYGBfV8WlhNQMXp26jFNR1yju58WkYV0pfYuSjqqSBvJ50JVAEG9+/UpiGudiEygd6MPg/s9RpUoVnnx6IB/MXoM1q1PilizjEWNHkVzvX2/QMWBIS3o+rY0QavKWrCgsOn6Uc4kJNA0JpUXoreceRF1L5un//YLV5nTN8/Aws/SjF/C0mG+5/79NWb6NH9fuzt52NxsZ81I4zbRVoB8IrZzgAyYrCgIColjwuceqqnLsWhxK1q2XQ9GzKz7svjvdAFuW7ESxO+GfSY5e7iDq+ObzCL4Zu5h3PuhOhZKV2TpoPqGxyZTv34BFPmYyska/bZLEhsjI++54u1ncgOsd74fh964pnMLCwli9ejVt27bltddeo23bttnVR24nLS2Nhg0bcuK739GRlWepQnxUPD07foFq3k2x4v4UK1aMIhZf1EQdJcsGU69dLQZ2GsaayZsQVR2XnYlYw4sBCjqdSL/W1fjjt8VMnTqVAwcOIAgCYWFhjBgxAk+/AFZFG/lnxMXmkPji+3kM6ToDq9WKIAi4ubll/xswpzTexa5/VZjddbSs3QJw1dgu7nfziFpuFStREpPRgN2ZddMhikQfqYe71z5SktxRZNfvRNQbWLHrFGLGLIoWLcrCQ/GcuZKGoqrExKcwctoyVnz6Uo62VedR1MTnszZk8JmEYGqR/fr24xd48/s/0OtEnJJC32eH8cmIF1i74zBUaI4u6+mBQycjSzJCVi0CvU6kRMh/WAhIo7kLnSjydNXbp4f9o6R/Eea9+yy/RxzBaNDRp0XNXHe6AfTeIqrgupdWUbE6nYSVuv0TNk3e0jreD4iqqoxfspkFmw4iCAKvdGpE/yfrF2hMgiAQ7OlFVKrrkZReEKjg558nbauKcn30y2xCLRWMIAgICKhSIMOHfE5wlC862fURjJryJxlvVgODa9us0xPq43PfcQz55gU+7zseURRRFIWXv3j2vtvUaG6nTp06LF++nPbh4YSPfo8aXTpTsWhR3mjUFIvBgKqqHDlyhLVr17J27Vr27NlDgwYNMPp7I8VnDSoLAoK3JxY3D9p3eZkrahqbziRjv2zHsuschkt7mPHZbBwZEr6q68syoV0wTl8j6EWcwKQ9EUR/+gVmRcFisSDLMrIsc/78eUIFEZ1YgqwBXPSiSJs2zfi/WR/j5uaG4V8L0ey4Nof9iYuRVDs6wUiwWzVEIW8mYwX5eFI5JJDjl67icMro9BB95iJ/zztM2bbNsvdTFZnD+/ex85eN+Pj44N70eQSTu+s14HJ86k1tqynvg3p9VUs1+S2EwD3Z22Pm/Z39qB1gzqbjhHZ7g3NrZ1EyqDKCVwA6nQ6fYp4826ohC+ZsQ1XhqW51aND4/gcnNJr7USrQh1E9mt19x1vYEH+RjGAFc4KAKoI1SAX9fxuUmnd+K/MuROCmM/JOWBfq+2l/G3ejpZo8IJsPneP9H1dnP740G/VMH9mT6mUKdpWps4kJDFjxOzFpqVTxD2BW5274W9zvu9305AwGVn+DtMQ0ZE8P5FLBqDfkfkZH7yQoWo+e61/yngNqcqyGBRVoWrIU05/qck/VCm7n4oloTu85R0jlYCrW0y4Kmvw37Oc5rLoSi2gyYhR1lNTrCdlzgLVr12IymQgPDyc8PJwWLVrg4eFBSkIKncr3x2S3gIc7hAZj9jDxzIiWTN6463oH0SlT5LfDmK1OOg5uy8rv1yPZJWL7VyCzxvVUClGSGVzEj8YVK1G2bFkCAwNzpIFsPRLJOzNXIckKpYN8+X5UT4p4uN3yvaiqwoGk37iYvgc/U2ka+b+IQcz96Nrd2J0SCzcd5ERcHCtTziLLMjang8Az6VglD4x6PQIK9n2/89kH77Fr1y7WnElH9iqOqDeAqhDq78WSTwYgiiKSrDBj1U56VhlBUY+0G86kJ1Zez8aNG9mwYQP7KYtostwUjzMzlbQtc5g0eyG+fkWpW7EkbkYDiqKiqiq6B1huVaPJD4P+WMaGC5HZEzkNosiBwcOx3GH1V1W1uRYJEwMQdK4nPpuuHufDwwuxZdUMN+sMLH7idQJvkVeuuU7reD8gs1fvYtb/liAkWXGE+mIoH8B7T7emY4OHY3Z8Xk1SulFaUjpbl+wkPdPBT8uPYLe5/jhNZgNvvdeRr7p9gT3Ttfqf0Wyg+6ineO7T3jhkGU/To7OAj0bzby3nzuJiyvUUJ1SVEYKBju3DKV++/C3/1lavWsuqRfNp3jiDmFgT+4+G0WZQO6at2IZTzkrZckh4RJzH/VIStQaXI2LmPgyZbmSEFeHqC+URjAZEVaVkER/WPffiLZeg/ockK2TYHHhZTA9F2c0+Sxaw93JMdgqMWa9nUo0m/Pjzr6z77VeCgwIwGAxs3rwZncHEh7NXs/nASZwpcdiOb+Ta5Uu0atUKc4XGHE+QGdBsH883OYibUcJuF1j1t5MXX40jODgYT09PpMDKULwqot6YIw6DTsR0eCnh4eG89957D/4XodHks8ikRHoumo+sKjgVhTcaNmFA7bq33V+VLqEm9gHVBqoEXp+TZG3KBxE/sdd0LXs/d72JMTX60tg/d4tZPa60VJMHZP9XqzDvuoQgK5jOXMMuK1QrHVTQYWXLjy9eTx8POgxsA0Dl5lWZMn4tNquT3s81onnbqrgtfpMxT0/Amm6jRsuqPPdBD0x6PSa99rHUPNqCPDyISk3JHlHyMJkYNXj4Hf/OwlsbaVF1J0ajiqIY2RixA9GnK3qd7nrHWxAQUtJJVK+S4vSlynMh/Lb4d3wdPnhtSyA9pARhoaHM6f3MHTvd1gwbMWdiCShZFME970av70ei1cqNo0AOWaZ5w1q0bVKXKx+/zaRJk5gwYQLlypVjxYoVfDWkCyv+9OTjb2fz6eTZ1C5VhO+mTGbthXiMnn78sKUuV1M9qF8mil3rj7FpZ0mefbYtoaGhhISEEBISQnSmjj/2RnIuNgGnrGAy6GlWvQzD35lH3bp1ad68OY0bNy6w34nm8bHmx7/5c/ZGigb7MuSbFyganH/zCMr4+LLpxZc5cS2OQA8PQovcOa1TTf0UlCTAdR1yxL9F+ZpXqP1iZ3RtQpCzHgJJikIp97xJVy3MtBHvByAjJYMeAQOQnddXcwuuWpI5h8ff9VhVVUG5BqIXgvBwfEHmJVVVURQFXR6klGg0D4sLyUn0WbKQpIwMFFVhdrdePFEq9I7HKAnPgHNv9rZTEhgzvT1RYhkOXXWiKAqGEycp7kxjzMyPGDhoIG5ubsyePRtJknhrZBNGDHDDbPGhYauFCIbytzzP+aOXeKPFR8hOV9736Pmv0ajT7Ue7HpTZB/YxLmIzDlXFrNfTuEQIMzt3y7FPUlISLVu25OTJkzRpE05m6RbY7E5MJgNSehInl04guFU/3INKZ1dKKeJuZsPXr9z2vLKiMO/v/ew9FUWV0CAGtK+PQa9jxYoVvPrqqxw4cACfPJhvotEAKKrCkeQoHIpEDZ9SGEU9f/2ymYlDfsCeaUfUifgV92HumckYjLdP/XiQlPiuIB2/vq2KKL7bMRh9mHhqNb9d2oVRNPBeWBfaFLv75NDHndbxfgAcdiddvJ9HysrTFASo064GX6z5vzsepyrJqInPgnQREMB7LKJbxwcQ8cNpw7qjLF2wCw9PM0NebUvpslrNUc3DyyHLRBw4wEt9+3L+zJmbRrtVVQXbSlTncQRjTdTMxeDYClnjvk4JilY6R7snXYvMrFq9muSkJE6cOEFMTAwfffQRw4YNQxRFVMchHHF9MehlFEVFUd0wBG1A0N28Wt3IJqM5sfM0/1z5LZ5uLEueW+DpJqqq0n30e6QX9aPrE08wsHa9W87xcDqddO3alVhDcdSgSghZHWzFaefJUAMvPt2LN39cT0JqBka9jm+Hd6Vm2f9Wc3vEyJHs1QsUqV2Lsr6+fNK8NX6Wm/PCNZrckFWF1/bN5VDSRQQEAs3efFerP6PbfcbZnRez9zN7mJmy6wtKVb5zVaQHRcmYD2ljAStgAkN1RL95BR3WI0vreD8gK6at5fu3fsZg1COIApO2jSGk0p2/DJSUD8D6G64FLQBMCAE7EMR7W1K9MNi94yyfvr8Eu11CEMDibuKnJcPx8rr1hDDNvYu/lkZMdCIhpfzw8X38PmP5QVVVSpQowaZNmyhfPucItJL6JWTOA6yomDl1qSYli+5GkiQMBoFNuysyb0sVIhV/zBZ3agWZmPHRCARB4MCBA1SoUOF6W2mTUTOmIGR12lPTVBzmTwgo+cxNMT1fbjixkVezt0WdyGrbrwX+1ElVVcqVK8fvv/9O9ep3HjWz2Wy0ev51bL5ls0e2zQYd37/Wi2qli6EoKimZNjzdTOjvYzLkF1s28sOe3WDQYxBFyvn6seqZ5/9ze5rH2674M7x9YB5W2TW3CadM7NytlNnuhemaJ2rWQ3GD2cCCqO/x8vMsuGD/RclcAfb1oC+N4PEKgqB99/5X2vTsB6Tz0PbMPDKeT5a9zc/npt610w2AfInrnW6w2R3MnT2Rs2fPAhB3NYVXB86mS9uveHfUPFL/WaymENq9/Sz2rJXjVBVQIfLM1TsfpMm1XdvP8mKfqXz09iKe7zmVg/suFHRIhYIgCLRr147169ff9Jqa+SuuESQQsBHovYc1u0dh9P+W8yljGfz+Wc6LwTjRk5ZpZ9PpeIqUrgZwUyde0AUicH1Cstms5423vsJqvfmaED6gFf9UAzS6GWn4VJ0C73QDnD59GofDQbVq1e66r9lsZsGkT0ByYBAlzAYn5f0iKeXlujaKooCPh9t9dboBNly8kF3i1KkonEqIx+p03vkgjeY2MmUHAtefLIl6HR989jGrTyylbPXSGEwGDCYDo6YPeqg63QCipTOiz2REz9e1Tvd90jreD1CxMoHUaB6GR5FcluszdwRcH3AVHZLiQ8SOczRr1ozy5cvz0jPjOXk8hswMO4f2X+TLz1bkX/D55GjECRZ/8wd71x26437FS/piNF7vHDgcEv6BXvkd3mNBVVX+98nv2G0SGRl2bDYn479YWdBhFRpt27Zl3bp1ACiKwubNmxk0aBCJiek59vPxLUbvvkNw9+lAtZo9eLJrH5wOR/brot5Ig1YdQNQTE/uvm0637mBqCBiRJIGdhyrgpCJDhw7l3w81a3SpxCXzKRp0qk3fd7oyesFr+fK+79WqVavo0KFDrlNeQor5s+qTunzY+W++7rOWWYNWo0t7GckenWcxlfHxQX9DPBa9HrM2+VvzH9XzK4u73oheEBEQcNOb6FiqLu7e7kzbO45fzk/lt4TZtHu+RUGHqslHWqrJQ0xVVdTM+WBbAbriCJ7vIej8UVWVQ4cO8fawldz4v+fj686ilQ/Hl2hurJ29gSkjZiFLMnqDnqff68Yz7/cAXO9901/HOX40msphwTRoUo6+nSdhs7o6IgaDnulzBxISenMOq+beTF+5gyVj/0ZQrv/My9uNpWveKLigCpG4uDjKlSvH4MGDWbhwIT4+Pjz77LP0fyYYP/04EAygSgg+UxFMTbOPOxt9lV6fzkXQuSZYKZIDf4tIvE1Ap9PzQru6jOjaNMe5VDmemMtx1Kj5BBEREfTu3ZuhQ4fyyivXJxf26dOH2rVr88477zyYX0AutWnThhEjRtClS5dcH6OkfYuaMTU7xSYjU+CXFdUYMnJxnuSsX8vI4NnfF3EhORlBkvCN2MmW+QtuWmRIo8mtJEc6Sy/t4v/ZO+/oKMouDj8zO9vSOyShJKH3XqWjdAJIU4qIFAVBPywICooI2FBEBQSpIgjSEZAuvYP0EkISEiAhvW2ybWa+PzYkRCJNFMs+53A4OzvzltnNzn3ve+/vWhU7nYPrUtLVWQX1v4bT8P4H8+Jzc4iJSkJRVCRJpHb9MCZPfeZxD+u+6VN6GElxyfmvJb3EZ8fHExISwoolR1n5wyHMZht6g5b6jUI5vD8Sq/WWrBr06tOIIS+3fkyj/3uQY7ayat8ZMk1m2tatQNngB1+ItH7zGyyX0jGk2B0lhAWQucKKdZ/i5+dc2DwssbGxLF26lCVLlnDp0iV69+7NW2+9RdWqVfPPUe1xIEeBVB5Bc2cxredefYdf07T4+PlTKciTw5duIEgOo8+ok5jxytNFJg5OmDCBixcvMmnSJBo3bszatWtp1KgRp0+fpn379ly+fBlX1z9eKOtRkZWVRVBQEPHx8bi53X9+gZq7DjXzXVAdITW5ZnhmGLR48kVef/3RLBxVVSXbasWg0dAlPJxy5coxffr0R9K2EydO/ns498z+QVyKSyQ+NYsqIcXw93Tjg0968/47K4m7mkLFykG89e79e4r+Dvy2ApzdbqNbt25cvXqVRjXeQNI45BMtZhu7tp9F1IgIeV9ZjSii1/+3v742WWbAJ8uIS0rHZpdZsvME89/oTcWSD6b24qLXkRakQzaISDkKsotKNW89DRs2ZMOGDVSsWPFPmsE/m7OnYlm36hguLnr6DmxCQDFPUlNTWbFiBUuWLOH8+fP06NGDmTNnsn79etzc3AoZ3QCCVBKkkkW2b7Va2bVmMU2bNkVNiKBRu9c4Hp2MrKj575+5FE2OTiYhO4v6wSUo4eGoGDd69GgqVKjAzZs3mTd/Pi98MBv3sCModhs9Xhr9tzK6d5++wpotu6ndOpwcKZ4cM/jry+SrldwVQ2ewHoLcNYDIiYhG7D+8hv2HJxMaGsrTTz/9h8cnCEJ+Qa+lS5dSr149atWqxfPPP/+H23bixMl/D6fH+x/C/M1HmLvpMBqNiKqqfPtaTyqVKva4h/WH2L/2CB/2m44giqiKwotTn6PzS21RFIVnu3xBakpO/rk+fm5UqBTEr8eiEQQBVzc93ywcgqfXf1fa60x0PMOmryLHUpDs1aNpdd7u82C7AEcuxjJq1no0GgG7XaG2RzbLvvmMGjVqcPr0aX744QeatmhBXGYGfi4ueBmciTWXzt/g9RHfYTHbEUUBnV5EcDnC7j07adeuHX379qVdu3bodI6qiNu2bWPChAns37//vvuYN28eP/74I2vWrKFGjRq8MPINfjybkR96IqJwM/MU+rpV0Wq1aEQNS7v3onoxR2GuJUuWMG3aNN79ciEfLN6KnJfUpddKLB/Xn1IBXo/4rjw4C7YcYe6mI+RarGgkhRr1Y6jdIIZixgp0K/kJonB/SZ+qagU0CIKG06dP06VLF+Lj4/n5559p2bLlIx3zuXPnaNGiBZs2baJevXqPtG0nTpz8+3Ea3v8AkjNMtBv7bX4VPIC65UswZ1TPxziqR0PMuTguH4+idJUSlK9TJv/40UNXeP/tlUgaEbusMH5Sd+o1LMOZk1fJybFSo1ZpXFz/22XlL19PZsAnP2DO04dXZZmy7ja+HT8ML68HM6qSM0xEJ6RSupg3AV5uJCUlMWXKFObNmwfu7pQe/RqqTousKHzUui1dKlb6M6b0QPy0/yxfrN2HrCgMat+A/k/W+Uv6VVWVjz5Ywc4Ru+GXAAAgAElEQVTNEbcdtdO6YyDDRz6Lh8edSb+5ubkEBARw7do1PD09i2z3yPVrTNm3G5ss83Ld+rzasTPz5s2jWbNmLFu2jH79+jFszAdkeYai1Wh4oWN9BmxbjV0pCM4vp9Xx06AX0el0qKpK48aNqdK+PyfiLfnnuBl0fDioA09UDX2wedujQckEbUUE4dH87bV6YxbpJnP+a53exrMvbUUrGGkd+BoVPB7OaDaZTHTt2pVffvmFBfOWEVS8AqVC/ChX4c5wnodhzZo1vPrqqxw9epRixf7ZDhAnTpz8tfy39+r/AaRl5fDslO8LGd0AudZ/h6RVSJWShFS5c6u9XsMyLFg2jKvRSZQK8SOgmMNYqVE75C8e4d+XskG+tK5Zjp0nIx1eV42ALvkE5cqV49VXX+WVV17Bw8ODONNJMm0JBLlUxVtXdEEGP09X/DwLwg/8/f2ZNm0ar7zyCl3nzSFTVRDyZNTe2rGFdmXLoX9M6g7XLsfzxpPvkxyXguqhJ7tjFWb9dIBywX40rFT6odu9EHuTGesOYLXbGdS+AQ0qlgIcSiTnz59n9+7d+f8C/erh71mfW8JQeoORHj26FGl0Z6Vlc2jDcRqGNmXHth083ePO8Ie4jAwGrltFrt2xiBq1eSM+VSrTrFkzIiIiGD16NE80aUpkfCplilekRlggZUr48tv0wbgbNwgNDWX48OEMHTqUL774gmeGvUFgk16YbY62ZUWlfIkHK+usZH4KOYtB0IDoDb4rEUSfe16XmpnD6LkbuBSXRLlgPz4Z0qnQ90yrLezRFjWORYSKglU2PdAYb8fV1ZVt27bxTI/hLJh5Gp3uIpIkMWREa7p0/+Ne6m7dunHy5El69OjBjh078nc2nDhx4uReOD3ef3Pm/XyY2RsPYZcLvFpajcjHQzrRokaZu1zp5L+AqqqciU4g22yhRlgQrgYdERERfPDBB2zZsoXRczthrHATIU/3oWvJDwl2ubdO8u10XfY9pxML5OskQeDw4GF4Gx9PyMnQGq8TfTYOVBVVALuvKzm9ajE8vDHPt3k4o+pmWhbd31+UH7ajk0TaloSzh/ewZ88ePDw8aN68ef6/4sWDeW3Yd8RdTUZRVDp2qcXwUW3vaDcjOZOhNd4gJzMHm82G5CGy5tp3d5SCXn/pAu/s3Ibplka0LNO1WBCDa9bmqaeeYuLEicRJQazbdwZB0qLXSrStW56MYnY2X44g12LBaDCwsEt3jKlpfPnll6xatYru3buTkJCAa8m6xFndsGTl0DbAjw+mv3jf2t2qPRY1uSNwy2sugUt/RI+x97x2yLQVnLpyA7usoBEFqoYUZ8GbBQngu05d4a1vf8JusyLqRJ548ldCKySiE13oFzoXd+29Fwjp1htsuD6BDOsNAo2V6BD8LgaNQwN5YO+ZXItLzT9Xp5fY+MuY+5r3vVAUha5du1KiRAlmzpz5SNp08u/HImezNf5jbuSex1cXQvvgt3GV/h7KJqqSBXI8aEpgU/WM2rKJbVGRuOv0TG/XkSalHt6x4aQAp4733xy7rBTS4dVqREZ2beI0up0AjsSv6mGBNK4cgqvB4XUrX748ixcvZufubWjKxGJXLdhUM3bVzIGkeQ/cR88q1TDmebc1gCXuGjOnTcOe5539q4mPusktHU1BBU2mGUkU/1DOw6+R1wu9tlhtnIiMp1u3bpw4cYIrV64wf/58BgwYQEhICAaDlq/mDuTreS8w/4eXijS6AbZ9t5us1CzMJguyVcGcbGVKn+kk3qbmA1Da06vQrpZqlynl6Unr1q356KOPGDRoEL+cjs5XNLHY7Gw/cZnP2nTgueLBWHfu5n/FS9CgREmqV6/O3LlziYiIICQkhGNHj3Fj9lHcFh7GZ+UZTszdzQ9TVhfqf0fUFT7Y8wvLz56+Y3cNNRMKxVrbQUnlfrgUl5jvNJAVlYhrhefdokYZ2gRaqaxPp4b+CsURqeHdhWdCZtyX0Q2wLm4sKZZo7KqZ6zln2B7/WcFI7Uqhc825Zj7YtpBW29+n1faJrLh68L76KApRFB1/Zzt3Mnfu3Idux8k/D7PVzv5zMRyLiENWlHtfcBtb4z/lavYxzHIGN3LPsv7a+D9plA+GatmPmtQENbU3alIzfjy5gl9iorArCmnmXF7csI5Mi+XeDTm5J07D+29O50ZVcNHr0EoaDFqJUgHe9Gpe43EPy8k/gAoVyiP9xqsZEXGJAwcO3FFU5W48W6UaYxo1o2XpUJ6vVYctL77Mnt27adiwIWfOnHnUw74n1ZpWRtI5FgKqKGAPdKeKhzU/NORhKObtXsjgdDEYGD74efr160fJkkWrjmg0IqVD/SkW+Pvx9KqiQqFbLbBvzWGG1X6T9KSM/KM1igcyol5DJFEERcF4NZY3uz7NxIkT6d+/P99H7yVbLBx64eVmRBQEKmv1lMuIxDVji0OeMA9/f3/GjRvHySOnMIjGfM1/2aqwcvY6lixZwqlTp1h44hivbN7AgpMnmLjnF8bu2FJ4ElJ5EItREN1mQHDp9btzvp0KJQO4dQM0okD5EnfKU8ZcPEOdsABWzVvGC40+o0WxEb8bEvVbVFUh3XYjvw8FO4nmgtj7/oOaoTdo0UgiWq1IquYS60znyLZbyLab+SpiM6fTYu+rr6Lw9PRk3bp1vP322xw8+PBGvJN/Dlm5FnpP+o4xczfw6sx1jPhqTSHjW1EUFk34kf5lXubVJuO4esFR0ElVVU6fPs2VlKPIeRWpVWSSzVceyzx+i5r+mkOWUzWhKpnU1n2O+TbniihAQnbWYxzhvwen4f03J8jXg+Xj+jOyaxNe69mc7956Fp3WGZrv5N5oRSOVvdqhFQxoBC0adBhvOGTQatSowaxZs8jMzCx0jaqqqGrBQyQ1M4eeHyzm63l7uLjzBi19Q6hYpgybN29m2LBhtGrVikmTJmH7C8tov7PsfzTt3pDAMsVQfHOo3dmd7Uu+Rpblh26zVtlgejarjqQR0WpEmlQLpW3dCn94rK37NcXF0wVNXiyzgAAqWC02jm0pqNaanWXG+6KdHrHuSLOWkfzjKsLDw/n888/ZH3GS2Ze3I9bOAkkBSUVVbXSp4sOWjac4/stmfv5eokuLfajJHVHNO1Ctx1BzN6DK8fgG+mB0LQgLkpGRvETWrVvHs88+y7trC2LLc+12Vl84X8iQEAQdVzM/ZtZCM6q+O4LPfATd/YX0vNiqEubEWIw6LVVDA/l0aOc7zjl9+jTnz5+nV69eBAQ8mBSmIIj46Eo6xOcBUdBS3FiQ+NumQ3U+/PxZBg5twXtTevLa/KFopILFqN1m59zNOK7FpWK1PNwOToUKFZg/fz49e/bkxo0bD9WGk38O6w+c42ZaNiazjVyLjTPR8RyLKKiWun7GZlZOXU9CdCLnD15ieIPRPNPrGYoXL0737t0xJWhAcXxfBQS8dEUv7P9y1AKjWhCguJsdvVhgIkqiSEmPohPDnTwYzhhvJ07+xaiqSnT2QTJtNwl2qYG/IQxVVdm5cyfffPMN27dvp1evXgwbNgyhdAx7E2ejqArVvTvTPOBlXvtmPXvPROd7g406Lbs/H46Up8EeFxfH0KFDuXnzJgsXLqR69ep/6fwuXrxIkyZNKFmyJBMmTHigqodFkZVrQZYVvNweXfx6WmIG345ezC/L9mPPU6AxuhkY8/0rNA6vh8ViY2i/OSQlZmK12lEUG88Pq85zz/fgiy++4Outywh+tS25qg3VDuRqaOISxE+vzKJCqT7M/2oZ/n45t/V4a+wiCCqCz/ecPiDwdqfJWExWbC65XDKc4ODRA4SGhtJxySIupBSEgBgkiXPDXilU+XHKlClcv36dGTNmPNDce/fuTY0aNXj77bfveE9VVVbuOcWYKdNQspLZOG8qlSs9uFpOpu0mS86+hkm9SfmARrQNHINeU7RO+dn0OIYfmYtZcSwUxUgF16V6dJIOo1HP1Bn9CSv7cCFLH3zwAZs3HaJJ/WfRG3Q8P6T5Q7fl5O/L1+v2s3DLEfLk9HHRa5kyqAPNqoWRnp7O60++R+yJggWYIEH7d5vydP8ulC5dmhx7GhuuTyDRHIGXrgSdg9/HUxf0mGZTgJL2P7DswJHLYQSXfkw904C1Fy/g6+LCJ0+1o5LfgyVlOykap+HtxMl/mPj4eObNm8ea7QvpM700kt5hbEmCgfpuoxg+5Ux+wRYASSOy7eMX8XQ15B9TVZWFCxcyevRoRo4cydixY//0kto5ZisajYheKzFp0iRWrlyJr68vO3bs+FP7fVisFhuvt3iP6DNXMeXkULZ2CN8cnopGo+HEsWjeH7OCnBxr/vnP9G/MoGGtAPh26SLmuZ9B0WoBAb1g5/PaPfjylaXcjPNm+fyVeHrcJfZS1wTRZz6qqtLkiSZUqVqFgwcPkpGRwfbt2zG5u9F/7UpUWSbXauWTdh3pUblwoZ9q1aoxc+ZMmjZtet9zPn78OJ07d/7dKpmzfjrAd1uPYrErCIpMx0ZVmfh8u/tu/xaKovDZpGlERF3i24Vz7nn+xuvHmRmxDVVVsX9gRbU4POCqquLpI7Fk1SgMBsM9WrmTy5fiGT7wW0BEEMBo1DHvh2H4+bs/cFtO/p6kZubQfeIiMkxmVFVFEAS8XXQ0ck1i5/atnDlzhob+LRGvGVDsjt9NvYue5Tfm4Orx9645oapWVNMcsJ0FXWMEl373V8TKyQPjvKtOnPyHCQwMZNy4cSxd+y1aqUASzSabWbzhAJ1qnGN851/oUus8oGDJSufU8SOF2hAEgYEDB/Lrr79y6NAh6tevzzfjF9DVewDhnv354aM1j2y8WTkWRn69mmavzaTpqBl8u+kQo0ePxm63c/z4cc6dO/fI+nqU6PRavtj7AZ9sfw97tTTWxnxPVpZja9dg0KLcvriRRIwuBZ/F4GefZV7l/dR1S6SSMZV3go8QmjmNCR+8iWxXWLuhIrlmh/Eoyzru+FlXHd5dQRD4YvoXrF+/nqtXr/LWW2/RsmVLdKlp/DJgELM6dUVYspySWQWx5OlWExtO7CHDbOKJJ554oDmPHTuW8ePH/26VzLX7z2LJS35URQ1bjl16oPYBTJk5DKszmu2TDnN1STorp2245zUdg+uwseUYNrUai6QU3GdBEMhMz6VMmTJMmzYNk8lxH87GJLD+4Dkiryf/XpMAHD8chai5ZcQ7os7PnY676zVO/v7EJqbx/KfLaD/2W0Z/uwGT2bHIFQQBRbaTenI7NksuEydOJCkpiY3nV1K3TS0EUcDVy4X3Vr7+tze6wRFSJrqNQPT+BtH1OafR/SeimTBhwoTHPQgnTpw8XrSigbOZG1BwhEIIiobKOZE83/wCVUskUj/0Ou4GCzk3ffjk/beRbak0qrIesr9AtUeCvjGenj706dOHnJsW1n6wFbtFxm61c+FQBOXrliGoTPE/NMYz0fH0mrSY6IQ0VEBRVc7GJNCkWhnatmrGokWLSE9Pp2vXro/gjjx6RFHEv4QvPoFebN26lcNbj5F0NJPk6JtkKVaSk7NxcTXi4+PGa2M6otfn7RqomfjZZtHBJ5quftGUcckiOfkGJf2PEVI6l6/nFCf6qjtx8TkUC3sZdzd3zDlRCIKAKOoRPN93lKYHgoODOXv2LCkpKXTo0IE2bdrQr18/wtu3p0HFSlgzM9m0aRNdu3ZlX+JFBh+aza70CDzaVqFZUBX89Hf33l5KSeaVnzcwfe8uYqKjWfDxJ3fIFqanmdi3+xJHYm6QbSnw8ru76B9YDvK7Ccs5vOE4sk0BFc7sOU+bAS3u29C5EplIQnw6sqygN0iEP12ft94ewpIlS3j99de5kKayYHcE+8/FsGbfGcICfQktfqd++Zn0WHaknuVaZgrE58Xyo9Clez0CijvjYv+p2GWF3pO+J+ZmKtlmKwmpmdhlOd8odTHomPr2CAb37UVYWBiSJKGRNLTu05S+47rz7JinCS77aIo2Ofn34MzS+5uhqlawnQZBD1LVQnGWTpz8WXjqAulSYhK7EmcgKzbqB/alnO8YxDxD3Kiz06XWBcaMOIDNaqVF7RXYTAI6LZAbi2o9DJ6TEHR1qRZak50uR7HkODxDNouN6NNXqdumQI1HUVXMdjsuDxCSMn7hFiy2wglwGlEkPjWT1g0b0q3/MxwolkG3XZ/StFglXqnQHkm8P63qv5J27dqhpmsw7RX4ac9WJJ2EVTTTbnw7WrV+iirVS2Iw3HZfBC+QKoH9ImDFaoMAPxCVczRvKFLzO4nqLRNxc/elcsNqBIUO5I03w5gw7kX8S3RF0FYu1P+UKVMoX7483333HZs3b0av19O2bVt++uknBg4cSLly5UhNTeW90z86YqElAIFJZ1ezuPGI351XhtlM7xXLyLJaUAHtk63YHXeVJ8PK5p+TlJjJSwO+xWq1Y9cLECyiKDZc3NyY9BBhJomxKdhuS4qUtBLpiRn4l7g/XeQx73VhyYK9XDp/gxp1QujVtxEajcjKlSs5d+4cz331M6pQ0P7kxZvx0zSnePHi+Pr6IooiexMv8PbJZdgEO0I7Aam0iOt6PfFJJ0hOewJ4eLUdJ4+XlEwTWbmWfEUgFQGtJKGTJBCghJ8nDX9HTUkUnR5jJ0XjNLz/RqiKCTW1F8g3QFVA/wR4fe3c8nHyl1DCtSb9Qr/Nf61YJoFSkOmek2UnLTUFSZKoVRUKxCFkkKNQU18A7zmUqxPG7Rp6NruNLYc20S6rJe7u7my7EsmrWzZik2VqBQaxIPxpXO+j8l96du4dx2RZplqow6NkfaYyHpkJXDensSbuKAICoyp1fKh78WdiMBioG9SYnEiHQWe32kEQ6NCiOVXqh91xviAI4LMQNftLsMegk5LAfiukRsHDXaJ4aR1JDdow9NhBKl+J4OA+PTNCxha5cA8KCuLVV1/lk08+wWQy0b17dwwGA506dWL16tV06tSJBQsXkFPFWui6DOvdK0leSklGRc3/5G2o/BITVcjwXrvyKNlZZmRVxewqoUuxYxSus/qLT/F2L9pLraoq2VYrbjrdHfNp3acJB9YdwZJjRRAFXDyNlK58f1KEADqdxMAXiy5LX6VKFXS6nYUWe+kZGTzzzDMkJCSQlZVFsWLFCHw3HErmebUlFarBokEvc/7Ur/Tq1Ytt27ZRo4ZTAvafiLebEUkjkldXC52koUODStQqE4RW0tCyZlmnypiTB8Zp0f2Gn49c5PVv1jN99V5yzNZ7X/AQKIrKhjXH+eSD9Wxa/2uBpnLuKrDHgmoCcsF6AKxH/5QxOHFyLwTPKSAYQXAHwUhQxQWkpKSwfv16Zu9sQJMpg2n24SB+PFIl7wozsmkJIVVK8taikQSU9scv2IeXPh+A7G6hatWqrFi3jhEbf8JstyOrKqdvJjDt0P77Gk+H+hUx3NLvVhW02CmWepoALzcsso3onGSEvNWARbFxIOnBY4b/KirXqIQq3B7XrcXD5/fDOATRDdHjbUSfOaBvDBQsVMxmE/bOQxBKBJMlyxxNSqRY/7533S0bN24ckiTx2WeOYjMdO3Zk6dKlDOg0mOztAj+N3UUVSzGwgt2iQY+W8BJ17zqnIHd3rLdJOhokiTDvwp5nRVZRVJWMsgZyAnVYAwyYipXlRkrmb5sDIC4jg2YL51Ln25nUmzuL80mJhd5v0LEOYxa/gra4QJnGJfjq0IfoDI+ufPug9vUx6iR0kgaDTmLC4G6cO3eOlJQUsrKy2LdvH2VCCi+WBAG8PF1p2bIlM2bMoGPHjsTExDyyMTn569BpJb4a0RUfdxdEUaBO+RK82bMFnRtVoV29iuidRreTh8D5rbmNNfvP8OmPuzBb7egkDccvX2PR6GcKPcB+jbzOuZgEygX70aDSw5VP/ebLrWxafxKL2caeXy5wLTaFoSOexGrPQFRtaPK6U1UBQc1+FFNz4uSBEfRPgN8OkGNAE4qg8cVND25BZflhfX3MNoeR9eX2RlQOTqJCwE0WLF7BtkM3GDJkCG/vHEdsUiYVSvrT839d2L59O29PWo29cxhoHV9yqywTmXp/VRBf79mcID8Pjkdcw5p6nZ1LvuZqairHjx+ndu3aeGiNZNgcsnqiCiFuD6YJ/Vfy+pcv8/SaAbjq3bGaLVi8MvErdWfscFEIri+jWo+B7QwqIp/M0pIeYMhfdCgCpHm5YpZtGDRFh/IYjUb69evHtGnTeOedd9BoNJQLrkh5Sy0yFIXsrg05uN9KbpAPGo2AqtPRvvHd469LeHjypEbHRms2GkmiScnSPFe9ZqFzOnatxbI1B5D1oqMiB2BXYfmuk0UqmozaspH47CwUVSU111E9b+/AIYXOadKtAf5rjTRoWR2/oPu7h/fL4PYNqBpSnMgbKVQLKU6NMgWyb3q9ntKlSzPOsxfDj85DREBG4bnQZujz7nvPnj1JSEigbdu27Nu3D39/pxzb40K1ngLbGdCWR9DVv+/rapYJZvsnL+armDhx8kdxGt63sWbfWcx5OrtWu8z5mHiWrVxDrWqVCQsLY+PRS3z64y5kWUWjERjSoQED297/H/Attmw4hcXs2LuymG2sXXmYkmVs7LCqvFdbg1FSkBURkyzirWvwSOd4+GIsa/afwcfdhSEdGuL9CPWKnfz7EDR+oClcbTDyRgqyXOCtFVC5eN2XEB8Tl683ZMuWNRy/moZXrbZIGg0aSWJC/zY0qtMIT/kQaXaQNarD8LIp+GYU7e38LRpRpF/rOvRrXQdVVRl4+QgXLlxg9OjRbN++nS/qDGDo3lnYNCpCSi5jWz2+JEubLJOdY8HLzVjkw9ov0JfyzwWyd9MBXn3/Ffae2MWQIUNYvHjxPR/ugugCPstAzUQQjLz/sY6N06eSigoIGLQWqpS6xpzLnzCk3AiMmqKT+yZOnMh3K37gkwUzeP2F4Vw8fBlJ0pD8ZHlkbwO5gYAgICuQZbExae8vzOr4+zrpZrOZdVM+Ytny5dSuVxeDdKfRv2XrWrIsB5C07bHnFenRiAIuv+Oljs3MKFRRNNF0pyPCbrOjpIhcO5uALMt3JHP+URpWKk3DuzhZqniV5MemozibHkug0ZvKnoVDXUaOHEl8fDydOnVi586dv6vy4uTPQ8lZB5njARUEEdX1FUS3QQ/UhtPodvKocIaa3IafpyvibX9cKvD9ooV07twZDw8P3p+7FrPVjk2WMVvtzPv5yO83dhdcXPWFXquqjWnTprE6wsTT27sxP6Iacy7WoNv2Xgii2x+ZUiGOXopj1Mx1bD0Wwco9p+n/0VLMWTtQknuipPR1eAScOLkHVUOKo9EU/HTYFR2J8VV5Y0pVduw6g6IoeFZvjSjpUAQNNlnlrZkrGNBnPMgQvN2CMUFBm67gdjKF70eP4auvvnqgMQiCwMyZMzGZTJw9e5Zt27ZRxask/vMvMDylIldeX0pSzPVHPfX74njENVq9MYt2b8+ly7sLSEwveteqXIWyxGZE8eJrg5k3bx4XLlxg6tSp99WHIAgIoieC4DBY5z0dTFmPNNx0Zp57Yi8NQy8jq7tZEj0Us1x0meezJFF98cus8o0l/JePMZTzQFVB8TKiSoWNDEVVSci+++7bzJkzqV27No0bNSrS6L527RpjxoxhwTef0rlRZQRVRrVb8XQ18kK7oh0YZUQJNa8qqk4UqR9c2Ki1mq2MbPg2N7eZ2DfjV95sPRHZ/mAVTBVFJTMjp5Ck44NSzOBJ6+LV7jC6bzF58mSqVKlCz549/9Iqr07yyP4cMAMWR1l004P93jxKIlNTOHL9GibrnxPK6uTvj9Pwvo03e7XAx8MFF70WnaRhwoB2bNywnsuXL5OZmYm/f2HPnyg+3Ar4zfHhGAxaXFz1GIxaPvpiIFu3bqVScDBRWd58dKoxX5yrj4v+j8mv/ZafDp7DnJcoZJcVktMziIj4AOynwHYUNW0Aqhz/SPt08u+jRpkgxj7TmuLe7gT5ejBlUCdGvDiZOd8u5uTJk6SlpeHm/pt4ZUEgPcXh4dSaVIL2WCm12Yx8dA/JycmMHz+eN998E0VRsNrsWG33Lt/t4uLCqlWrMJvNjBw5EkVROHXyJI0bNGLw4MHMnDnzz5j+XVFVlVHfrMNktmGzy8SnZjJpyfYiz1u1ahUGg4ErV67g4uLC2rVrmTZtGj///POD9Slfp6r2Qza3W8GS9itx01mQRBVRULDIJqKyDtxxjV2Ref/MSgStBtGoI9WSzTrDOfq/1xMpIRPBqqKxwK3yfEZJoudviurcTmZmJh9//DGTJ0/+3fvy4osvMnLkSDyLlSTiWhKK3YZkTuPHcf0I8LrTwbBp0yZ2jnuP9iVLU8HXj07lKzKzQ3ihc3b+sJ9rETdQbSqyRSHyRBSHNhwHIDEumbc7TOGFyv9jwfgfkOU7DfKr0Uk8E/4FvcOn07vzNKKvJN5xzqNAEATmzJmDKIoMGTIEZ926R09MVBLP955JxxYfMXbUUkwmCxEREUycOJHrN377XHv03mu7omCx3/1365P9ewlf9j2Df1pD6+/mc/Mei1kn/06cOt634W7U06t5DVrWLMvQDg0KxfNpNBoCfTzZdyYanVaDRiPyv+7NqFz6wUsCBwZ5075zLeo3LsPzQ1pQOtQR99e4ZCm2RUVistko7ubO3PBueBsfXSjI6eh4zsUk5G/dCij0bXgcL9dbK28VBAOCvuEj69PJH0dVVdTcNaim2aj2GNBWRxAer0xehZL+9G1dmz6tahMWWDiBTpIkRFHgTFQ8qqqi10oM7/wEWrNMYkIOtx56Nlsux84sw2g0kpOTw8GDB9l8Pom5e68wf/MRcizWu27xA/j5+REaGsoPa3/mRIpAot1An6c70bhebYYNG8bw4cPR6/V3beO32GSZQ9fjuJqeTnE3N6QHkAWz2mVmbziUr+yhqiAKAr1bFI513rRpE5s3byY8PJyYmBiaN2+Op6cnDRsUkJgAACAASURBVBs25JlnniE8PBw/P787OyiCnMwjKDk/I2lkUhQdV21GlFv32CpTylif4q7lC19jt/Jd9G6UWyMVBERZ5f2+A9n580L0nn6YrpmwmbOoGRLMq02a0avy78ubTpkyBT8/P4YOHVrk+4sXL2br1q0sWrSIPh8u5WpiGogSaI3YFWhcJaTQ+Vu2bGHAgAH8tG4dL7ZtR7/qNWlTphx6qXB05Nn9Fzm29RRKXiEerU6ibpuahFQtybA6o4n8NZqMpEwijkchANWbFZZWHP3KEhLi01FkFbPZxq/HY+ja48G0xO8XURTp0qULn3/+OVeuXOHJJ5/8U/r5L6KqKi8N+JbEhAxkWSE+Po1FC5bx2fSxhIWFUbPOU/i6nsURXasF91EIupr3ava+mXP8KH3XrGDG0cOciL2O3iTi6+6CUV+w8xOflcWoLRuxyDJWWcZst5NltdA6rMwjG4eTfwbOGO/foNdKlAsu+oH3VJ3yhBT34WLsTcoE+T2U0X0Lbx9XvH0Kx/qFenmzb+BQzHZbkVu1f5SBbeqx69QVktKzsSsKA1p6UzrAnq/8pqp2BNNcFE0wokvPR96/k4dDNc1zbI2qucBOVNsZBO8Zj3tYd2Vg2/pUKBlARFwSlUoXo0HFUlieqs9HE9Zy9HAU3j4uPNmxEhUODWHt2rXk5OTgXqICuR4l0eR5WVfsPk2jSqXvmcTcok1HynWN40q6gkdINQZ9toJl7/SjZcuWLF68mOHDh9/3uK2yzLOrlhOR4qhSWMLDkzW9+9z336NeK1GxVAAR15KwywoaAVrVLFvoHFVVmTBhAhMmTCAwMJAhQ4Ywfvx4AJ544gmmTJlCeHg4hw8fxsvL63f7unDhAjNnzmT7lqUc3+b4zSqrzeGY4EGaVcBilcmIt9K+/UC+/nIW3bt3z7/WTWugsmcJLmRex6bIiDKk7TgLLcGUmY6UfZAbe/fSt29fIpevpPuAF353HImJiXz99dccP3680PHTNxN4c9tmkk0mbu7azbr588m1KaRl5RToIgsajkVcw64oxKSn4WkwcOrAQfr378/atWtp0ODuOS5NutVn1hsLQACNRkRv1FGvXU0ykjJJuZGKIjsMckuOhUMbT9B3XI9C1yclZnK78zk56f7yDR4WV1dXNmzYQJMmTQgMDOTVV1/9U/v7r2A220hPK5C7VBUIKl6BXw7Myo/5V21tHMmVUnkEXe1H1vf5pES+OHwgP2dh7/WrnD51HY/lWuaN6sH1qIvs27eP7SeOY25YFyFPOlVWVTIs5kc2jkfFheQkhm1YR3x2FvWDSzCjQzgeD+i8cHJ3nIb3A1Iu2O93DfNHxZ9hdAN4uBr4cXx/ouNTcXfRU9zbDTX9LFjWAw4ZLLCC6RtwGt5/H3KX5xndAGaw7EBV5cfu9b4XjSuH0LhySP5rvV7LyyNbM/XXS8QdO0+qr46vvvya2bNnc+rUKcZMW0D8bR5Vk8nE0FdeJ8TFRmhoKGFhYfn/h4SE5CepHbp4Fb3BkJ8YLSsKB85fZeTIkQwfPpxhw4bdd2LUzugoLqUkk5MXhxubkc5PEZfuGmbxW2aOfJpPV+ziVEQM0Sf28lLnVwq9v2HDBqxWK926dQMgOzubs2fPUrWqo4/Bgwdz6tQpug57icr9+mDUahlZvyEhXt7Y7XbWr1/PjBkzOHfuHIMHD2brjpMYiyWgZownJiud3EiBRg0Goma60aPbcLw9/ejVqxe+vr4MGjSIbt26UbduXb6sO5C5kTtYsnUdXcs3ZvaSH9jZaicZGRmcOnWKsLAwPv30UypWrMiePXto1qxZkfOdPHky/fr1IyQkJP9YttVKvzUryM6LYzU2qM9ZjUAtox5Xo470bIfBIaBQroQv7ZYsJCE7G6vdjmnrDlavXk3jxo3vea/3Hd1LTMAZXnt2DEYXIx2HPoWgg6++/gqzxYwm7xGn1UlF6nu7eVrJzLQjChI6nUTd23TUVVUlw2TGzahH0jy6qEw/Pz+2bNlCkyZN8A5TKVFPwFXyoZZPD3SiM9n9QbmcFc/59GsYKkqYzlkQBBGdTqJh44qFEm0FbRXQVrlLSw9HbEZGoV0xVYBcwQ4mmaeeexV/UxRNmjTh5T59+TY7nZisTKyyjEGS6Fvt0XndH4Qd0VeYsnc3sqowqkFjulR07ASpqsqAtStJznGoQx29cZ0Ju3fweZsOj2Wc/1YE1Rls9p9GVVXUmzVwJJ7kIZVD9Nv42MbkpDBKSk+w3Zb4KrggBPz6j8yyH1x1FHGXbqDICpJOg3tFAydzDpCdnU3LDt2I1JfDlufxVuw2KisxdG3bgri4OKKiooiOjiYqKoqrV6/i4eFBWFgYfuVqkuBaDjkvvMKg1TC+31O0q1eRatWqMX36dFq3bl1oHJm2XOZH7iTRkkmHoFo0CagIwNqL5xn3y/Z8w1uv0TC2SXOeq1HrrvNKy87Fbpfx83TN/1xUVaVatWp8+eWXtGrVKv9YnTp1GD9+fL7hPXr0aHDRMu6dcXhoHYbXmYR4ui79DlWSEAUBV0mic1oWi2Z9Q6lSpXj55Zfp3r17oTCao8nLOJS0CJtsRa810CxgGFJCGZo3b87MmTOZOnUqsbGxGI1GcnNz6dy5M126dGHt2rVUrVqVwMBApo76Ck2GjoScG8zaOI227dqyePFivvnmG/bt25c/t7TcXD7Zv5dLNxM4sGAhp5b8QLFiBTuAF5IS6b1yOdm2ggSytmXKMqtjF85EXafvhDlIrp74iFYad6vL8otnsOV5DLWCwJ6BQynmdvfE8oSE69SrV5fly1fRuHFjcnJymDb7a2bMnkWrek14tm0/5oxYgjnbTPm6Zfhw8zjcvFzzP4d3332XlStX83yficRcSaNS1WCGjngSg0HLzbQsBn++gsS0LHRaienDu1C73P0X5rkfdp9dzVH712gNIhpBi4+uFM+EzET8my+o/07siD/DhDMrEYBcsxnfQy64nXSndr1QXn+7E3r9n+PEup0bWZm0WbyQHHte0qwCbrECUq5Ah3rlmfRCQREvk9XKwpMnuGky0blCBeoFPdrv1P0QmZpC+LLvMefFo+tFkaH+gVhjrnL+cgR7q1aE2xYSZX182Npv4F8+zn8zTo/3fxxBEFA93oHMySBIoMoI7uMf97Cc3Ibg8QFqaj9UVcFszuZEZBdqNHVU8hP/Qca31WIj9sL1/MQyu1XGfM3Gsq3LqFmzJqIocujCVWas248gCPRpWokZH47no48+YvHixVSpUuCtUhSFhIQEoqKiiIqKYvmJBBLMGmTZTnpCLF2bjSY4KAidTsegQYMYOnRovse8VEhpXo34ges5qdhUmX2JF5lc8xmaBlSiRUgoLlotNlnGLsvIZgtty5T9vSkB8Pmq3Sz/5SSCIFC/Yik+fykcSSMiCAIjRozgq6++yje8161bh6qqdO3qkDpUVIXMdqU5borl2K4JdC6RToBBJSUzFEHSouJQFMnIyuJ0cjLr16+nVq2iFwFHU5agCDY0koBdtbDj6izcjnVjyJAhDBkyhJkzZ3L69GnmzJnD0KFD8fDw4KOPPuLo0aMUK1aMbjX64J7gj6CIhOLB8e8u0LZdW/r06cPHH3/Mxo0b6dSpE4qq0nvVcmLS07ArCu6dO7AjMYE+xYqRaTJjsdsJcnfHrsgIdhBk0Bk1VC/mqDAaeeoILlnXsLt6kqboOHnmGjaNkj8PrSSRZs4tZHjHmo6TZo2juLEyxQzlUbIX4W2fTPRhD1TDWr7++jhfX9yMR/tqhH7RF0+fUNrUbU2Hvm2wWWzoDDriMjI4dy2O8j6+TBg7lj179rBnz64itbU/WLKd+JRMFFXFJlt57Zv1/DL1/ndO7ods7zNosxwGjqzaSLNeJ916DR/9w9WH+C/yZcRmLIrD4BV0GswtVTZPee0vHUOQuwffdevBpL27iIxPRpOooLMKSDoNz7UprNbjqtPxcv3Hm0N1+mZCoeeGxWrlxz27aWxwoXG9+lxQraTabCiqil4j0SC45GMc7b8Tp8fbCQCq7TLI0aCtgqAJftzD+U9ytwINqpINcgw7jlxl8Jb9aP39MGq1zO3c7Q6Jtb8rqqrSO2gIaTczABA1Io271OO9lW/c9Zp58+YxduxYxo4dy//+9z/EIpIdVVUlLimDqVOnolMsTJ48idjYWM6dO0ffvn3p378/KSkpREdHc82cRolJ3RBv044OytDyLJUpVaoUbgEB7ElJxGqz8+2o1xgzYiTPPffcHX3uvRrDa2s2Yo+wcqsIpSgIPFWnPJMHtkcUBbKzsyldujQnTpygZMmS1K5dm4kTJxIe7lDn2HLjFFPOrSZXttI5+DRukgVRAEXWcPByCMdiHUmRBo2GRd163OEhy83NZdu2baxevZqKw2MwehT4UuxZWs5/E0RmZibnz5/nmiLj1y0cGUjZuBnTmbOOwjn1/PApJeFzrhq55wryTlQUokJ+RZIkcnNzSUpKomLFioju7qR36wxSgWe2XlAwLQ2lmb/5CKIgULNMEEcOb0X1rgiCgF4nsWrccwT7etK2R3/SitXGbpARK5gQJchMl7BKBrSiSKC7O1v7DUSXFyZwKOk7jqf+iIqCgECbgOcoZXofreTw2JlyVT5eU5ZdletixaFcohclXqnQnp6lGwGw9MwpJu3dhVYUyc3JxWvbTrb+sKzIGHpVVXnyjVmk5VjyjwmCwKEvR6KVHp03ekf8NM5lbEbNGzOKhkHlluCm/XNDGf9NdN71MTfNjt8TZBXjZTtf13mByo3Ko8n7rFIsV9mR8Dk59jQqe7ajnu+zf9puoc0u8/PRi2SYzDSvHkapAO8/pZ8/wqmEePqs/pHcPI+3UdIyo0NnWoSEAo5qsf/bspG4jAyalg5hSqun7khqdvLHcBreTpw8ZqLT0xi0bjVXM9Ip7+vH/PCnCfytHF8eL25Yy/Yrkah5Dw53nZ6TL778jwk7iTwZzfjwj0i+ngrudlZGLsLTz+Oe10VFRTFgwAAkSWLhwoWULl20V/D8+fM89dRTxMbG5sd3jho1Cr1ez0cffQRAiiWL8F2fYFMdBo+gQvHrMrotUcTGxhIbG0tqaipBQUH4+vqSnnqBd8c8iX9ARQRDC4qX8iFCu5PxWyVIE3G5ISCoBfdf0oi80K4+L3VyGH0jR7yGKcOVkiVLsWnrAo4c3Z//eS2O3sPsiM1U9oylkmcCtyuUpmd6s/xYE2w2G66x1zjx6eeIokhmZiYbN25k9erVbN26ldq1a/P0009Ts6MPp21LERBRUWgT+BblPBxx2dcyM2g5fw5y3qJFAgwbNuMdEEGn18NQVRWNIHHmPReub3CEr9iwonsyF6PRSFZWFkeOHMHd3R0kCcP/XkbQ5m3jyzKGG4kYM4ujinmGqWJHRUDIey0K8ETlUozu1pCG4f0p0aIL9uaJoFUduSUq+Cr+1DZW4bWGTfB1cQEcRvDXEe1R1AKZNsmkp4/HJTzdxbxz4LtzTZll8gV9gYEwILQ5L1doi02WqTrry/xQFlSVhsElWNrjmTu+P/Hx8QyYOIckxRVBFAEBjShQuVQxFr31bJHfuYcl25bMsqsvY1Nyscs29i25QbPAobz88suPtJ9/MxuvH+fjc+uRbTK6t2LQRdnQSzpKVy7BZ7snImhl5kf2waxkASqSoKdZwDCqeXd63EN/rMz/9ThTD+5DUVWG1q7Ha42eeNxD+k/hNLydOHnMtFw4j9jMdFQcHtM6gUEsL8IoAGjz/YJCJdY1gsDpl0Zi1P75sYyPktzcXEJCQti7dy/ly5e/9wWALMt89tlnTJ06lU8//ZTnnnuuyAVH3bp1+fDDD3nqqacAiIyMpFGjRvnxzQCLo/YwO3I7kiDipXNlfsNh+OgLQhssFgvXrl0j5eZBqgRNQlFlNKKGQ78a2OfpSYbGl00n6mO1a/G44hiDcJs2cHEvVzZMHowp28LAZ2aQlpoNgoCbm57vVryCp5fDsIzIjGf+lZH46zOQxIKfYhEop4Pyrq8h6RrStfWTVK5cmZS0NA5dOE+DmjXp2bET4eHhhUIlEs2XSbHE4G8oi5LhysmTJzl58iTb464SWboE5CkqoCg0QkP91tswiyo3cr3QCDL+2Zkc6lIMc66Z49a92Dxy8pVW0tPTGTRoEAeOnmBbdBSTD+4i12wm2NOLHq6B/HgwBovdMQdVVR134/Yt7eQ4Lq6ejnuxUoQNHoymXg6C9rYKqCpUkX0Z5N2QgIAAAgICcHV1ZUZEBxALQlFyrgqMLBuLi6vj2pxclalLq7O5SkUUnQoiCDaYWrU/TUMrYbJaqTn7a+TbHnVVA3wZ2TyZqKz9uEq+NHYbwbfTljN30feU6jIK9bbP0t/TlRXjn8PD1fD7X86HxKbkkmiOxKjxJP26nfbt29O1a1c+/PDDInd2nNzJ6bRYNi7byZ43tmDPdSzQRK1IQDM3NBXTqPpCBlpjwecZ5vYEnUu8/7iGWySqYgJBm18Q6y/p85as8D/EafNvwrl/4MTJY2T/uRiupqfnl7JSVJVLSUm/e/5ToWWJSjqEohHRiiJlfHz/cUY3gNFo5OkBLzJ8+gpqVK/GS50a31MtSKPRMHr0aNq1a0e/fv1Yt24ds2fPviNGt3///ixevDjf8C5btiz16tVj2bJlDBzoSBLqH9aMtkE1SLfmEOLmj04s/FOo1+spU6YMob5fgdlRih0Umje0s+90CfasrolB1qDTON663eOtqipXIy9iNBqpUKY5AV6NEfPat1oVdmw9xdO9HN7wQI0LxQ3pFH72qfiINpoaEpFsb/Di695ERkZyPuoKVd5/l6CObYhRVZSa1fH390eWZSIjIzl16lS+oX3y5EnMZjM1a9akZs2atKhVm7icTCx5Xl/VZmf3zxup3NyNzUmVsKsiAuAumDA2N+FWsSn17I05tG4h165do3379jRv3hy/2m3pOG4+kkZDs7IlWT93HD9s34aHlx+rj8zDbLUgiCJajUiwnyc3UrOw2WUMOol3/zeQd85vYfjw4Xy6cS3+9epyeyETVYBzSiJvvvkmiYmJxMfHk5uby5NDQ2gzNNSxsBHg3CcuvJURwtCPY/Hwkth7vCIJMWVxO6Ijp7kNVQcuR3XEpaRAqCOutrqHFyev38SYoUFykwh/MoGDScdQseMhxbA86X8kJYfx1ujRLL1gAbEgpKR8Sf8/xegG0IpGgl2qAeATBgcOHCA8PJx+/fqxYMGCB9ag/y9S3bsU8cbSHBA12HEY3qqq4u8TQL3mzUgy/ICad1wj6PDThz7O4RZCVW2o6SPBshsQUd3HILr2/0v6dhrcjw+nx9uJk8dIz4nfcVKbhGzEYXwrYLt0iRbZubzzzjtUrFix0PkHDx+m1+efUqVTR8r5+fN+i1b4GF0ey9j/CJHXk+n/0VIsdocWiYtBy6r3ni+ygmFRWCwW3n33XRYvXszs2bPp3Llz/nuJiYmUL1+ea9eu4ZaXoPfzzz/zzjvvcPz48Qd64Chpr4KloJKkyaSlU3hzNLEZyF5GsluVQXHR53u7VVVFle2smTiIIB83Vq/Yx+K5h7FZ8wxe7ETGbsbb30JwcDCHjxxm7I4aaPLWTqqiEihZ6OnhqKBoylH5cr4bsUn1Oe5qJLVEIOTFW4qKgs/6TZw/4kiOvGVk3/pXokSJQnOdcfQQ0w8fRFVVSmfncGnmbOp82JF4Py/UvJWf1q5B3uKD1aaAIKLKNmK2LsJfZ6Ndj34cTNMj4/DKGbQqlojDzJr4OvXr16dn/0Fctrjh5ePP5BF9qVk2mNkbDhKXlM5TdcrjL2TTu3dvfH19yc64QuiIJiSXq1LIK+4nubO6ySgmT57M9OnT8fZ2xMi2a9IEu5xF2q8SWZc1yNix10qnfss6FC9enKQEO6cO27lVnFKSRJq1rkx0ZCKgcvjkWor7NkEQRBBV7MOzyXGTUYFgYzqNvaKYMyCCQK8wwlr35WKyOc9rLzBnVA+qhDzaKsJ3Izc3l759+5KWlsaaNWvuquXuxEF6UgaDKo/ClG5CBVzcjXx79nP8gnyIyjrI5vgp2BUzpV3r0zH4PSTxr/Ms32Lr8UvsOnWF/7N33uFRVOsf/8xsTy+kkwQCoYXQS2gqTUDhUhREkGIDFVFpInYsgIqIghQBEa+CICBd6b33khBqQklI79un/P7YsIEfeMF7vRfLfp5nnuzszpw5MzuZ/Z5z3vN9q4YFMfDBJhh0WhTzt1A6mQpXMSNCpdUIWs8E278yHuHtwcM9pNe733AxrwBLhIpsBK1ZJXrfFgyCwL59++jUqROjx45j/s7zHDp7BXtpEf2aRjH6hafvddX/IxZsOMSXq3YjlSc4Mem1vNm/I12a1brDnjezc+dOBg0aRLt27fjss89cMcjAww8/TN++fRkwwNV7pCgKtVs35skJo2laqx5twxIQhTsP5avOFNSCx1FVhYxLMiN61KI4W0N5WDJCiA5lYB0sNgOioFBabOfcii/4/JMJDBkyBIddYvizX3P1Sj42m40qVSN4bfyDDBv2HIcPH6Zu3bpoK+fQZUw4sgQiCn0Dc4jydilISdYx64dmrFh7iQu1qqOpVdNdNx3wdq26dG2ehL+//11dL6csu9wKtFomTZvDEkcm2tp294iLrtCEuj8Am70ipjpQymfrvAkkPdgIsWZvLA6XaBFQqO11ll6tOlG1alXatWtHSEgIR48edXus38gLL7zAyZMnKcg9xq5VYWi1sM8cyQeZLbDaNQgq+P5gJH3vWjJzTpKYmMi4cePo1q0bRTklPN/oVewWO4qi0PDBuoiJNr7++mvCw8N5+ulnOLoXMq4Uoqqg04k4HDIO93lcH7UAazMJR3uH6wICWkGmdcA5Hje+QcP6jVFVlT3J6eQUldGkZjTRIf974SvLMiNGjGDLli38/PPPREd7nCXuRF5GPqtnbkBVVR4e0pGw2IqRMFVVUVHumVXj8l0nmPzjdmwOCYNOS42IAO4Pc1I5YAEdWt6Qzl7wRQiYjmBocU/q6eF/gydlvAcP95BAXxO7T6RjKBXxK9XRt14dOjSqRW5uLpcvX+bEiROsOZVLrmRAVgGNnkyrlgEdGv+phwoz84vZfSrNLbyddhvRBhvNGyT8pvOKjY3lqaee4pf163n9g08IjYohoUY19yTM68L7dEkGG6sWcdqeze78c5wruUaHiMQ7li9oQsD4EIiVGdiqhLLsiuAIAcAq89AXZ3i56XGSKp9j2jvLkWxmtm3bxtixY9HqNHR6uD6xVYL5at4E+vRvwsBBT9CpUyfGjh1LTk4OW1YdpPR0IF6lccwdtxcfUaFxPS1OSeXtj/NYutpMy5Yt6dSuPcdLi5FVFQ2g1Wq5JDmRRJHGEZF3dd00ouhO9nEy286RE9kIsTaXLpWhktYfy0URudxL3aDT8GSP9sye/D7Jh2aSZ2iIJLsmHRq0El1qXKKkyJ8pU6aQmZnJ2rVriY2NZc+qg/xz/I+cO3IRoZY3P2cdZcaCuZzecYi3RwbSsqkBg0EkzruM7n5pHPmmCvbVvggFIv6+lfl+8ce88847LhcVUcTL18RDQzpQs1l1ujzTlt7PO7g/yczLL79CdJWWLFmymHXrvyYhMY6WbWrj5Q1XLpVe/5bc18YSqsNWF4Qwp7ujXSNA76qP0q5mG/e2MaGB1I4Jw/+/FGJyJ0RRpHPnzthsNp599lk6dOhwk0+6h1vx8vOiYbtEGrZPdPu1X0cQBNdoxz3ivX9uJLuwDHAl+MouLKXkzD4SatemWvRFBEHGFbOmR/AdhSDcfN857BKnTlymqNBMcCXfP/Wz34NHeP+uSIrMusxjHMg/j5/ORIDe9c8vKwqqqv6pPJc9/Pc5fPYqB89coU6VMO6vF0efBxrQt20jkvMkLqvBdOrVj4lvjGR3egmO69MxBAGHJNOvXUP0uj/vFI24iGBSLuWQmV+CKIo0rxbCkmnvs2HDBlq0aOEOMbgbRK2Wn9OclPhWYXtKBss27MRaO5y9Xnq2XL5E69iqzL6wnjRLHogCkiqTYS2ga1QjvLV3FlaCGEBpaRzfv7fSbRt4HUMllfghVlSdk/VzU9i9rxRFUXAoChleRpSgIGIDA1HkYj6fNonklFN06dKFNWvWsG7dOoKDg6lbty5XL11j/art+Hr7czLVRHDMG5w435KFP6aSnp5Oamoq235aQayPL6JBj0WrQREE8q1WjlzLxFuvp0F4xG/6Di5cy+dQSgbOdD1YNchXRT5s2RN7YQ4Xc83odDoSq0Ywtm87/P38aHt/B9pUnkixzZuIgFJeab+DBXOTycxysm3bNt566y169+7N9iV7+GjgNM4fTSdl31l++W4b+xKy8Wodhz7Uj8cT9dSIc1REd0sCW36pRmG+K2QqMjKUF0f0RFVl1NKJqMXjUK1r0fsmUblmApX8JoLlW3AeQLBvwDewNlpjHRBg0+aVrFqzkPQr1wgKrOWOvVdEkFWJsjgvcIqIsTbKQ8bx1XkzumZv7KVODAbdH0bUCIJAy5YtiYyM5PHHH6dRo0bExcXdeUcPfzi2HDtPRn6xe12v07Fm9kRqJTwImsogZ4C2GkLA5wjam+18zWU2nh88h3WrjrFh7QkunM/mvra1/zD3qYffjifU5HdCVVWGH5rPiaJLSIqCVhSZ1exZNp6+zJeH9qOqKs82asKrrW6fdtnD34vtJy4wbt4699Bjo/gopr/YkwUbDvHVun3YHBJaUUBrLyb30ll8qjZA0GgRBAgN8GHdh8/8YR68xTYbi06dwOp00qN2HaoG3J1oVlWV3GIzGlEg2M8bh8PBp59+yqeffsorr7zCmDFj7mpy2c8HUhn/w0bMghPRCRqnSlmEjBSgQVBVovz9aZ5oZHvuafc+OlHDivvGEGK8s5UhgNPh5KGAJ8BWHqutBcFP4L65xfjVksk/V8LEp1ZwHwAAIABJREFUXkdRFAVVIxI5+hW0AYF4+3gj2Gykf/ARstWKoihUrlyZoqIijEYjLVq0ICkpiRYtWtCoUSNKS0upUaMGGRkZ7nCN5cuXM3z4cDp27EjHjh3ZdfIkv1TyR9BXxKnGCCKTW7ShXr166PV3F79qd0oMnbqUs1dzURSVa8d3Mnl4H8aPH8/7H07kgXbtCfAxkZdbytuvLib9Yi7RMV480WcRoiabERubkuUdhyMrG/9DR0k9ehRRFBnTfjzHtp6q+J4BTAJln8egRumZFdGCGgGvoipOFAQys6IZ/UZHFAVEUWDk611p17EuStlMKJuJK/5VACGAS+a5RJseRbyhBZR8RmHCrKa0bt2axs2S2HfZzO5Tp7mUmoffZdd2BXW1FBem4x8Y78rK5yshxlnRa7RMbNydKWPX4nTKBAR6M2XGQMIj/lhx1du3b6dPnz5MnjyZNh0f5lxGHvFRlagSHnSvq+bhLriUXciTn/yAU1aQZIXX+7WnW1Id9+fbjl/gh61H8fcx8VKP1kRVqggd++Gfu1kwZzuS5Hr2GE06PpranzqJf478DR5uxSO8fycum/Pov3uaO4sWQFixP+dy9DjU8jhWrY5ZD/+DNrFV7lEtPfxReHbKEg6fy3CtqCrIMuE5e8kNboBsqPDwFoAn6hhYsC2FwKoJRAX7M+HpLn+YxAxWp5PO3y8gu6wUSVEx6bSsenzAbcX3pfQ8dmxJwcfHSJd/NMRovL0bS3p6Oq+88gopKSmMH/M+v3yyi9wredRtXYt3lo7G2//mYeTJ67Yz8+wh1PIwXuM1kL3BWa6dNILA0n6P8NKR+ciyjM1up31kfT5q2v+uz/OatZDHvvgA/fgr4FRRovUETTXRpkY6qqpyamse339aiiYwANHkRVC3LohGV2+6YndQsGIV+jPnqFy5Mm+88QZJSUm/GrfbuXNnBg8eTN++FZaSRUVFvPrqq/z88898Nn06b11Nw14+k1AnyNRyZJO2YCMXLlwgISGBpk2bupdatWq5Pc3/P4qicjmnEINeS/MGdalevToWi4W9e/e6G3YvDZnPmZRMFEVFFAWq1wjnRMR5rgT6Ier1qJKEnJPLp42b07t3b97qOZG9Kw/fZK+oCmBOCsL5WhB5Ixbzygt9uK85rFx2nqMnGiNJUKmSL6++/Q8SEqPJzs5GW/YMQT5n3WWYLQoPPeFk8xLD9fmlqCoI+saIwYtQFJUnJi3k4rV8HJKMKqhYwhSc/qAqMvLBwwR5N0LUVTTmVFSMFjs+51zXUhQF6jWM5ZNpT9z1vfG/Ijk5mR5PvURA44cxGgxIssL7gzvRodHd2XF6uLdYbA7SsgoIDfAh5IZJ5PtOX2LkzFXYnBKiKOBj1DG0eRjJJ45x5MgRMtJ0hAQ0dofKeHnpeevDR2jSvNq9OhUP/yF/3rHqPxhaQYPKDW0YRSUrpwinM8DtQqCoCmlFhR7h7QFvox7FoILZhv+K0+jybXhFBFCltz8XHQrXm8MqMH3pZpZ/8Tb169e/p3W+HQczMyiwWnCU29SZHQ7GL17EgOo1iYqKIjIyEj8/P9Iu5PDSs/NxOCS0Wg2/rDnGl18/jfY2mQCrVKnCihUrWL16NVN6zUUru3pwT+5M5Ythcxn33cs3bb+5IB31hvBNWwSIskuFq4qCw2zmwxde5cPxb/Luxs1Yc8xsLcjh6/wDPNX55pTO13E4HOTl5ZGbm0tOTg7n8zNwJBqwLa3m6vX2Eon3ySJaY+WKbOKcrR5hz9V2hZRpNKhKhe80AgQGBmLTaDhx4gRDhw51X5vbLQ8++CDff//9TcI7ICCAr776iq1btzJkyBCqP/gA52rWQEFAQWBQq/O0HTqR1NIisq/mk7bHwYYNG/jggw/IycmhUaNGN4nxKlWqIAgCoihQJTwIVVWp2qwDF/MtDH2ml/u4eXl5nEvN4PrpKIpK+sUcdPdXRywucp2eVosmPIyxr49j0aJFnDiaTFXvBmC+4RqooNoFfPPDOXD2PKIosnXTCXbuXopG4xK9WVkFvPTiWE6kbERVVaZ+EEWvLiomo0vAe3n5sGP3PlTLEpcThKBFEFQEvzcAyC4qJS2rAId0PTGSgL5YwG6yoZaVIRw+htCsGuhCb/quc+rr8D7nctdRFJWszKLb3hP3moSEBGLaPEqh2YbZ5gDg48VbPcL7T4KXUX9bd5yNh89ic7omASuKSlFxKfMX76VlYnWee+45wkLj+OD1tdhsTrRaER8/Ewn1PJNt/8x4hPfvRIQpgPbhddmWnYIAiFqRd3r24/lVa7GVp2YVBIEmkZ507B4gMiGQUocKDi1lo+oS9fkpSnPKqLIng4L7q1JYZnNvG5TQigy7nj+e7AajVntjcxNRhUvnzvPBDz+SkZFBRkYGoiiSEN8dH2NNBAQcDomLF67Rq8dAHJLL7cNqtWKz2W5+bbHTTO7oLltySKxZ9Auf/vI+Xl5e7qX0ke7gW9GDpKJgSbuAIa4qcnEJBd9+z09XM9iT4SCkTksEjRcSMGPVblK2r6G0IJucnBy3yM7NzaWsrIxKwZWI1sfhpwThE+WF4dk4LOECGqOITpBpGXiFq7IRm1nkilgPUVuh/o0aDaIguK6NJJO2ey+iw4Fv3QTqj3iJHIsZs0ZLtKhDn5NLcnIyGzduJDMzk6tXr3Lt2jVCQkKoXLnyLcJ84sSJLDuzFb0oY1N0yKrA5NRErgV8joKI6KclsnsVvnvpn4iChoKCAg4dOsTBgwdZuHAhI0aMwOFw0KRJE5o2bUr9+o3ZlWzBZqhJUE0dq09kceH9mVzds4q9e/fSrMpQMPm4QjQUBanQQvWg2lwtKUbVOdF7O5EtTgSTF7vOZhH+VDfyq4DfhCw0aU5QVNAIFLWNRClVGDVqFMnJyVxNdxIW2Np9zQREHuz4EN8vnoJWq+WhLu1oVL8yteNyQAxADPgcQTAieA9ENbQsj4tNQNC4/N9TT53Ebq/w4BZQqabX0MDbH2+tEcegQWSWONlTqqIKroQ91hBX3XQ6DZJTxmDQ0vqB3+as879E+X/j02ar7fYbevjTEBnsh16rcTcYTV7ezJs4/SY3nWlzw9iw7jgmLz3dH2mCyfTr4WSq4zgo10DXEEHjmZD7R8QTavI7oqoqBwsuUGg30zg4jkoGX3ZcSuej3TtQVJXRLVvTvqpneOjvjtXppMHs6RUprBUVr9QiIr46gx0bxyufo0rHQWj0FRP/et9Xn3GPt7tHNf51FFVlyOoV7Mu4goBAkMnE6sefwM/gqruqqpSUlDBj6i9s23jO3XOq1Qr06h9H5ZgATCYTRqPxtn+HNRxHdnoOiqKiN+p44PFWPPnRY1gsFvey6lIaP1y9hENV0QE1NTraSyqFhYWkpqaycuVKkpKSyAusgy6sekXlVYUmgQ4axQYSEhJCaGio+6+fnz/TRi5g49xNOG1ODF4GanSux95GAg6NE02hQJ3ql/AvyObqUoFj/Vui3hBznxgaRr/E+iiqSpfq8XiJGl54cyw+zUsI8pLYkhnLZbM/eo2Gn/r0o3bIzb2wjzzyCC1btqRt27ZkZmbeutSuTFF0vHv7jnVOUDsqw+3UoTpF7LubYLSHYTKZbrqmJpOJsrIyzp8/z+mU86SfDkYVjCCA5C1SWtWI7LSR9uMkLBYLLTUPY4irCd4mMFsh7Qrf5X5F/3XfUex7pfx4EkqOiHIgAFGvAy2IbQpwrnEiFktY6gThDNYRXlhMD98AEhISqBwVx5hhS1BVDYIARpOer/45BL1BoV27dnTp0oUJEybccS7D5cuXGTduHNu3b+fRF99kX4YDnVaDl0HHt2MfJyzQ96btv9p7gGnb9mDTyOh9tHSqWp3o4yoXzufQNKkaTwxug0b7x8wa+c36g3y1bh92p2sOSEnKLhKCYOrUqVSu7In5/TNic0g8//lSUq/koKgqL3RrxaAHm/zq9gUlFhySTFigzy3/G0rJZLD8E8rDUoSg7xF0dW5XjId7iEd4e/DwP6bIZqX53FkVwhswpJUSM+M08a1ieej1h3hv5XEc1yfT6LW8/nh7uib9MR+giqpyKDMDmyTRNDLqtpk08/NKeeHJudisThRVJalVPK+P73lHUZWVnsPE/p+TeSGLRh3qMXLOcxhMt0643HjhPHuuXiY+KJjHEhLR3JBuu2nTpnz44Yd4R8Wz5+CHrDlenTKbDhURnUbg27H9qBldIXxlWWHcKws5OmcdOCrmbOiNOip/2Itj5zNwOiT0F/Lw3nYOEYHsx6rgaBGBU1EQBZjT/REeqFKRIU9VFbKuPIKveAaNoCApGnpv6c65oiBebdmGoU2b33Q+y5YtY8aMGWzevPm212XVmdOM27yO8gzZtK15isToK9d/b1Elkdw1NSnNFLBare5RhOuvr6/r5Gr4ZfojFJWCVotaM5aS+sFYlBJSf5iAyWSimphAcFkUoiqiiipisIxPK4GCzjFYYiqSN6kSyFuCwKoBQUWsbYYYOyUXDOh0PrStXp1POnS+6f545+1JpJ4so2WLlvTo0ww/fw3t27enQ4cOfPTRR//y/igtLWXSpEnMmjWL4cOHM2bMGLy9vckuLCW/xEJcRDBG/e0Hdbelp7H36mWqBwXzSO2EP5Xj1K5TaZy+nE3tmDAaVwtn0qRJfPnll7zxxhsMHz4crdYzkP1n4/pEc5NBh+9tnm/XmbJsO4u3HUcQoGG1KL54sQe68vkbNmseuqI25daE5ejbIAbN+29X38NvxCO8PXi4Bzy5chn7r17FJktoZKixMZcO0VV5YepgDCYDu06l8d53G7HanTzSJpGXe7b5w7iY/LuYy2ycPH4Fb28DdetH/8/O590vPmdD9jU6t4ujlvwL09Y1w2x3/bipqoIh7wxTRz9FUlISAHt3nWXiOz9h3XsSbHZ3ObIo8egXHWnbpTub5u9g7SerkMsTtIg6kUsNbXR9uQ/fT/qItP0HMBorRixU51mkvEfRCK7QAEWBpek1eW1PS4qXLOOpNvczYcIEt4uLxWIhqnIUyaeSiYyMvOWcVFVl9uGDfHfiML56DVk/fkO/t7xQRRmjwUAVv6Z0q/zeHa/xy50nkrLpqDuGQdWIFPeox8BuNYkP9WH9+vVs2rgJyzmZWN/qRMSH0OHp1vgF+rFce44zmiIcZhOqCgaTA2VrINjLhXd8Kd41JS6++gM712ykSpUqtxx//fr1fPj5LN758GOqBHvT95HutGnThk8//fRX6y7LMvPnz+ftt9+mY8eOfPjhh3/73t6zZ8/ywgsvkJeXx8yZM2nRwpOA5a/GqfQshnz2IzaH65mjESBGzabk/GHOnj2L057LxYOV0d/Y76Frhhj83b2psIdfxSO8PXi4Bzhkme9PHuNycTHtq1ajdYwnRfB/g8vFRTz0/QLMTicaAby0TrzOanDYXb9OWlGlZWUTy2ZMoEmTJkyYMIFrV2Q++2gttuxCSE1DFUBE5YEXm3IwfQ87d+6kd/vHubK2ALvFAQY92vBgIhsEc+DcT4SGBTNo0CAGDhzorocqnUfN68X11NCyAkvSanOg+BlMO/cwfdo0nE4nAwcOpNWYx5mTvhWnJFGr0IsF/d68o4BeuXIl7016kzenPMfsL+eh5lVi+rQviY+PxynJFJVZCfLzumkkAOCl1m9yes+ZijdEgaBuPhxN3sWxY8fw8nL1aOfm5rJ+/XrWrVvHhg0biIyMpPUjXdgQEogiawDBlXnyjIDgUFBUB7ViCri64zDJh45RWFh423P46Pv1LNp2DB9vbywWCw0MOcz74pNfPd/NmzczcuRI/P1dSXuaNPn1Ifm/G6qq8sMPPzBq1Ci6du3KpEmTCAq6e7tBc5mNfbvPIYoiLe+rgcFwe9chD/eGbccv8NY3v7gn1oJKg0oifVrVIj4+ntjYWMTSEWDfAdgBPULgDARD639Rqod7gUd4e/Dg4S/L3COH+GTPTndYj5fWSVMhh9SUCARBxVFUwJ55HyBLTqZPn87HH3/Mww/3oCSrJhazA9lmRydJRNczs2rDYmJiYujcuTNZWVnsX3CSkNCGqFHhCALodFpUwUqJYyt2h5WDBw+6BaSqqqhFw1FsO7BYLKhoGT+7MZM/+hZZdaJBz+TJk5myeC5Rb3VHc91q0SExOelJ7gut/S/PU1VV2rZtS//+/Rk8eDBfzJtATvh6NMYYtv3SDFXR4msyMHdUH7cVpcVsZ9rYf7L+qw1oJBUVFb2Xjsg+3pitZiIiIpgyZcotx5JlmQMHDvD1pg1sNOoQr3utKyq+52VCMjXkX/6RMyknEQSBhIQEDhw4cEs5ZVY77cbMcmcvBZWWdaoyfXjPW7Y9c+YMY8aMITk5mY8//phevXr96UeA/lsUFxfz5ptv8uOPPzJp0iQGDRp0x2tVWmJl6MA5lJZaAQiPCGD6vKc84vsPRGGphR7vfEOZzY6qglGnZe6o3tSJrXBKUVUZbKtAzgJDKwRdvXtYYw+/hkd4e/Dg4S/LkuSTjN++BWu5s5CXVmFai/VEi0V8uyKWjyeu48iRw9Sp44qfLyoq4qOPPmL+vO/p8MBAkpJa0KtPCyJCLyA7M9m138q8+WtZvXo1TRt2A3sNuMGv2mjSkVe2gwzZRpvu/UFrQECgQfVIXuzeEr28h2ef6c3O/TLhTQLo/W5NVGRivBvTNWo8m7JSeP/YjzhFFVTQHhSpVhDMkO6dadPWZVeoWpeDYw9oayN4D0YQXDG9hw4d4h//+AenU1NYkv0sFrmQJXPbYzUbQVYQVJW68ZX5ZvSDpJ05wKhXjlNSYkFQRbRXMhEshQye3Idp86eycuVKEhMT+eaH76jasDZRpiC8tNfDc1QOHTrEp4t/YF9okNuvHEUl8JREwCkbxuCDnD59mrS0NKKiorh69ar7GllsDr7ZcJBL2YVsPnoe5YafoMbxUcwZ2ce9np+fz/jx41m0aBFjx45l+PDhd5VUyQMcPnyY5557DpPJxOyZU6hZeRk4T4KuCYLfOASh4jouXbSHr+ZuoywANA6VAIuOV9/sRpu2/7rB5+F/S3pWATPX7MVqdzCgQxOa1vTYCv4Z8QhvDx48/GWxSxL9li/hTF4eZouZ+6rE8XWvnpw6mUKHDh0pLS2lf//+zJt38wSkzMxMxo8fz7Jly1i3pBWN66QjILoSKAYtxGyP5qUhs7mSbsUWLGINE9GVqpgu2QhoqOOipEPUVlh+GXRakmpE0yDXzuKF82nVx4lXXxVR5wr90Ah6mgcPIMzUkSd2T8OmODGt0qE7pUWQBECmw0PVGfNyCZhnAVbACMYOiAEVvdIDBgwgrk4UIb1OIKsOvv2iC4Zj1/A6cNllCl89mJ+3HmDk6/eRejaI640Gvd7J6HE6EhoOoVatWuTn5zN19bcsVE/h7eWNKIi8V7U7e5dv4JtvvsFut/N4//7MK87HGB2DgIgoQbVtMvcnxRGfILBr1y5mzJiB0+kkOjqanj170qJFC5adsXIlr9SV5EZREFBBFDHqdEx+rhst61TB4XAwY8YMJkyYQO/evXn33XcJCQn5794sf0FkWWb27NlUD/mE+1sY0GkVVAxkF9Vn0dqGHD16lKNHj2JVIhAHd0LVCCCAf6bK1Ie7cl87j/D24OH3xiO8PXjw8JdGVhSSc3N49623aJtYj+HDhwPwzDPPsHv3bi5dukRubq47RfuNnDt7kBivJ9BpyycfAoK+LWLQbObO3MKCHQfIbKpFFUGQwXChCF2Jisa30i1lCU6ZkG8PosgyBi+F+5YXo4+u6C2v5deRTpFjOZB3nk9Pr6FgXBnckINGksv45+zlRN6Qg0NFgxiW4g4luHz5Mo2bNGT8jlY4sbB+dj0cX2YglDvkCDoY/sEVlu69j8wsP3c5oqiwevFStJXmEBr1MKdOnWJwytcUOMrc29gv59Nkv8TgwYNp1KgRPXr0YNOWLYyZ+SUHDp3noRoPkFgzik4PN0AUXfVJTEwkKyuL/Px8OnfujGj05WpwY0RtRQiDn6+AI/QqT3TowpB6D7Bm1WrGjBlDfHw8kydPdo9GePj3kbPqIuBwr+cVKCR1VQgPDyc6Opr8unW56GuC8u9NlGFV3yeoE+Hxgfbg4ffmj2lW6sGDBw+/ExpRpF5YOM/27MXChQvd77///vtkZmYCsGjRotvuW71aVXQ3iEQBOHHiMJs2baLfwJaUNTShagUQBVSdgKN2EBGhgTdnrsQVniGa7ciSgqoKOG0imesNUJ5+SCsYqOrjclVpVqk6i9u8gsl4c5KM+Bpx+PjfPLRcXOygf//+HD9+HICYmBieePJ5ts6JJfdSFepUSUXQVPStqE6VrMt6unQ8h8HgskrU6yWSmlxBq7FhK1pBnTp1WLh6MznrtUibgpAvuUJJIqrFMG/ePBo1akS3bt2IiIgARaFtdCz69BO8OrorXbo1RBQF0i/m8uboRRjUpvR9+l0SB77LlUrNCKpWD51OhxBhQ2xajFi3DHOQFamunpOlP5J9sQHtEl9l00+tWLt2tUd0/04Imgj3a1mGrBwNw4YNY+jQobRu3RqNSe8W3QBGgw711qSyHjx4+B3wCG8PHjz8LejQoQMXLlzg4sWLAERERDBq1CgEQWDy5Mm33UfQVALDA4AJ0KJi4Py19owePZo6CbXQaf5f5kBVZfZrTxMS4INOK7pismUZxWbFtPG0ezONTqVpYAmRoo28NAttQp+jht/9NxU18rWu6A1aRFFBo4FXXn0I/8pfgOCLonrhcGp4dnQBixcvJikpiYYNGzLx81nst4ZyoSyajavr8vPqUCS7A7Vc4AsalXqtzPTukcyQQfu4r2Ua/R49weujdiJJsP7n7zh9/gwL9l+BEh2YNagnfJCOmSjdAF/+tJ2HHu5KbGwsc+fORRAEKlWqRH5+vrvehQVlvDz0G/bvuUCgXxyndxaiV73QeftzvFCLTbiA2KgUMdKBUMUK9UoxCU4+jttBhI8dH2+IrnQE1fz1Hb9Tu1Pi8+U7eW7qUub9cgD5/zV4fguyrFBaYuWPPAjskGWKbbbfXEchYDqIwYAWURdBSsbTTJ48mR07dtC7d28+GTAIk1aLABg0GqoGBlKzkie05++GzSHhlORb3r+cU8Tw6T/xxMSFrNh96h7U7K+FJ9TEgwcPfxtefPFFIiIieOONNwCXX3ZkVCRKeDifTfuCfve3vSUBkMspYC3I2WBojaBzxb0ePXqUTxctZHdoEKqioNXpiLqayfZPp+JwSmTkl5B25jT9Bwxg1rTPmTF0PtoS0GggtLKDL9aeR29UCKp/iTPpxwk2xaIXTTcdO/taEWvXbGXWV5M5cHC3qz5KKUgXQVMZq93EnDlzeP/99ykoKKDxky8i66vgnvCpKjjXbyLG7kdhbhGhTfzwq3yc+nWLkImiUf0YWjdKQacTUFWwO1QuZ5kY+HVfZE1FXcqzxaNITgIEC1tmvY0kSXh7e3PmzBnatWtHeno6ALu3n+HjD1ZhMbs80FXAGqbDGq5HLLGha1WGHHfzz06soZiva2zFWyNVvGnogBg4419+nyNnrWJvyiXsTgmjXkuv1omM7v3AHe6CWzl1/DJvjl6M3e4kLCKAydMHUCnE98473oCqquRZLHjr9XjdJonUf8rK1NOM3bweRVVJDA3j2x6P4q3/9dTht6sfqhkEbwRBoLi4mA8++ID58+czZswYugx4gk2X0gg0edE3IfG2ibA8/DVRFJV3v13PzwdTAYFh3Vsy+MGmAFjtTrq+OY9isw1FVTHqtYwf2ImOjWvc20r/ifEIbw8ePPxt2LNnD8888wzJyckIgoCiqjw4bSrnbVa0Oi1RgUGs6vsE/jckv/lXFBWa+X7FJqYsnkekt5Zdy39iwIABPPfcc7Ro0QJBEBg5ciS5ubksWLCAlPVdkWzXqN3Ygk6voigwNScSndaEUW+iT+znBBpuDieRJInw8HCOHDlCTEzMbeuhqipLlizhnxeOkHmlIghcFBV8jpeQk3WA4mspJEjNUGWwKGVM2Taen9YtJy7ke5563OiOy3ZKBp5b8CDHr7qS0ghcD4hxH4ztk4eg1WgIDAwkJyeHqKgoSktLATiTksmoYd9iL08upAhgidJjD9bhc82B3KIMZ10ZNBV193JaWd1oAz5a1z5WG3y10MTiVabbWuFdf8+W+IirVXD9fCUbVYuOYDQaMZlM7uVfrRuNRj6fcBBreRpQURRo2CSWiZ/1v2vLwjKHg/7Ll3AmPw+A9x5oT5+ExLva90ZssgOtoEEr3hznUWi10vLr2dhlV2+kXqNhUP2GjGt9/+2K+U2cO3eOUaNGkZyczKeffkpMQhO+WrcfUYDnu7UksWrEnQvx8Kdm7f7TfLhwkzs5j04U6FHDiFSSy/lrhZySI1DFioyonZvUZMLTD92r6v7p8eSW9eDBw9+GFi1aYLVaOX78OA0aNODwtQyydBpEDChAVlkpi04d57kmze9Y1qnkq7zxykIkSSLO3pjnn+xMoFOiqKiIwYMHI4oiTz75JC+88AIdO3Zk48aNdLz/GSh5F1AxWxTSBB90Ri3gxKZIbM3+gl4xn9x0HK1WS7du3VixYgUvvfTSbesiCAKPPfYYp7YuJ+daJRRVQBRVwiPysB71JTSoAbHX/JGcLuFmwpsXO4yl9bAG9Hp0EKK4DHB9JkkOClL2YwiugiTL+JkMFJZZoVyEiih06tSJSd8+zxOf1CLVsRpJduBwOCgsLGTB4hlk6rMJcsSAICDprTj8dQiyE3PeeYK2xVASa0M1qSBCZIqT7q3acTSrNk3D/olWNFPsaEGLdk+Q1PZW4XtjX9G4H49QanO618OD/OndsTdWqxWbzYbVanUv+fn5N627P7fY0NjbukW2oqjs3HEYg+Ep/P3972rZJSictpQhldft7a2bua9yDOH+/ne8jwAkRWbcsUXsyk1FQGBgWyPQAAAgAElEQVRk7Yd5NCaJkpIS9uzZw6pdu3D4+4LB9ZPtkGUuFhbeVdl3Ij4+nlWrVrFx40ZGvP4u+kY9oFxkHb+QyQ9vDiA6JOB3OZaHPyZXc4uwOypGmyTJyaGT6dQO9yEhviqnz8tI5dltDToNMWGB96qqfwk8Pd4ePHj4W/H6668jSRIff/wxOy+l88K61Zid5Y4PKrzYrDkjW/x6tjeHU2LEzFUkrzmDtkx2u3hrtCIj32jK6DGjOHbsGHv37mX+/PksW7aM+Ph40tPTSU1NJdA7BdW+lxmLduBobUEQRETR9RgO1FdhYNzcW465atUqPvvsM7Zu3XrbOu1Pvcy5jDxsvtu55txFxpVADHoHluNG0jfGUGbJxvvENYQbPMedOhvGtk7q1Y3grWGH0esUBEHgXLov9e7bx9tvv8vQoUPp2qc/YkJnDEYTsqzw/uBOrN/0OmEditB6gQY9J7fmYN5di3Wb1lNn2lPYvUQqy2YUh8jJSyEoi37i9SFD6Pd4f8aPW05yylWsPjauXtzP0MEdGD169L/1XR4+d5WXv1zhSlmv0zBnZG+qRd7qKHMnhj09j4vnspEkBYNRS/dHmjLwmdYUFxff1XIkMozikGB3eardTvYXMxALiwgICCAwMJDAwMBffX02yMpW7RWc5TY2gqRi+WQLFw+dIjExkTifBA4+UB3ZWwsaEcEhM7ZhS4a0//X7tNhsIyOvmOgQf3y97m4EZ+Hmw3y2bAdyuSrQivBi1+YM7NLyN19TD/+as/l57LlymQhfXx6Mq35PE0IdOXeVF6f9hM3pEt8mvY7l7w4iLNAVbrVyTzITFm1GVVUaVIvki2E9Meo9/bb/Lh7h7cGDh78Vp06dokuXLly6dAm7LNP5+wVklZXikCQEWaWzbzz9WzWkVUKV2+7/9S8HmLNuH8bkMrTWisl8oiiw/JdR1KufwMKFC2ne3NVrbjabWbp0KWPHjqWkpIRnn32WJ598ki/TL7D96nlkRUNMcB6d6h6jpk8felZ76pZjWq1WwsPDOX/+/C1+1vPXH2DOuv1IsoLkdKA1b6RZcwFLWh3yT0aiqgoJjWS2Tt6KN76IaJCR0MWp1O9Vg6BKoRQWZxLue4pLl/NYsiKTIqcWg5cvpdfSiI6KYMCgJ/ELq0ztarEUHM0no+lcTJEV567IKpteNRDTsyXHIsxMqr6HJr45oMKBvAjOOj5gaFOXeFNVlT27D9Oz5z+QFTsmk4mXX36ZMWPG/FvfZ4nVxpmsXGqFh+JrujW5jqoqqCXvgXU5CCYE/4kIxnY3l1Fi5csp67mUlkvzltUZ+PT9aLR37z2w5mwqYzetxypJiIJAiJc3Wwc9hdNqo6ioiMLCQgoLC3/19eVEE9Z6FQ0GqczG1U/Wol4swGg0ElZWBR8xhrxeVZD99QQfL6RJw0Rskf50bFyDXq0TbxJuB1IvM2LmqvLwIZXpw3tRPy7yjuex7fgF3vj6Z6wO1yiCoMpkbltIlUAD3bp1o2vXriQmuo51Miebz/buRlYVhjVNollU5bu+Xn8ndi7fz9qvNhIY5s/TE/pRKSqYAxlXGbxyGYqqohVFOleLZ/KDXe5pPTcfOce8Xw5g1GsZ8ch9t4QYOSUZm8N51404D7+OR3j/F9h+4gLrD54hItiPpzo3w9t49xNgPHjw8N+nfv36TJs2jfvuu49im43vThxj5qodCEUCOlmLQadl8pCutKpb9ZZ93/12Pav2puBVYmNku700bZTB1Qxf3v0kknYP1ccsSRwoKeLxfo/TNb4WQYZC1JIPkOwZjHvvMIW2B9m0YyfaYUNcMy0BARUfxcpXPQfSPDb2tnXu3bs3Xbp04amnbhbmrV6ehvWGYWI/g4ZtU1+iqNBM9rViwiP9GTnqJU6fTCVB24SzRy+Q6bhEgX8mVZq2RY5thiiI+BlEJg1sy8/JOazZexJZktAoEpd/nkVokD81a9YkJycH+bCRTgs0BNSVEcq1qbVUYsrDKUQ/0oJ2/X15p+phvDSu0BWzpOWsczSNq7rq7XA4SEpK4vnnn8fHx4f33nsPSZJ4+umnee2117DJDgyi7q56AFPzcum3fAl2SUIriizo8SgNwm8WDIp5MZROwJV0CMCIELIBQRN+S3n/CctSklmccpJQL29eb3M/kb5+d96pnD25Zxh7dCF2xYkAGAUt3dNCOLn/CIcOHSL/XDF1pKYISvkF12so7dcYh0GLUa/l5V5t6HNffSwWC0VFRQz4bCVFJeWOOxqB2NBAfho/+I71UFWV8f/cwM8HUlGBnq3qMqJnK3bu3Mnq1atZvXo1qqrSrkcP9lSLwVEuH0xaLT891p8awRWNhx1L9zLl2VnYLQ4eHHw/L88cgij+vYzU9q89zPuPTcFucSBqRALD/Hlv0xhG7N7CaXOFR75OFNn/zHMEGE3/ojQPfxU8wvs/oNRqJyU9iyA/b+KjXA+cTUfO8vaC9dgcEnqthqoRQXz8Uhf8DV746Tz/VB48/BH46KOPuHjxIrNnzwbgfEYeAyYtxH6DlVb7hvF8MqTrLftuPXaeN+b/zAttt9G+7gWKZQORhhLyirzpMbUOZXXroAgCRoOBIJOGHV1/QFTzAQWnpOW1D61Y/PuwMSQQbnCO0JQo+J8u4vn21ahfrx516tTBy8vL/fnChQtZuHAha9asAVwC9quvvmLusTJEXUVPb0SQL2s/fAYAp9PJgAEDyM3NZeXKlfj4+ABw4MABXhk1Bkuth93JbAQUbNcuoA+pglD+nlYj0r9tfXKObGT27Nm8/vrr6NP92Ll9PU3nFIGgImjh+1dTObU9B//IEF76tjkjq53GVC68HbIOfcBbiN59sTkkXnlrAufOneWXJQvQakS6dOlCkyZNWLpuJZXf/AdlXuClNfBpowE0DLq14XMdVVXp8t03nC0scL/nJwg8WmwhOzubnJwcsrOzea5/Jn263bCj4IMQOAtB3+zXb5B7wLqMIyxM342vzsTI2g8T71vRgCgrK2PBx4vYPG8XFqeNvNa1UcIq4setuZc5v3I6Wq2WwMBAqjZ5EVOea0TCHqhFV9ufLZOfv+u6FJttCICf9829m6qqkpKSwqfr1rBdVFHL719BVqiVX0iSwURYWBheog/fD1+NVD7B1uBl4IXPBvPQsx3+3cvzp2TiE5+zZeEu97qEk6uhqWif7o49LNT9vk4UOfjs8/gZPL3Jfwc8QTr/Jpn5JQyYtBCHJCMrCo+3bcjwHq1ZtvOke2awQ3ByocYZ+u05i4rKqFrd6Bnzx3rYe/Dwd6Rv3740btyYadOmodfr8fc23uTcIQoQ7Od1233bNqjO2MfaUubYRvv1j6MRFIwaiQhTKaX1gkGjQURAyJIJF/Ox2Yvw0rtEkE4r8eD98MnXR/Hp/hBl5S4VumKFyC12NHYTP3x9mRnmBZw+c5CoqCjq1q3rivONi2Pbtm3k5+ezdetWxo0bR7Vq1YgMr0mWpjImoxFFhVd63QeAzWajT58+qKrK2rVrMd7g1NKsWTN+/GkVj45f4G5sqIhEV69FdrHVvZ0kK9gllQ8//JBBgwYxfPhwMi9fo5F4H1s7CRgi7fjG+1M3IhJb9UOIosilJQrSaAXluqOhrLLviJYadYsZ8NEiruXr8YpuznNTlzJ7RG9mzJhBs2bNeHTxuxy2XkFAQ5lk46X9X/NUdhy5Obnk5uaSk5Pj/nv9ddhb4xB9KjKOlskyFouF6tWr06pVK8LCwqhe+TQqsxC47rmugKbaf3L7/Fd4KKoRD0U1uu1nPj4+DHvvWYa99yw2h8QDo2bgcDcSVQJMWkJCQnA6ndRLaI1cUBEGZCiWaBQUettyfw1/79sLQEEQSEhI4ClfHw6sXYnF6QpJ0Wk1xIWGYsvO5cCBA2Qm5+KUtAjlqULsFjvnjqb9pjr8FQiLDUFn0OIsb4CYjF7sPriLazon/Zb/iCCAqkLvOgm/m+hWnefAeRg0VREMd54k7uF/j0d4/5vMWr3H7WsJ8O2Gg/hZMrEUF7ntt8RaZlSTjL38Gfhp6hrahtclQH/7H3QPHjz8vlidTladOY1VkuhcPZ5wH9dkodjYWGrXrs369evp1q0bIQE+DHk4iekrdqDKMg67hcda1frVcrsm1SFxZhI22SUsLJKWArsR4Ya4YNkEhfleiMKNSV30tGj9KCde/Iqp749l+oVDlFolKq0Fjb3cuk/WUCfuUfYd2MT58+c5deoUp06dYtWqVUiSRKVKlfAyeJHUMgmNRsOprSv4fN73CF4B1IkNJz6qEmazmX9074FauQF+MXV47etfeLN/Ryr5V4jU8CBfQgJ9uFZQiiwraAQ4uuFHQus9gMEvCEVRUSQnsd4u0VCjRg1++eUXli9fzsiRI2nQsiHb9+4mRh9NRk4BVavFs2PjOr78cjqfzfPjteGVyMnJ5se1fixd8SmXbNMJbdIFUWfA5pA4fSWH3clp3F+vGqNHj2Zl5nmEkIpno9mqsOzYYeJ0JiqHhJCQkEBISAihoaGEhIQQEhLChP17+Ck1BZskYdBoaFe9BhNeubF7G1T1AdLSZH7efwKTXsOj7Qfhpwnmz4pRr+W9QZ14+9v1iIJAsK8XX08aQoj/J2RkZPD9go1s/vkKSvlEWg0CjWN+X0vAVtEx9KxVhyXJJwGBTtXj+azTQ4jl4UGFOcUMqv4i1jJXY8fgZaBB27q/ax3+DPR9rScHfznGldQMZFnh6Qn9CI2uRCjwc/+B7M+4SoSPL62ib28T+v+RZYUfF+7l+JFL1EqIot+g1uh0FdaTqn0nauGw8jUB1fspRN+Xf/8T8/Af4Qk1+TcZMXMl209cdK8LqkxUwVFkp5PsSg1RRQ1CkhmhkoRaqEXQq3gFi3zb8kVivX/7rHsPHjz8NuySRI/F33O5uAhFVTFotaztN5Co8tjbmTNnsmPHjpvSxQ8dPoIly1fQt/tDWMxlLFiw4LZlW51OEmdNcze8XahUJK5R0ZUIeGeKtGt6hvc7bUdAJd0cSWyV5Xw4fw4bIvMQdFpUScV3ignRJtxQksyaLWPdvdSpqam89tpr7Nm+lwSpOTqrETSQojlAtaaxXLhwgZKSEhISEqhRowY7d+4konlXlErVsUsyGlEgNiyIpW8PvOk88kvMfLZsB+nX8jiyYSn9OzancbMkPlqwgsuZWVguJVOSlc6uXbto2LChez+z2cyYMWOYNWsWoQ07ENm0E6IA8dFhFO1ZwqAh3anR2h+D6ENNv3ZoRT29XniDdDkQyj2qFaedwsPrqBPuTYMGDVhZehL/h+ohi2DOMWIr9sZbp0cnivz0WH9i/G+1tHNIEjMO7Wd/xlXqh0UwIqklBu3N/UnpWQU8MWkhVocTrSgSGujLkrcGYNL/uRPEmG0OisqshAX6otVUNPiyrxXxTP/Z2MptFg1GHZ/NHEh8zd/fj7vQakVRVYK9bu1MSt5zhqlDZ2MusdBjeBf6jO7+ux//z4CiKORczsPb3wvfQJ/bbnPscDrzZm5BVlSeHPIATZNuPyLz5Wfr+Xn1Uew2CYNBS8v7ajJyXBeys7PJzs4mPvhV/L0zb9hDixB2AkHw9LH+kfAI73+T/amXGTFjJTanhEGnoUblEOaP7osoCtgcEmlZ+ezNO8OX3x5ElQFVwDdOZfMrr9ySHMGDBw+/P7suX+L51Suw2CRULWhEgeHNWvBS8xYA5OXlUa1aNa5evYqvr6snfOjQoWzdupXx48fzxhtv8MUXX9C1661x3gD9li/hSGY6DkWDSeOkXlAOJwpC0Wi8sDskDGdlRDSUVFfRaWVMGgmzQ8+QJs3JNV5iW26KuyzTch36ZA2oIooioTWU4h92halTp/Lee++xbNkyxo4di/mQyo4l+xDLh/D1Jh0/FSxAb9BRWFjIrl27GDZsGAEBAegaP4JqvGGCn6rSzi+HuCoxxMbGupfCwkLatWvH0KFDb3IWSUtLY+LEicyZMwe9Xs+cOXO4/x/dUIAq/gG8//77TJgyjVq9RyNqXRPIdVoNpWnbGDbZgYKEKGippK9GpbRuDH52GFX/8RJWh4QoQqCPF18804HTp05w5MgRNm7exJXqOgJbJVBmqcL1mZuiINA1viZTOz980/VXzD9A6QeADKZHEPzeQxAqBKjT6SQ9PZ0Zq/ey/VxFSnuDTsNnz3cnqfbtJ7H+FTidnMHXM7fgdMr0f7LNrwo5D/eeq5fzeW7wXOzXG0oGLeM/7omXj+IOq7oeWrVvi4AsVegHRXGy6+gkQkNDCQ8P54cZVqpGO24oXYMQdtItvK0OJxcy8wn28yIi6NbJv//H3nlHV1FuffiZmVPTe0ISSICE0CK9hg5SFEEQFKkqKlJUiqICKjZQbCiKoCAqXBEpShVQOoQWOoQSIJDee3LalO+PExJyEctVr/d+9zxrzVo5ycw7e2ZOZvbsd+/fzskqZvFHP1GYX0b/Qa3o0ft/b5bi34HrNehfpF3DOnzy9H3sOJFEoI8HQ7s0q+r8ZjLoaFQnmO8PnEWwi9x4tbEl68jKLyX8F5oR2B0y3+w+RXpeMT2a16fdzzwczp9L59D+SwQEedHvnubodBL7zyaz/0wyEcG+DOl6B3rJ5dy7+N/m9MV0dOdUvBBAUZHdHaT7pENl2mNAQACdO3dm/fr1jBw5EoCcnBx69erF6tWrWbp0KaNGjeLMmTP4+t7aMGLpPYN4Y/NUsh0avcKuM6TuRc4VBZNvWkRj/zq0G/Ao4R27UIYVhyrhUCUQ4MPlX9FvUGyNjpAV/axo5/PRLJ54eKlENRHYuPEI9erVY+LEiVy8eBE/Pz+ejptZ5XSDc4DSgjL8a/litVp54YUXGDFiBHPmzGH6Z5vYc/oqsuJMdTHpRfx8vDl9+jQbNmzg+vXrJCcn43A4qFWrFvHx8UyePJmIiAgiIyOJiIhg7ty5dOrUiYmTJvHsrp9wz8tEp9PhU1pO3ooVtO7SFNUE1kpRFYesEN40FFm7AAJcvhDIlzvCke2n6Dt2Oq88PpQfjp5HJ0l0bVmfY7kZmBs3ZGb//rzyyiuMHz+e/MNWjjUFrXICQNU00gqKOXA2mZYNwjEb9Gjy5UqlEqeTIZd+x5Yf0tn0k0RycjLJycmkp6cTFhZGUPuB4F2bG7MRNodCblG1osT/Rxo1CePtj0b93Wa4+A2cPZ3Kzfo9FRUWhg+bgKBPJygoqGoJDAzE3d1ASXF16lpAoA9Wq7VKAUiz7kIrehrQnC+u5pFVTndmQQlj3lqJxS4jKwqTBsYxomerqrFsNgdPPraMosJyVFXj0oVMDEYdnbrePuXOxb+Gy/H+AzSrH0qz+rfXRi2z2lFvmk+QJLGG7Nc/o2kaT378PaevZmJzyGw4eI7XH+pLz5bRVescO3KVl5/7FpvNOdV0YM9FOg1rzpyVO7DaZYx6HUcupvD++P/NaT0XLgBsDpnlGxMQNNCXKHhes6GJkBB/hgn7zvDehy9gMpkYPnw4K1asqOF4P/744wwbNowlS5YwcOBApk6dyrJly27Zh1mvp16uBy/0Xo+qqBwo8+K0asKsvEakOAVz9mk+eGAGTxyJp9DqnJKXVJX8Eyf5auNaYhc8gqTXgaDQTLtGWNxhopu9wbRpz7F1VyaDBg0iMTGR4OBg/Pz8AGh/T2sSj1wChUp5Mh98g725fv06vXr14uGHH2bGjBkAzHiwJ+l5xVxMy8PLzcj8CQNraDlfvXq1KtJ95513cu3atSpnfPfu3Vy/fp1r164hyzLmxo1wa9wIdDpkIMdkQJzwGHmiivtlHaKgomoigiqjV8+jqlBR7kb8T82cEToBEtKKGbP8W6Z17URRmZUh336NFQUEiPZL4Nshw5g7dy5NmjTBp3ksFYrsdCg0SDqbzbT49egFlWjbJUK8TjF9nAUvz8pumqKd82e28I9/lCAIApqmIQgCaWlpWC4lEtK69o3Gm1UBEhcu/hOoFVbzpd7d3Y0v31tE+7joW9a9fCmLZ59cgSKrIMCs1+6rIbspmLqD/yqwHwNdJIKxusHSh9/to6DUUpUe9/7avVw5tJ2KUmcTqLwcG0X5dbjhFtpsMnt2JLoc778AV6rJX8ipKxmM/2AtVke1tOCK54cj3UbLtLC0gr4vfIZDqX6jNcul1LMmIQgCoiiSlxaKreKmfDpBpayxhE1X/TtJFNj73kTMxv/uHEYXLv5V8orL6T9rKXZZwSexAslRfZsTBAfXcleyaNEi2rZtS+NGtTl5bBO+AXfQIKYlmzdvZtasWfTs2ZMRI0YQGxvLwoUL6devH5omAwKC4JxRmjp1KlH1fNCFnqaiQTGCzrkfnWBk1+swasjjtOjWlVf37CK3opwHmsQysF4UM2fOZNHyzxk7owEj+0q09SvEZhfYukvjoaeyCA0NZerUqdx999107NiR119/nVGjRiHLMu2Du2Eq9qRLn85MWTyOIksBvXr1YurUqTz99K2FVHaHjF4n1XhAX758mR49evDCCy8wfvwvy8wVFxezaO9uFl1MRDBU9iTQtKoW8npZISypBEsKuF3KwFCRS5cNFvJyAtm/tQUOux69wYEgqlgUA5IMaKCJUFpXQzWATtVonpqB7fIVzuXmIA+6B9ForNqXoUDALUdEQKVtLQMPdg6mY8PXEYUbSiUmBN+FNRyNGxy+kMLkhd9jczhVQIw6iS+mDyOm9u9T+nDh4q/i80W7WPWPeAAGDG7NhMm9b6tjb7M5yMkqISDIE7P5t/cIeWL+Go5cTK36LKDS2TOfYF9PvL290UlurFuRjlLZtlRvkBgyrD2PPNH9DxyZi5/DFfH+C2lWP5Ql04ayPeESvp5u3N+12W2dbgCjXldD0kwAQgP96d2oLqqqomkae7bnkXbNWrWOKIgE+HiRXlYdSRcEAd3v6LrmwsW/QkWpBaObAelPSGvSNI3Es2kUF1mIbVYbT68/pnnv5+lGeKAPqTmFCGrN2IIsq9SvX59hw4bx1PiOnN8XjGgbh5arp254IUFBQYwcOZJ58+Yxbtw4li5dykMPPcSlYw9iUDYAIprnM4juD5OZmUmrVq3IM6ch6Iqq9iEKOqKbB3D58mUGDhzIkgGDatgwf/585s2bR9m1Fvh4OXM7TUaNe3rr+O677xg9ejTz58/nscce44cffqB79+4EBwfjcDhQ6jqoqBvNyfq+vL95N1++NplXX5nN2LFjf/ZcGPTO23yZbMUk6rl6+Qo9e/bkpZde4rHHHvvVc+nt7Y2hIA9R0KGpNxzum1rPIyAtvYjHjXQTjHy7IprAVhIOWaJV3HkatUimuMCdzas6oWqV3xdVw5gvYKmlYbfb2Lh5E/KVZNzrRnK7ZDxBkGjRqg1durdHs9dHK3kNNAu4P/azTjc40wInDezEZ1sOIYoiUwZ3cTndLv6jeOSJ7owa2wVN0zD8Sit2o1FP7Yjfr8ozpMsdnE7OrOoxEhUWzPvPTa3h4IcGH+Pj97cjCFA/KpgHx8T97v24+HVcEe//ML76MYFPNh5EL4mIosiX04cREVw9FZVyLY+nHl+GpjmlhQYNbUOXAXcw9t1VADhklalDujC0S7O/6xBc/D+nvLic53q/zuUTyegMEjO+nkzHAW3+0JjvzNnInp8SESUBvV7Hws/HEhTi/esb/gJFZRbmr9vLuf3JlF0sRHYo6A0iRWVnuZ65B3d3d7avlKkTVv2gu3LNQVS7qzgcDsLCwjh8+DD16tVjyceDGN7/PCbjjdkoE4L/KrrfOZ6XXnqJNOUIecE/IVUGoHSCEXVfVxKPJfPJJ5/c1kY1726Qk6p/IfohBh2id+/enD17li+//JI777yT/fv3M2jQICIiIgjuPobsMgcqAqrsoFUdb5a+OO62+7AqdiYnfMmpousIGuQu2csLdz10SwfMn0PTNN7f8hi7FwVT7DBT2EiPJoBvgUBaM0CScJOthD53Ak2pfoDn3B1ESY8Iwt1KGNjxKHq9QmGeB5tXxaHIzvOtoeHw1pDDBCK8vPn+wVGYDQYUVeW+r5dzKjMDSa9H08AnVY9g1TAb9Xw9YwS1f6FOxoULFz/PvjNX+fHYJWr5eTGmd2vcfqartqXCTkWFDT9/j9/UPdbF78fleP8HkpJTSE5RGTHhgXi63SqqX1RYzoXEDPwDPKokoorLrVxKyyXEz9P1UHLxl/LhxM/4YelOZPuNrnQGVmcvxXybphv/jKaWopW+D8o1MPYmo+BOxo3+DHtlkwlRFLhrQAuenn7Xn2Zz/L5LXExMJ6pBCHFdY1izZg3PP/88p3bocTdr2FSRLQUR5FbouavJF9RxD2DSpEkEBwfz4osvYs1/F8m2COlGfrDggeA9l4bNnuL777+nsKiQz/c+R+tB/hTmlxBRdg9+SiPee+89tm/fflu77OXHKc+4H71Oj6bJZJTPICb2YY4fP06PHj1o3749W7duBWDevHnMmDmTOx6dV2OMsAAvNr42lmOZ6fyQdIlgdw9GNWuOqbL75KJLP7Li2j7sqvP8SprAph7P42/0vNUeVWZ96lEK7GV09I3mozkzaTAmi60TulVXOwKiXiaxQQoN2rSmjtXGhec34Wb1RkRCMwqUjfMnp159ooKz6NXkDEadgqbBtrXtyM/yQxT0SKLI/YNaUDvYh7ujY2rIADoUhQnvv8epC+dJPXCYyS+8ha9/AP3aNnTd31y4cPFfjSvV5D+QOkG+1Am6VUXhBj6+7rcUXni7m2gTU/uvNs2FC1IvZFQ53QB2m51vvlzFfSMH4eVVLVGlaiqXSjLRgAZetZAEEU3T0ArGgHwRcKDYEqgoKKlqvAGgqhp5+YV/qs0dOzegY+cGVZ/vv/9+Bg4cyLnD91M//DxPp3bjitULhyqyMv4jPm8/npEjRzJmzBhmzZqF0bMLsu1zwJkWomkygj6WzMxMQkJCyE7K4/BbFUztupRzaaf44IMPWLZsGZcvXyAnzeIAACAASURBVP5Fuz5Zso83Xs/g4P5vOXIsjXff+5jDh0fTsmVL7rzzTrZs2cKeCytJM+7C3uI6oybdzYniCkSjs6ZDEgVqB/oSn5rCoxu/q2oks/VKEquHPogoCKRU5FU53QAmnYE8W+ktjreqqUw4soSLJRnYVZkl9h+Rsy5Qz+GJT90Siq97oikiiApp6WfIPbyZepeuYGrcmOte57nvntGcKc/H3saM0tYDkiCzyBdBrU4J7zXgGOvfC8KSDy8+PZa7u/38VLZeklj49GRat25N9xbNOLFlBd98882/culduHDh4j8KVyKwCxcufhcd722D0c1Z+CZIAiYvI6vWf0N4eDh9+vTh448/Jvn6NZ5K+IJxRz7jiSOfMfHIUmRVAa24yukGkAQrsrqC8Ah/jEYdguDsr/Llijm8/fbbOCpbUv+ZqKrGsSNXObT/CvViV5AkjOOKxQubpkMVRKyKnTUph6gb0wRj83voNvVjnvsyG8V9DhnZ7pw5r/GPzd2psHpjt9s5suEk7zy4iMCiOkzv9QqGXE/S09PJzs4mPT0du93+s3aUl5fz6quv4u0TRv2Y/gx7cBweHh5VqSlz584looUnxx2fk2e7imdthdZPOOgUXoYqO8+Lqml0aVqXL04exyo7nWubonA+L4vr+ScB0F0uRK3UCBYQMEi6W5p4qarKgQsnOF+Yhk2Vna2ADDrK6tbBUqLQauJZ/JsWooUrBN7hTkr2DoKDQnni0dfo2WUMgmjiiXcexfFUCHI7DwQBzL7l6I4LxM9pQc5pP3ITfUjdGsHHTyaz7f2LJPw4mtGjR5Genv6z50ev17N48WJ27NjBjh07uHDhwh++9i5c/FnEJ16j1/TFdHhqAa+u+BFFVX99IxcucKWauHDh4jdSbLXy2KbvOZ6Zgacq0WhjFlHuPkz6aCxBtQMoLS1l+/btbNiwgV1Z5wie0B2hUllHrwr0tUfSRPWif7tX0ElOJ1FWBfZdjGDd0RH0rt+EkqIKOnVriEopEyZMIDMzk8WLFxPUtC4b0o7hpjPwQERHfAzuv2TqbdE0jddmruXo4SsIgoBeJzH94wE8e2UFVtXpnIrAA5FxHFpTQFJ6LiBg0En0aBHF80M60bBhQywWC/v27eOee+6hrb0XBZnVhZVuvm50f7EF8fHxJCQksG3bNqKjb5UGmzdvHp999hmjR4/mxRdfBOD8+fN06dKFU6dOERoaynOfDiIkrgRRcs4IGEQ3gi0jeGVBMpLe+fJj0uuI7VmbH69drlIaMYgKe+5ew774Zkx5fitim9q0mzSYUK8AHgrqSH5SKmfOnOHs2bOcOXOGc+fO4RMZQsicwYiVxV2aolIRf4XechCN+/uxfL0viqzDYZcxOsrwuKwi20R0ej0WSxkrv5/G9IOLuaArxM1spry8At/3PUF2xnfczHa+WrwWd3cHogCqZmLt9juYMPUHJk+ezJQpU/nHsoPs33OB4BBvps3oT61QXyZOnMiRI0do3LjxbTuJunDx76SwtIK7Zy3FWjnzZzLomDggjhE9W/7Nlv1raJoDNDuC+K/dV138PlyOtwsXLn4TT2/dxNbLSTgqIzseksQkvRvp6emkpaXVWDw6N6DWY90QKx1vxeog+8t9qIdTGDo0lLnPlKNqAiUWI48sHczFE0lkH1hDbGws7dq1I6hOFBajHyUFuazfuITQ2QNQdQI6QcTf6Mm3naZg1v12Ka0bXL3wE0+NP4DNVq3E0qtvLPn9Szmcf5my0lKQNTb3f5G7n/mCm++Owb6e/DDnUbZt28Z9I4fR99kxpGWkE7TSDUtuRdV6mofI8usf0TSqIY0bN2bGjBn069evhh3FxcVERUUhCAL79u0jJiam6m8zZ87kypUrfPPNNxy6vpa9+R9hdHPaqxOMFB4fyNo9ZcgeYAnSEEWBsIIiUnyMuHuIyJrAmOizPHvHETJz4P7xgZSXl+Pv78/Zs2dxOBzExsbStGlTYmNjqVWrFmvWrGHbtm30/uBJUvxlJEFEJ0rMCuzN3vXbWHsoCSHsDoRKBRu9KOBzzY5a6Izmq6rC/SPbMOuVMXy05Wu8wwIRU4qZ89Q29JVSpzHRucx9+Sfc3apnMdZtkVm8sj7p6emISj3Cg9qjKM48f/8AT1ase5LS0hIaNWpERUUFx48fp169er/7urtw8Wdw+VIW787ZRGZZGZnBQtW9EKBvmxjmPPLn1aX8u1ArVkPJbEAFQ0cE308QhN9/b3Xx23HleLtw4eI3cT43t8aDpszhIP7kESLDwunQoQPh4eFVi8MkMGz/B5TJNkDDy8ODBa8vJPVsEsdPnOSuuTo8vTSySn1QZOjUIBirz93s3r2bQpuAZ7s6aGShqSo+9/ZBETUEBGRNpdRh5WThNToENri9sT+DJl/Dkf8aAt0ApwOpofHjDydpVuTgoXvbcOj8MT6f9Q7bFjQjzN+b9LxiNJxR8JhwZ3pGXM+uNF04lmsGAbFxfYrFcvSfWJxtKAWoGObNP7Z/z9ixY9m6dStJSUm3ON7vv/8+rVq1Iisrq4bTDU7Hu2nTpmzfvp077xzEpoNf4h9bjiTqaB84hq8uJINRR3m40zAVjWv+7vjti2fOc0XU8bUR41MAgCTBsWPHeOGFF2jXrh2xsbGEhoYiCAJlZWW88847zJw5k0cffZRLly7h4+PD2aJUCu1l3OETgbfBja53tMV3/QGWbTtS9SIiiiJaDcUDjTVrvmXKlCk80OZO569CYXe34xzZV4zOXaRI0SNI1d8fm03g1LkKiouLiY2NJSclHMUptY2qauTnlVKQX0pAoDcffvgh48eP54033mDp0qW/67q7cPFnYKmw8+yk5ZSV2VAlcPi5gVTdrbp19H9fjZWmZELJq9xI/VNtR6jIXYRX0FN/r2H/z5Fmz549++82woULF//ZnDt3js+/W4fs4wOiiIhAhK8v3704m27dutGyZUuioqIICgrCZDLhrjPRKyQWgMbe4cxqOpimYfVp2rQpd/bqxX094ii3u+PvYaZ7lDfegoWcnByKi4tx1GqK0T8UQZQQRAljLSNSkIJWqXJvt9qoX2Smed1bO6ppmkah1YIkirdq5tt24m3azq59tSkuMeLMeBYQBIHConzWf7WIo5t3YS2rYPPmzTzZfxgnk3PQ9BJSbin3hYcR2z6GXVnniC+5giIBooBW34Ta3B05woDtPl+krn7se/0rTKovSnlzrpxXOXMylbiuMRgMOvLz8xk9ejTNmjWjW7dudO7cuYaZer2e6OhoJk2axOOPP46cE8obbxeSeK4NR0/AlYNb8YkKo9AswQ2VFVVByy+gnaeNNlGZKKpEhezJinVe9OzzFM8//zxRUVF4eXmhqiqff/45gwcPxsvLi1WrVjF06FBMJqcqTZDJmwj3QExSdQOuUH8vNhxMxGG3o5NEIoP9icBEeZkNVZWx2koptR9n2RdLEW867z16tSf+6iLaTbtI7a75HC1xp77egklUOXQ0jEMnHqH/vR3Yt28v5SUiZmMgNzTCNU0jL7eILj2a0KhRI3766Se2bNnCqFGj8Pa+vdSkoqp8dOQgr+3bzcG0FNqG1cZN72om5uKPkXo9j60bT+JwKAgaCKqCUtuAm7uRB+OaM7p3awRBQFU1MtMLURQV0+9ocPO3ICeBdTPgnLkSBIXtJ0rYfSGS1g3++14k/ltwpZq4cOGiBlcz83n2001kFZTSukEYXjmnWbTwI155/XVS60eyJ+Uakd6+vNO7L6GeXr8+4O/kxWVb2HzkYtVnFTsePQoRPA0IkkCExZ19Ty2kZcuWzJs3j6ioKMCZgz583bdcLihAFATm97mLPlHVudWaPQGtcCynzngx49WeyLKuag+SKZ2MvINcu3YNo8FKQaGDDlpfzHhUbW/yMLKxZAU7ss7w6pm1lNsdlGZ64LDoMRtEjMGFGHUKb7QeTgtjOA/0n4+mOfeh10vc2S+WKc/3Z/r06RQXF7N+/Xr2799fZf8/M2TIEBo3bsyxEncyKkQEyTmWo7wYX1siWR3bIt+IOjscNE1J59iadYx/7mE2JfmjqGAvzGb3oln4enmgaRpbt25l+vTp+Pn58e6779K6devffF227z7ApJff5vVXZnNPxyboRZFjh6+yafMPvDlvOn369mLjxo01tH9VTeGTSwOQNVvlRRDIPu3LsQVNUVURRbXToas/b7z1NCdOnGH6xO+5uTmPrNjofa8bU6ZMISsri0aNGjFkyBCWL19+Wzs/PBzP4mNHscgygqLhViKzqHkP4ga2/c3H6sLFP1NaYmH4vR9itTqoCBbJ6mxAr5MQdSLPduzMw81bUlFuY9rEr0hNKUBVVEY92oUHR/3nNqHR1DK03O6oagmioGGx63jxu57EX4lm3csPEer/59/fXbhUTVy4cHETmqbxxAdrSc4qwGJ3sPfUZXYll3HixAlGjhzDveGN+PquoXx93/1/idMN0LpDCOhUkDQEnUa7BnXoddGdvA9+Iu+tbTQ862D79u20bduW9u3bM23aNIqKipizdxeX8/NxqAo2RWbyts2U2WxV4wqG1uA2ltjG+bSIzcZk0tDpBWTFgk1N5pOPX6HoSjuyzkaRd6E+zdraathVXlZOp06d2L5gJd6KnopsM44KPWgCFpuGnOpL9JoMeoQ0RUCPTmes2tbhULh8KZvMzEyWLFlCz549CQsLu8XpttvtLJ+/kgEBIynepPHl699wPaekyukG0Lt58dOKr5nSsTN6UUQnisR5erPl40+I69KdzZeDscugqGDwCWbJ1qOcPHmS3r17M2XKFF6f8wrT/9GDgx6z+CxpKGkVp37TdfnHsk8Ze1cH7u/WHLNBj04n0aZDfb5d+zF3NGtCamoqn376aY1tZM2OolVLGSJouPnbUVXno0cUJX7Y8iNPPPEETZrEEPhPTZNq1fLn6NGjNGrUiISEBKZPn8669d9yMuUncq1XbrHRZrPx7enDWCoVXjRJoNxT4rWHF3Dx6C9LO7pw8Ut4epl5ee4QvLzN5LfQo+kE7KhYZZk5e3excuVKXnvpC5Kv5GCzOnA4FFYs3Udmxp8rjfpnIogeCP4ruZrXgPOZAcz7oRO7L9RDJ4qUVFh/fQAX/xKuiLcLF//DVFjt5JVUUMvPE71Ootxqp+vUhag33Rbq1/Jn3uP9eejtb9BUDYeiMmFAR0b1akVmeiGXk7KpExlARGQADkVh0YZ4Dl9IpUHtQKbe1wUPs/EXLKiJoql0/+kVLOUyWp4BwaBS39tE5zQvCgoKSExM5MSJEyQnJ2M2mzGbzRQXF2OxWAiZ9ATm6GpHVrPbyXjrXdxkBR8fn6olwN8Hbx9vRC0Is8mD8EhPkpLOM6TXT3TrqONGH5eiIo2hTWIxGow4ZAfN721In3Hd2LNnD7v37yWlZ2ckL18QNAzudgSg1tq97Ny8FVXVGDl4Afl5paiqhsEoMPj+dpxMXI9er8disRAZGckTTzzBwYMH2b9/P/v37+fMkXO0sHVB0CodU71AeoyAe5eOOBQVTVURbKUcWTILnU6HqmksWLCAeW+9xZIlS5g642U8OwxDvqnZjadSwsUNn1S1iD9atILjBatRNOf0sl4w82j0txhE822vS3Z2Ng0bNuTy5cv4+1e3q/7www957733GDp0KI899hhxcXFs376dFi1aVK2z6tokcq2XUZCxW1SSf6jP5c0Rld137ZxO+hyTGwS1vBOTfyxuSRUIgoCbUc+bH4ygUZMwdu7cyZQpUwip40On6RpmDwNmNyNNfPpRu6wfW7duZePGjZxPSaDBrDEk54egVp5DNA3RovCoLoJRD/XD02zE6zc2e3Lh4ufotfxzrhZWO9SCptH6YAIlOSHI1mqpTjc3Q9V3+Ne4kJpDWm4RTSJDqOXnDGocy0wnPjWF2l4+DIhpWKPfwZ/J4fPXmfzJBmwOGZ0kEuLryZqXRmPQu8oA/wpcjrcLF/+jHEy8zrTFGxAEAbNBz9gO4Sz5+H3ywrsgmZ3NVQw6if7tG5NbVMb+c8lVxXWSIDChVRSrl59BJ4koqsZTz/TjRGk+G+LPYXXI6HUSLeqHsvDpway+fojjhck09g5jRGRndGJlcaNmRSldTm72BeKPebBxVzrnBgQgSNWTcYZ8G7H7K/Dz88PX1xc/Pz88PDw4f/48u3fv5vjx43To0IEUX2+srVuAXo8kCNTy9OSn4Q9QXlZEUbFCYWEhRUVFFBUV/ezPb0w9Qe1QZ5GRrIh8tqcln35Xi3CDJy18JdLLr7Js2bIqu1o8O4WyOqF4RRRXFQ3arufQPcmD7l260ig6lMXzV5KVbaZ9m3QeHmMjovk23nhjDtOmTSMyMpK0tDTatGlDXFwcRqk+h/dkYS2zQnIaFBQDcE24SLuZT3D6eg5aRTGeuWfwNutZuXIlr7zyCtu2bWPLli1ERkaSfO06A19ahmT2RBBFVNlOrKeNj15+uiov+vvU57lenlB1HHrBzIORC/E13j6n89VXXyUtLa1GRPvSpUt07NiRgQMH0rBhQ5599llWrVrFzJkzOXbsWNX+bEoZB3KXUmBLwccWw5P3LKZl7L00bdqUtnGhjBs/goDwelijeyHq9KBoGFWB4X1b8eSQLlX7UxSFT3ZNxB5yCUnn/H7YrQpvDThMQZoVTdNoc08ovaY1Y9uFthTabqQJOZ0VUdYIvGZA0+CZ+7sypHOz2x6vrNqRBL2rZbaLn2X9hURm7PwRu6JglHTc3ySWl7p2J+HwFWY/vxqbTUaSBHx83fni24mYTL9cY7D8xwQ+2XgQSRJRVZWPnxpMDhVM3rYFuyxj1OnpFxXNO737/eI4f4RD56/zffxZ/D3dePSu9vh63P5F3MUfw+V4u3DxP4imaXSdtpAyS2VzF1VFLclmSt8mxPXsx4tfbiejoIT2Deswe0wfJny4jlNXMm4aQMXnVB6SUK376pCt5DfUoXf3vnlH1G2RS0ZtAUUEPSKxYjAdMr04cfwYY+/7kXp1HBgNIg5ZZOvh+1jh602mUoqsKZhEPWPrd2dM/W63PZbc3Fy++eYbvvjySzIC/dHHNsFdVdn8mCeR3mudKxm7Ifh8iCDcPoKjlrwNFSsAC6+u787WM/WxK3pUhx1jWRlFRw6wbcdyIus6o1cdu3bFZ+K95HrkIlS+JygWOx0yvbi8IZ6+nU4z4WEPdJXKhWXlKveMykcRm5CSksKaNWto0aIFer2eo4eu8OqMNVgrG92gqHD2EoLsoChGJTUvnuKiQry8vEhJSWHcuHGsW7eO2NhYNm3ahI+PD5qm8dxzz7Fy3Qb0UXH4BocxdmA3xg/qXsOBPJb/LYfyvnTmXWtglDx5NOobdOLPz0zY7XYiIyPZtm0bsbHOgllFUejcuTODht/PkZREOjZtxZTR4wCYOHEi2dnZrF69+mcd16ysLPr06UP37t158615nLmcwrSZL1MW1AxRLxEWmYMkqbSo1ZUXH+xfY9ttGW9yoeSnqs+2cpkPRx4j/UIZANH9BuNZtyMCUNHAgVW4yeHRwOuSgKg6ddl/mPMovp5uNcYvcWTzXcp0ih0ZuEm+3Fv7TQJMLvlCF7dyJD2NhIx06vr60rd+dNV3/dCBJDauO4aPrxsPj+tGQOAvp+QpqkqHpxYgK9WKP756heIIhYKbIs6SIHBm/JOYdK5C4f92XPMILlz8D6KoGuXWmzoqiiJ1ohoyZswYAFbOHFlj/ZE9WnIxJQerQ8aol2gZHUFBpo683NKqdfQ6PTrFgqY6o60ADkspyd4WdKLTwXGgkmBN5dOH3+GOJp68PjkIs8m5rtGg0iz6DIaCSex1yyBfsNIjpCkPRt5anJSQv4qj+f9AQCQu8DGefPJJnnzySRITE/niiy84sO9zAif4UFXGYjsAlnXgdv9tz4ngOQVN0INtF7suNsCu3Ej3MODw8iU8qAtj7l+AwfsU9w7qT35WFvfXrsPqkgIcWqUOnqYhqwpbt27l+rmJKPJPHEkIx2rT0SgmjQ0b1vPsjBXce++9tG1bXex3+VIWdvtNudBoaB5uVISZUdvWpoHSjMK95wgNjuatV7/n7NnzREVFkZKSQmpqKt7e3owcOZK1a9fSpk0bpj1xDxMnTsSnT8NbnN8WfvdRLhdwNO17JNmNIc3eua3TDbB69WoaNWpU5XSDUw5RV8ubHxqWUF7bl3RDKqHX4nkgsiPvvfcecXFxvDZ9Lo1CYgmOCKDzfe2r7AgJCWHPnj3cPfA+uj71HnqzB3Ltdkiyjd73xeMb4HSiZcspMnKbEhoYWbXfO3wHkJi/A1Gv4bAp5KdZyEwqB8A9pC7m0DZoquhUdiyQkAIUFE1CQEV0CAiq0war3U6jZq0I8TJSu3btqsWr1xlkj1wQNMqVAjalv8xD9W9fyOnif5e2YeG0DQu/5fft46JpH3drw6zboWpajdQ+AFnV0P/T/60gCIiCqyzv/wMux9uFi/9BdJJIu4Z1OH45HbtDwWTQ0a/trfJ8N+jZMhoPNyN7Tl0hPNCboV2a8UPoCT79eAc2mwOTUc+9QzvSZ0hLHnt/NYWlFgx6HW+Of5B38r4nzV7d2THAwweHw0F+7jlM2oPc0JBVVLh+PZ95771BSkoKGRkZbPL1ZX6dOtSpXGrXrk1QI5GCiK2ognO7vTkLCTJHE2xqQOPGjZk3bx5KRW/kgimAs0BS0yyUl1zkRoBTU7JBzQVdfQTBOaUqCDoEz8ngOZkA7y8ptRRU2SzKGqKow6Rzp2uXoRw5soekpCQ+nzoXrxm9UTUZnaRDtmocOmumxePz0GVm0iGgD8nXfQEw6BUWftGE7777joSE6lQPgKgGIRgMuqqIt6YTKb4rBqXypUS8LhHo2xBFlti9I5EGde5mxZpZrFy5ki5dumA2m8nPz2fp0qWMGDECQRCIjo6mV69emEwmBg8eXH0sgkSX4CeIX1ZEdkEBAe1+OaL74YcfMmPGjKrPiYmJvPnmm9y77hXOVKSjGSVkVD64+AP31m6D0Wjk5UmvMf+Rz4jXnUJv1HP0hxNMWzqhagwfHx/6PDqd7w+cxWFzVH4n9bi529EbnC8xkigw4Y0BTBm0gK5duwJw/VQJK2Zc5Y3PJ7Jw0RKOrs1DVZxOi3tQHcSbilANuSKBYfmUikY8jRWIV00U4VM5tsScDz+jeagbqampVYtOyMMgaJXfGSh15P7iuXHh4o+ilyQGdmzK1iMXsNodGA06Zoy6i+BwL0Z+txpREJBVlUlt2mOQpF8f0MV/PK5UExcu/kex2B18sjGey+l5dGwcyfAeLRHF35fTevTQFc6fS6Nu/WA6dY2p0rEtLrfg5W5CEkUSi9OYeHQpdrsDh+zgo7jHaOvvLIJUS+ZCxTcgSIABIWAdghQKONMZsrOzSUlJqbGodS5Tt48Nnd5pq71C5cxqDS0tvCpyWS/Smx7N3kIULQiA3SEy+JECohs/yMvPNcZH/AgEPQgmBL9VCLqa+c0XUnN4Yv5aLFY7DruM91UbOouKqjqY8coQevaJxc3NjbVr17Jx1zY2Jh/B5BmAu6EjouCMHhvKHHhetYBW+bAUwa2FB9fyDnLy629uiUSvXnmIlV8eQKcT8WsexNGCXG7cnv1OlyPcdKeWjBKdutbn6OFD7D/0LYXFGcybN49nnnmmxpgnTpygb9++LFu2jLvuqtlV74svvmDnzp189dVXt72+hw4dYvjw4SQlJSFJErIs07FjRx555BEON1M5V5xWta5OENneYxYeehNPx80k8eClant1Et8VLMN8U97o1EUb2H2qWpnEaBDpPyweD9/8ytOlw6+gA8/ct4hx48bRYfiDPLVoIa1iYlg45mGmjJ9AgwYNeP/998nNz6fpiJfQuXlWnVdBUOn/4AH8AktQZIlVy7rhqHAWVWqahkfJNXpE+9K6dWvatGlDSEgI2zLe5Oj1BLavb05ZiRshwQ6+mjyJAG9XK20Xfx2aprEt4SKpuUW0ig6nZbQzkp5RWsKp7CzCvbyJDQr+m6108WfhcrxduHDxl1Mu20jKS6NHq46cP36a4ODqh4jmSAS1APTNEETPXx0rs2wPGXnPIiJz1u5BkepOvezR5CbbSEtLq4pemnTXmTC6DDczfLXGyLnLwZSV5hG/XsZodDpnqiZgUdoju8/H29u7RvMXu0MmLaeYJ8csoKJUQQAs1iJadoJ3330bT09P7HY7iqLw0EMPseN8FiGt+la1VdcV2/BItiJV5pVrAhQ21lHaVM/jbdrxTMdOtz3GlJwiRr/1NSWlZRiMRjzPlKDZnS1/qm/YGgKgqA6enN6eac9MYtSoUcyePbuGU3/48GEGDLqPSbPfJbJeFHe2bIDevYBVl6Zil4oJcWvIgPDXcdP5VG1jqbBTXm7jyafG0bp1K2I8Yjm67STpxalc5wLbf9rOj5mnmX3qW2RBwyjqaOVXn/mtnalK07q9xOm956vGk3QS64u/xHiTws3+s8k8++kmbA4ZvSQSFujNgBF7KFdy0NDQC0ZG1P2M0jwHg5+ZSnbLZqDXoxdFwr28mewfzFtz57Jq1SpatO9MrT6PI+mrx3fzqGDwmD3YHRLbT8ZSkBCCoDrPoSQJjGwVQs7lMyQkJJCQkIDZbKZt+1bkRXSgrMIACEiiQJuYOix8qnrGwIULFy7+CC7H24ULF/82Ro8eTcuWLZk8efItfyuXbcw5u44zRSnEeIUxq+lgvA01i980tQQtrw+qUgioKIikm14h3H0QWVlZZGRkkJmZSUZGRtXPN/Kgs7OzMeoruHYsAqPhpmLD0yq9huZSXl6Or68v/v7+NRYPDy/WrNqJh4c7RaXJuLubiYyM5NSpUyxfvpznn38ed09frI36IRlMUOn0qg4HbicyMek8EfQGNAnS+hqR3UX8zGYSHpvAL1FYZqHnwGGEBftzfNd+YqJHI8qg6kBQQLxx5xZUxOhYHgAAIABJREFUGt1hoEETDxYsWEBMTAwLFy6kVq1aSJKE1S5z76xPySosQ28w4GY0MPKJfVQouSCAiESg0JaOvtMIC/Biy/oTfDJ/u9OGkjTG9G3PpgXbsFXYUFFo0TOWe154gKLCChZtW0itPjH0btWJIXXaV6nVJB68yHO9X0MQBDRVY9DTd/HIG8NvOcYDZ5PZdDiRQG8PHrurHUaTxsWSHSiqg2ivLrjrnNKFD61dxd706ui6m17P6sH306lxE06fPk1OfgGPfLS1ht45aIiCxp3tLrK5vC4VZQbMOQKCCoE+Kp+OGET9+vWda2oaycnJJCQk8OauNG5u4hPo7c62Nx//xWvlwoULF78Vl+PtwoWLPwVFVvj+ox+4diaF1n1b0HVoh1vWmbvkW1YfTMI/IICJA+Lo0TyKL39MoLDUQmrkNRIrUnBoCjpBoolHKNP8u3Mu5xr7ipMozSmgcdFJHh+UiLub87YlyzDvYwuvvptN7Z4t8I8OJ6BCT4Tel9DQUGrVqkVoaGjVz4EBAVA0AhznABt2h8TkF4twSHfx7LPP4ufnR35+/i3L9q27OHLkNFZbAX7+3pSWllJe7izqC5fqERnenfKeMWCodvzKUhMJKDhP+nUHPv3upiLKDcXN6dBFeHmz66FHf/F8FhYWUqdOHZo1a0ZKSgrm1oNxCwjDWAbuKTZEFUw+NlpNOIdX7TLKM3Ts/9jCwb3HsFqd8noBAQGExLREjOmGJlbapimMfnrrjfcDEk9Ecmx/IyQkvE06OFaMZq98LAgq7mXllJ+5Wm1YTCSm0AAURcVqsfDuwlG0aHVrMVlmcjbnDlwkJDKQpp0a/Zav0G3p/NJMMvx90SqNNkgS+x56jGcnTqRly5Y89dRTTHxnOfGXc6ui/ZN6xDO07Vk0UaTH5gcpchhRNRGDIBB7PZ29y1cQGhrKkCFDGDJkCDExMaxNOcxbi/YhF4mgOdVPerSIYs4jd/2SeS5c/NtRy5ZAxecgmBG8XkXRdyAxNwezTk+Un9/PKgolnklj7arDmEx6Rj7cmVphvn+D5S6k2bNnz/67jXDhwsV/L6rqrMqfO+JDNn2ynYtHr3B4yzEMHka8GgVjlHToRJFz17J4Z/0RZCQsNgeHzl9n06FEDl9IITElm9zwDNRKPWwVjczSfN57/AXOdDCTpisny2Tn6jVfHBfcQRUJCy0FDLTo8AyBDz1OehMzQoMA5CaBTH5wLKPuuo+WLVsSHR1NSEgIHh4eTrUV892ABqIvkrkXXXpO4dyFPMaPH8+1a9cwhTYgqUimQ6Mj9GyVQJO6F2kQYSfAuyWacicZOWcQRBmDwUBkrXo0kNujBvtjq+0FlTnyquyg5MpxUhKPsWffZpatWIASUw9kGUHTCDhyjBH3DKiR2nIzSUlJ9OjRg/Lycry8vLh06RKlaZeo26ITFr2IrtiGYFfoMP0U3pFlSHoNs69Aj3tbseyNHykoKKC4uJiVK1fSsFkrEpLzqKxBRFUVwsKuYHJXsVpN7NjQBlWVUDWosMkoqBjKqsLplJcUIRaUIiCA0QARociKhqpoiKKI3a7RpcetjrWnrwf17oggqE7gH/p+HTp0iMWvvEbknT2RNRVREJjWPo7OEZHodDo+/fRTHnnkEWKj6rB27ykUzZmC82i3Y0T4l2KQVPqEXyW93IsAz2ie69SdGQ8OZ+rUqTRu3JgjR47w/PPP89WeDRytXYEaakUr0SEoIu0b1+H10Xeh17mK2lz856BZt0PJ66CVgFZCRdlOhmw2sPTkCVaePU1yUSG960XVcL6vJGUzbeJXXE3K4erlbH7aeoZ+9zTH+Csa4y7+fFwR7/8grhYWcKWggIYBgdT29v71Df6fomkqWsVysB8EfVME98cRBMPfbZaLn+HrHceZ/90+VE3DcCYTt/1XEQBbmBsZExuh6kFTFMqXr0QnBRDUuh+i3nktVVlGEKhKDxA7FyJ4OxAkAVQNc5lKlODLGc8SAEyb9RhO6xAcAkaDg0dGHad1q0wWfNOJvV3MaDcVhgYoJp7z6EpISAjBwcF4e3sjCAKyonL4/HVQM2gfPAUBGTQF3IZQoj7JpDmfcLZQZHr/wwxscQGzQUbTnNkjVqvE2ws6sHGbwPBHmrB161baN+5JfLwFJImy2kYsQRKqh4BaWIj7qR2UlxaTmpqK3W7H7O+Pf/16BBg9uJqaS0xEKDs3rUWvr/ng27lzJw888AANGjTg8OHD9OnThz179qBpGm5ubsybN4+4uE506XQXz/5YB52x+rhNkhfjotcBMH/+fN555x2+/349i/Ze4UJKDgASKhm7P+TeFwOoyGvEoWOxaFL1GO4WMCRXIDo0jEYdo0a2ZfG4BRgNJjS9Hi22AWq15DDdejVm5qt/TQ60oihOecRp0xg6bBhXCwvwNZkJ9nA2x7HZbNSqVYuzZ88SGhrKN6cP887GnWiixphux3g84iwGUUPTIL9AZeLsO3j99bnExMTU2I+qqry152u+rzhXdS7Mop5pje9hQHjrv+TYXLj4V1FL3oKKpVWfPz0by3uJ7ZEr5VP1wEBFwLOsnLKyMsrLy7GXKFy7EopW2dXWzd3A9FkDieta/b8gqwpXy3Lw1JuoZXZFw/8qXHKC/2b27T7Ph2//gN2uMPj+tox+tAuCILDh4nme37EdvSgiqyof3zWAbpF1/25z/xa00vegYjlgAdsBNEcSgu8HAOSUl+FQVUI9PF1d5f5iLqXl8vJX2ygstdC/XSMmDIiroXpyITWHjzYcqGr8YG0QiC6jGOPVfLJHR6G6OR1KQa/H8/77MG/eU+OaiSJwky6tluCJvn0hiqcGhRYyF+wmpWkA/gNbIeokDCd0VTrMNruepcvvYPWPJnTGAjRqtmQuLixi1puzyMrKIjs7G7vdTnBwCAGdh4G7Py8O3IMaUMSNBplaxSq8Ax8lW/BD1FXQq8kVjHqZA8UhlCgG2npm42+y0b/PZbbuaEZ8fDw+Pj40admJ+EM7nBq7skxZPRFBADXQnYIsf85t2cQDDzyAIAicO3eOnMvpeN79BHUb6Cm124nuMpDXJjyIeEdT5h3cj9Vup+CH7djtdjp16kRKSgrx8fG4u7tTWFjIzp07q/S0Z786jZSUfxBY14CoExCRCDJWp3xMnjyZOnXq0K9fX5Z+voyHe9+N1SHTrmEdXlmQgJdvDqcXRCLU09AEQBQQAKu7QHlDE74OkSkP9OLilX3oulWw8P35+IX6smD+Txw6cImK8grcPdwZPub2RaJ/lMWLF+Pp6cnw4cMRBIGGATWj50ajkf79+7N27VqefPJJdD4a5jYWbKpMGu5VmdqCAP7+XnTs0IK4uDgGDx7Myy+/jH9wEOvOJ1Jmt9O8XjN+uJiEVa2UdASiPEP+smNz4eJfRdA3QcMMWAAoU83IN9Ul2KxWlq3+Dv/SMsLDw4lrF0zzlqUsTQnGZne6faqi4ONXXUNT6rAw9tAisq3FKJrK8MhOTGjQ+996XP8ruCLe/0Yy0gp4fNSn2GzORhlGo47hj7Qisr47jx8/TMVNYaTaXt7s+ZUc0P+vqDmdQc2u/qxJaAGnmb1vN2vPn0MAOtauw+L+96K7zVS9iz+Gxeag34zPKKlw6mAb9RJ3Na1FuL6Mq1evkpycTFK+HVtYS8QbShKahtuxVLwSs7j0UnNUc/V7vV7TeK1WHTJkd747dh0BGH9PRzLyS/h2zykkScTX3cTy54fj5W6sahRRaC9j5P4FlNmt6Oc6o903MLkp1KqXTkFBAZkxZuxta1XJ7117fzvm8EaYPD3xy8giUNXQvILJ8mqEJki8OWQbvZpcZePJBry/LQ6HIiJln8bmewcOwcDyx1azzBrN0bIg0EASNZbW28nVY4E8PLUMpWEFnTvGIV4ykZXsjiTpSe1jxO5b/X0UNI1pBnc+X7qUgwcPkpyczKCZizEGVDfd0FSF4tNrYchAqIx8C4rC4KgYBjSNpVfDRlVOeGFhIWfPnq3eVtO4d1hf2j4uofex4Kery4gm72PW1ZwtO3ToEIMGDeKll17iobGPcjk9j1VnRyPI3iR81BS7Q0dFiAFVJyApYPVzXjezUc9ro3sxsn8PNm7cSKtWrQBnatHsFz/kzOmLLP5sLkEhf83sXG5uLk2aNGHnzp00bdr0tutt3LiRt99+m71793KtLIfRBz/GqjiYWfso9/hfr15R8EDwXUphWQRvvvkmSz5fSt3nn8ViNiFrGkZJ4vFOTfg+Ox5REJgU04eB4W3+kmNz4eKPoGkaWunbYPkHYOSSPIP71l/HIstIgoCv2czCtv/H3nlHR1V1ffi5ZXp6QigJNRB67713FKQXQV9AQPQTERXsoKKioq8iAlYUERVUqoDSe+/SAwQSIL1On3vP98eEBF5QQbHPs9Zda247c+6dOzP77PPbezfn9NGjHDp0iFLhmxjSM43nX+3IqYQodB1iYi/ikl2Eh4cRHh5OYiWV45FOCnwbmGSVz5uPo7Qt8k+91n8iAcP7D2T7lpO8MmUJDvuVoh6CPNePyOZEUvv1QqhFhkq01caOkWP+rK7+qejpvcB3tHA9MxuqDLQQNmwIeoHW0qKqvNC2A72rVv+zuvmP5nRyOv957QvsBcVNAOTci1RTUqhQoQIVKlQgNDqGV777EbfXX/DEbFB5cWB7onWJD3JO833iGVw+H2ZVpXNcJd7sfOMAtcSULHIdLuJji2EyXD8J5/C5OZB1jqPrk1g8azeqqqBpOlOnD6RW3bKFx+3PPMsFRwYVbSUZ/vUyMpwONCEwSjL/V7wUqcnZrDxlxyckape+xCOdtzJqbk/cPr/BKzQvmucyijWW0mUzyKrjxS38/ZEQdLKe47txx9HGNUMJMaMoCvaTqVTfXA2XA061kXGHXOXRBzImT2XG229js9lIT0/nzTWnMEeULDxG6DpnjyymdKOeKB4ZzQSOGB0Uge7zIbauJnfjQVatWs3YsWOvK7yTnJxM3bp1mTp1Kk899RT3vP0mx4ROTHAwk1u3p2SwPz1jQkIC3e/qT1iLQSgGE007byUqLJcNTzZG8xSkPzTI5MWacIT4Bw8Wo4EawQ4yT+xm4cKF17xvq1atePTRR7nzzjt/5in6bYwYMYKwsDCmT5/+s8ftOZ7If178gLBixenWqCqdO1XgwzPr6BS8g24h21Bk/zPs8cgQtQqztRwAKw/s56H1P6AVpH+UgHtr1+OZ1m1/t2sKEOD34sfUFD4/chCLamRU/QZE24IK9wn3FkT2A+iak4uXg1EUlfPZfTl5Lprs7GyysrLYHWsnLbZI9mZVTLzTcDg1wkrf6O0C/AYChvcfyKWLWdw3ZE6hx9tsNjDpuV40b12ZV7du5pOD+3H6vFhUlQlNWzC8bv0/ucd/DsJ7DJE5FNAAHSlsFvMPKby4fQtXipyrssyEps0ZXb/Rz7QU4NeS53TTZdJ7OAvKmJsMKvd2bsDo7tdmKtl7KonXF27A49UY1a0xnRv6q196NI0Zu7az52Iy9UqWYlzjZrel6lrS+QySL2QSF1+cqGIhNzxmc+I5Hli5jHxPwdMiBLbjJzHs2o9eoxuSyQZIlFTTcSxPQ852440JI79ZObw2gbO0jEHRCK6SU6iEEUKQteYgeadSiR3RFsVUYKy7fUSvT0U/6uZymInsZtX9ugYhyN+1B3ntBipWrEhUVBSRkZFsP3kRa40OCElB93nwXD6FzxSErViZghzdAs0CQVVzWdR+MREmF/lOlbufLcXW5Tvp368v1atXL1xiYmJYsGABL059iabjH2VdTgqSQUWRJIoHBbHhnpGFs0ITZn3L+oNnQJIJi8yja79t5J+JYP/H5XFmQ/2mFVmTk4EuKQghMCoSicvfYcPqFVSpUlTVNCkpidq1a3Px4kVMpp8uNf9b2L59O3379uXYsWOEhNz4cwbId7rp8sT7OAoGiGajypg7mjKsQwOE8CCyxiA82/F5NR57Pp8te0sw7aX30DUDxnJWHty4EqfPf64iSYys24CJLVr9LtcU4N+NEIJ09xk8uoPi5sqo8h8Xt+T3kL8CjoJiWdZhSMGTrpH+7cs8y7g9c3HrXlRJppgphK9ajsekBIIvbzcBw/sPZue207z12nd43D76DGzMoGHNAf8XY+XpUxxPT6VOiVK0K//zZZz/6Xh9+VzKOU24rTTB5khS7fl0mPdxoTFlUVW+GTCE+IhILjqzkJAoaQkL6L5vIzuPJfLERyvJc7hpWzuOqcO7/i2yOxy4dIlBX3+JW/d74lVJom+p0vQtHweKgZ0JaejIbJ24kNQzqUgChCLhjo8mv00FcuMEQhaEV8hGNugFdrQgY8MxRPIlKg1tgB0bHo8BLc/LhTkryNuZQKmR9yIqlEdSVRACX3YOj0VEM2bMmMIAyjfeeIOdR8/iNoWza/NaLh/ZQf3R09Aouq9CEsx9cBHVwtILNehJmSH0fKI2Y7o14scffyxcXC4X1WrUJL9sS1zVI/AFFT3/FlVl9d33YtIV/m/mYk4mXVv+PCjIy38faUBsWGmG9nqQtWvXUqJiDe4c8xROp52l706la+vGfPbZZ9ecN336dI4dO8YHH3zwe3x8aJpGgwYNeOyxxxg8+Prc31dzMimNEdO/wu7yFG5rUzuON8YUeeKFno8QBqa9+gaff7yLYhE1sZgtSLJM8MgyHM5JQwLMqsryQcMKAzcDBLhdCCH44dKrnMrbhCTJ2JQIBpabiUn5Y581Ifyz7ZJ04wHznowEFl/YTbjJxvC4toQbA9+F34NAcOUfTONmFfn824eu2y5JEt0qxdOtUvyf0Ks/ltQL6bx1//uknEulzYBmDH6qzzVp1dLsdvot/II0hx1dCF7t2IU74qvwVb/+PLF2LlnONLrW1IkKcjJx/3y2p59EAK2iq/Ji7QGF+uDr3td1io0pM/HoDupF9KNqaMc/6Ir/njSuWpZ1r/295E6aprNg2losshdPrISERLli4Tx1R098TienTp0i1HWZE8dPkpaQWhR8pwkMydlIukTwafCES0jl/Ua3ni+j7wohLK8VURUzaRO9j9NHYjmwowpC14kr05/zpz5HLVkK3xW5mCShhoUyfsKEwiDHMtWqkZGXy7Ft26lWtSrOpCQmT36OLw8lYy1eFk0XCKGjmaGUNb/Q6AYoFmxHiSrP6NGjr7ne9PR0Plu5mc+3n8XjEaBDQWIDnC4XUyY9QZIlnlTntf4V3ecl7exldiw5CTFmoloNoZTdQsre77mzSjB16rTki+fvx+Ope909/uKLL3j55Zdv0yd2PbNnzyY0NJRBgwb94rGlIkO42nek+7zERV/rIZfkICTg/x4cz4bvpqNrAo9HAzSq79IZO/5O8jxumpcuS6jZfJuvJsC/kWRHJo/v/4wL9gyqh8byaLXGnMrbjE+4QUCuSOVg1hIaRQ35Q/v1Uwb3FRpExtEgMu4P6s2/l4DHO8AfiqZpDIt7kPTkTHRNx2w1MXRyf/o+0gOHw4HdbuepzRvYeDEJreAcgyTxbq36pAWtJ9WyAyH7QEByfgm2ZZTHU3CkCYXRkc1pGlEJi8VSuJhMJpxaNnPP3INXdwCgSiZ6xE6hrO2nU4UJoYN3HwgXGBsgSYE/5b86+/acZfLEhTidHjwhEkIV2NzH2H94Lfn5+VSqVIn4+HgqVarEvjcS8Lr8Uhohg6dMBPmdiyQVSrtMhEVDXxUJmt+alWWNshUvcz6hBJpPJijRjTFXQ1Ek8i0OkjvYkE0m0HXKhUfwVfee9OvXjwtlY9Fq1UASAndKKtnvfURMdDTJycmoliBKtByAObIUJs1J4oEVfPJaCK3iL2E2ari8CrvPluK+1yvz8j3t6XRHVyYfXsT+rHOUtkbSwdeI2V/vxO7zYC8j0Mx+29ux8BvGdunK0iQTPqnIxyKEjnTxCIdWLSCubX+CytVCyAoyAi+5aCVzUJwKje0eNq5azOw579O2bWfAn1+8ZcuWJCcno9wG6dD/kpqaSo0aNVi/fj3Vq99c/MaBhGSe/ngVWXkOLh7ehuXyITZv3kRk5LVBYbm5Tgb0eBOfryiI3RbiYdHyZ1HVgA8qwO2j/+Y3SbSnIxDIAsrY02lQ/hQmW9F3pl54P1oWH/0zrQT4pxIwvAP8oaReSGd4lXG4nUVTwzlSBnvEBiwWCzabjaDhw6BUUQAamkb0itV0Gi+IjCtyAx7PKsbe9DJg8P+YCY8Pz+LD5G04gdPpLFy8Xi8125Zg8LR4zEFFf7CZ+8IJSm5ESHQMxpBImtaqQuUKZfxlroWOyL4fPDvx19WORIr8FkkO/t3vUYBfz/YtJ3ll8mIcDv/zpSg6dw84RIX6wSw72pe+rWpTpVQ4R48eZWr3t7GnuxCAr1gQeV2rIixFekZ3jBeXRSYkQUYSRRKOsMhc7HkWSJcITnQjFdhxmuYhLS4Pe+1IfGnpyKvX0qN1a7afOEFml/ZIBXIT4fXSJTyKWcNH4nQ6GTFiBEuXLiUuLo6ePXty6NAhVq1aymsvlqddu2IcTY7mjWW1OfDlLFTdTfnH7sDaoBy6jF9ipUbgXBNMjt2F2+PGajWyeMpI3n/nLRYtWkTL4U+z48QFvD4dCYErPYmTi2egaRrVh03GYCl6plVZY97QhYREu1ieGE9scC51w5OJiBiJMfxhXnjhBVJTU5kxY8bv8vkNHz6ciIgIXn/99V91/pNPPsm3336L2Wxm7dq1REREXLN/2vNL2LLxOJpPR5IlPPJezJYsFn5YFaN0CNTKSGGvIMkRP/EOAQL8Mk1WPYVOkWkVrAkGxJ3BTTY6Gqpkpn/ZtyhmDniX/40EDO8Afyhup5u+0SNwFWR2UY0q7Ya0YML79xfKTT47dICXNm/Apfk92RJQPziEsJyPqdzOgmosyOWshbPiYnWcmgcJsChGFrQYd03if4/Hx86tp8iwX+Rc6TeRTC5/m7qKOFaNHRttnPSEIjQNPDqXN39DqMlO945RPD8hFbOpoJKirpKrDye4+LjrCp5cjRCC+YcPsvDoEYrbgniudTtifiY4LMDtxenwMPLuOWRl5KJpGmaTj9deXk1ImIsnv+7E/rPFSPz+fQwilZgLtQgnGq1ECPY7qqPJCrIEuibQDIK8ioAEIaclJJ/fyFVUH9XrJXDqSFn0JAVrsge5wPDWhU5K1lYWL59JvXr1aNasGZs3b0YtV5boEfeiqQqSBpZLEmaHoFl8GbZ//iblSscwc+ZMunfvTt++fUlLT2X35UWUqmzj1K5sjO5YmtZtyqpla8jLyyPi+TswXpXCTwiB8vJ2SlRriqqqHN+6kt3bNmM2mxk1ahRJl1Kofsd9HDpzkSploplyTxeSzyXw7rvvsi7NiiWyJFKBPEvxahQ/nY+tbz5HpCgUSaDKOl+1Xkx46Zm0bDqcD+a8R7NmzW77Z7dt2zb69+/PsWPHCA7+dQNch8NB9erVqV+/PufOnePdT77gTFo+5YqH06RqWYQQbNl4grSUXOo1LE9smXAObu5I1QpJmE0SoIKhBnLkV7f34gL8qxi89W1O514GCQySQovoKkyu1YP9md/g0e1UC+1MtLnSLzcU4B9JwPAO8Ieze/UBXug3HbfTQ3yDOF5Z9RS2UFvhfiEED61awXenThT5DDxexsbGUKn5cc7b92JVw+ke8xy53hDmntmAhMR/4tpeU/DC4/ExbtTHJF/IAsAaCo2e2Yhq8VIxuBVNbWPp8vQ8vJqOOcWDNcULCLyeHGyhc/l8VhghwX6DRNPgrQ+8PDk1mWLFilG6dOnCpUyZMoWvD2te3ti/pzCfaqTVysZ7RmK6zVPZwncOkTUGtAv+6p7hswJeugLycp18t2g2rtxtHKUY60/5A5VLhOaRlBVGxWpnaNzqRxxnzazrZ+CecTmU76aw7EhVgoweou25zNtei5TmJlBA8oL1koSiCUrGp9C8+RGCFS+nt8dwbG5F0P2DQyEEne+KJDsnmWnTpjF06FBmzJhBZl4enRfMwyVBULKKavcb8ULzERMks2z6I0iSRFJSEnXq1KHzhOI06FEK2SDQdYGugSQp7NkST+2w3mz0rictQkNSQOggHBInRr2PAR+5uf4BR4itFMWLVSI4VOVy9jlKtBmCsIQRbjPx4n1NOGOcTbb7InvXutizpzWqwYokJILPukASXOhmKqzgKKMTGZaHEu3D6/HxcoO76VCq1m39zHw+Hw0bNuTxxx+/KW33z7FixQrGPTqJ+Da9uawHYzQaUWSJwe3q8UDP5tcdr6c2B/3qwFMFucSx39SHAP9edmckMOXQIlIdWSiyQtPoeJ6vNYAgw+2RKgohQM8AOSggf/ybEjC8A/wp6LqOx+XFbL1xsMdbO7cxY+d2rqgxgwxG/tul+y1le9m84TivvbAU5xVZi6QjmU5zKWMPiWeT0HSd+LunoHgh7LgTqeCboAsNTTrD0vnHsFnsSGggWZAiF6MRw6VLl7hw4QLnz5/nwoUL1yypTRqgxhd5MhRNZ7BipFnlKlSuXJkyZcpcE0j6v2w8lMCP51KoHFuMdnUr/mSWFj2tE2iJ+OvrqWBshhzx+2SZ+DsivMfZsG0CT3/dGqf3ygyFQJJ0ajc+Te3Gp9F8Ota8cgwvcxBVySs81243cOeIgZy/0+I3PiVAEoSUyqNt2WPEWrNQZYHulUjcVJIf5/sDooXQ2bj7Rfr07U1ERATFihVjypQpCCFo3qkTxXv24PwxHXFVuXWb2cjmNx8A4NKlS1SuXJnntzdAuiqy0utR0HUJRdVZMb8D9StVYYOyFyJ84JCR94aSuXEVKcd2YTAYaNKwB67scsiKihA6abFe5LAwpAJNttnioN+IdciKhOYRpBwysOmdKtiUKCQBQeWcnGgejEu7KqdvsBNrSX98hElWWdX2SXJTnRhNKpFRv15+JYQP9CzenbWARV9/y7p1635zZqLPpKQLAAAgAElEQVSLGTnc+eQcdFmFq6r5qYrMjrcfuqb6KoCeeQ94dgEaug7JKTJ20zdUq1btN/UjwL+PDHcevTdNx6n5/3PMsoGJ1XvSPabebWlf6Hn+VLu+0wB4bFN480AUp7My6FihIgOq1wxk9vobEIgoCfCrEMIJQiDJ1l8++AbIsvyTRjdAt4qVeW/vHpw+L6osYzEYaFgq5iePvxGaT7tmXZZlWrdpz529Hyc2NpaQkBDGDH+bE5uPI4QJqXgUSBKypNC2fU+Cy76NcHwBwolk6YWklkWFQu/2jabbX9q8gU8PHcBTIJNBlkk+eYpXlyzlxIkTZGZmEhcXR+XKlQuX+Ph4KleuzLI9Ccxevh2Xx4fFqHIiuT5j7/iJKX3tPBTOB/jAd/yW7s0/HclQhRTvKDRx+prtZquHanXPAqCoMhfzTnEpJYvSpYp+Ct0eBYNX0OT4IbaVKYcUHIwt2o7R5qWkJQdV9t932SAo3eIyZ78ph6bJaIkXad24DSdPnmTEiBG89957DL+3N0mn32JQh2QG929LxxdWI3SlMGe3V9XZt28fycnJPPLII/ToKGNSwHNVn/NzLaxZ3IhuA7YiqU48Lh3DiShcBTnWjUYDCz79mLOHdjBp0iRy0yIwmwzg9CDpOgZbGPpVgZAupwWpwPhUjBK2GBcXL2whrnR3FFmlV5NjLAurwNHsKDyaglHRuL/yPkqHZ3MZiVSnibH3vU1Goo6uC3r1a8ioBzvc8mckvD8iMu9FCCd927jo1OGd22I0fLnhIEIxwE26lKTQ1xBZ94HvOLIaw9bD7Rg3oTUPPvggkyZN+t1ylQf455FoT0e5KquWS/dyICvx9hne+W+B7xRQUNgs9xm+PTaMdJeBHUkXsHu9jPiX1v/4OxEwvAPcMnpuUSJ+YemDFPL8bR9lV4qMZFH/QXxx5BBW1cDwuvUJvsU/wEZNKxISakHX/QaCLcjE/Q/2JTzCL2v56OnPubhoD0aHGyFLYHdCXBlMJpVO3WohyaFIQbcWdT6ucTP2XrrI4dQUZEnitY5duGNcUaaM/Px8Tp06xYkTJzhx4gSrV6/m7bff5sSJE1To+ziK2Z831enxMX/N3p82vNWqBca2htsNsrUW/2bzIMuTz2tHl5JoT6d1dDVGVGxHvcpN0LUzhcfoPh9NGu7CeMUm0xSOrc/mE6U8E0ZeQNNUVFXwznuNsFh8vHjfEdLcJ3nhyN2cyMjFEgJ2nwmj7MD/uAsijB4eG7eVyLB8nh1Qggyv4Ny5czz33HN43NlIWX2oGw8Nqko4su8ip/h/CEq1InsFugHsXjcj5qzD58ojOdvB020sNLVmsCq/GG6vCpJg25pauN0Gzp4oRWaqkbhKGlqlWPaeTEIIQddGVagfH0uDyv3o3bs3/Xq+Tt7es5CaCZJEyAULuX1rossyqiITFpmDEAJJkpCEQqiIpXFzB1uOb6R4tZZkhsl83GIFSy7Ek+k20z4mkUohmSgSeJF4fl1DLp91onv9xvzihbuoVbcEjZtVv+53wKfrvLhpPd+dOkl0kI3XO3alSlQxAET2QyBykIDICJlixneBLrfhabje4jYaFIZ3bnSdtxtAUqKRopYU3pPBw6BVu3sZO3Ys9erV46XpM/j6YAqXMnNpUaM8Twxsh/EGFVYDBChjjcSnX+Xw8WpUsZVACA9g+O3/k75ECo1uwKtDsMFOuisMp8/H10ePBAzvvwEBqUmAW0K4tyOyx4Bw+jdIVqTQ6Ujm9n9ux36C/DwXyxbvJTM9n2531qV8XHThvr4lRpCTmlu4LqsKzR7tQ5cedWncrOKvfk8hBLluN1aDAcNNplwTQtDlifdIy3EUbtNcdtzbP6N9+/a0a9eOtm3bFmZpEFoqIudR8J1i32GZ6e9HMv/zxT8rY/knM2jLWyTa0/AJHVWX8G48zf7pXxNcqiKVWvQhLCiCwQ2qUy0uktkvzsAhZWCu70RPiWH16u+ZPfMZOneIZ+PqJWRnXKJ1i7PMT6nGhydqo2kSltx8hgSFsGnvdzQe5SUk0oBV0bgrOI0gj4/jByy8+FBtvjr7EXaHnWbNmtG6ica0p3SsFv9PrMcraLWgB2mGkkiyguUiGHP9ucYBhOpj3dMKoWIuS3+M5eNdtUhNDcftMiLLGsKTy7kt35OXsI/Xp7/OnQOHYEIlMsSG0VRkCM56exlfP/IZku7XtAhFQuocj7luecpEhbDpq8mMnVkbrHZirbXoXPIJLua56TzvY7xCEGFysrzTQoJkDzIaqiJQVX8fdQEvfdKYzUvjuSLjEMLL2UvfkZJ+jAoVKlCxYkXi4uKIi4vjeEgQqzPTC4sZhZnNbB8+GpOqol+uBbiKPkQpDLn4rt/8LCSn5zDopfl4C2a8osOCeHpIBxpWvrXS10IIFi5cyNTvjqNYggAJk0GlX6taPNK39W/uZ4B/JtvTTvLCka9x+NzYDp9netP9xJd3gmRDCpuJZGpSeKwQArvLg9VkvOGg8H/RHYsh9znAiUDhksNCuxUD8QkFWZJoWaYsH/fs8zteXYDbQcDwDnBLCMfXiLwXQPgNRF03cOzcYHzGwdRtUP5P7t31HNh7jmce+xJFkdE0nUef7kZi0n6+/PJLclbpWERRZa6w6FAWXv7zdNKbD59h4gcrUGR/X58b2pFo1cnatWtZu3YtW7dupWLFirRv35727dvTokULgoKCcLvdtGnThofG1GdAryhQSiPZhiJJt68ksVfTUGX5L6kftPvcdFjzPNrVns6UfB63tSLGVI6pg97E59GQFQmv2wv4dds+yUtEryDuf3wiNSuVo3h4MHrOE2j2rzmVG0Hftb0Kdc7C66VSagZ1kZkzZw5uLZ9WDUz07xpJRmIQBw7UZV/qXo6eOIrX6+Wjjz5i8VeP8dX7JQgOKgjQ1Q1c8P0f928yczozA9spHdV3ledUEgwcVY5Hy67HmbeeIXN6k5wZjK4pyD4B+05y8OhcTGWKUWlKX6w/hmDZZERGolO3WjzyRA8kSWL7ir082/c1cPsNTwGkl8hiwrR7+PLLL6lSpcp16fqWnzzOk2t/IN/rF7kEK07+UzyJh7rUR897G1nyZyHyCfj6x3LMfaE5uldBliVsQSbmfvUA4CUhIaFwOX36NFtLROEqFlX4Poqmc581hM5NmlC11Lv47OswmyXADJZuyKGvAJDhPofDl0Vxc2WMyq3L2dKy89l4+AzBZhPt6lW86QHw/5Kd76TzpPfwakXC/Cqlo/n8yT+28EmAvyeejEnojm8wXgmXkKxI0buQJCNpOfmMfnMRF9JysJoM/HdsT2xmfyBwhZKRPx3f4/gKnF+DXIKNGQMYu3o3iixhMxhZ2G8gZULD/rgLDPCrCBjeAX4S3bkaHB+BFIwUMglJrYjwJSLS7wT8Hm+XS+HRZ3pwITmKfkOaMmxEqz+30//D0D4zuHwpp3Dd480jPOYE/fv3p3LJajzf6w2QQPPpTP7mMRp0qv0n9haS0rI5fTGDCiUjKBMdfs0+j8fDrl27WLt2LevWrWPv3r3UrVuXdu3a0aWNRM1y87FaJMAExnpI4XN/s6Hs9HiZMHspO49fwGJUeWVkd1rU+GsMsNLT01m0aBGfL1iAfVxDFKt/oKFKMi2jqzKt7hAebPwEJ3afvnEDZcPJ71EDg0HB69OZPLQD6756mUfu3ca+nNJMPNART5oBc4aOJ0RCtZ8ladUK8s6l4LuqRLksy0yZMoW5c+dStWpVtm/fTo0aNTh7NoEPpwvaNI9AlhWQowpywQchhKD+3f8HYeVBlwEBVp22g6OZXn8Yuu4lNrY+lesPQdN0jLkawutFNrgQIqgwZlDS/S/MZgMTnuxBmw7Vyc+2c2/lh8jJyANdYLAYGDV7EA9MGkN+fj47d+6kSpUq19yKo2mp9F24AJfPrxvH68O3fCXTRo2iQaX5xBRLwGAykKcJvs4vw/YPQ0naUYJWrZszYkx7SsZc+6xeYdrWTcw9sA93QcyDEai/9xD7du0iOekMrz5XnM5tS2D3VcMU8TgVK1ZlW9pHHMj6BllSUCQjg8q9S7Ah+obt/95ouk6Hx+eQY/d75o2qQo8mVXl6SKDqbYBfRs/oB96Dhes+n0Ke6Vsii1Vh3MzFbPvxLDg0hCwhWRQMqn+A2KxaOV69rwf5XjeLjx9DF4I74qsQab1+EJrjcpHmsFM6JPS2Z88K8PsQMLwD3BDh3uZPV4cLv4cwGE/wctIzfThythBp/pTUi7l8PL8W+w+VAkBVZVZseOKmpsz+KPp0mU5urrNw3WI1snTN44Xr+dl2kk9dokT5aEKj/l75tu12O1u3bmXt2rX077iUujWuDiY1IEVv/lUpBoUQ5DrcBFmMvLNkKwvW7cdTMG1vNqp8/8oogiy/v6I83eFg0prVnMxMp1lsGSa3aYfX6WLx4sUsWLCArVu30rVrVwYNGkR048o8cfhLPLqX0tYo3m00gkhTMONbPsORrTcOPM0ZUBdfmKVwXXM7OT5/CpMmPkj/QfX5z9xkgrf5Pb2eGl5c3dzoXi+6y8v5l1eSfSIRueDnMzQ0FFVVCQ8PZ+XKlRw6dIiJEyeSmnqZjq3DeO+9GQRHdihM/zVjxgyeeOZpKj40Hjk3CKw61oZOJje5iw4la5GTk0Pt6h2pVbkPTqdf0yl03W9vF8iJrmiS/Zsk7h3VhkHD/OnyUi+kM//Fr3HkOrnroa44DHl07dqVESNG8MEHHzBx4kTGjx9/TcXGzw4d4KUtG/F4vWh79hF5/BSJ584RGRnBx+89SpMmdcBQG0ky4vV6GTZsGGlpaSxZsgSbrSgd6NW4fT7Gr/6OdefOEG62MKNrDxqUimHv3r106dKFOXPmcPr0aXbv3s3u3bvRDQ4e/qYWSoGHUEKmamhHOpZ87Fc8QbeHY+dTeHTOctJz8mlYuQyv3tcdq/n2zSYF+Oei578L+bMBF7ouk5mtUrl5Ep07dyGjZAt8B3OQPQJJgCtCxRHr/101qTJPDWnLK0d3kOF0IhCEmEysGnIPEZZfl9AgwF+HgOEd4IbouVPB8Unhek6uzuD70zh0PIioqCiioqJQvU3RfUV5RP+KhveHs9bx7cLduF1eTGYD3XvW5f5xnf7sbt129MzRCM8GpAK5hcCAHL0LSb6xQfRTpGbnM+rNhVzMyMVkUClfIoIj5y4X7jcZFBY8eTcen8aUed+TmeekZ7PqjO7e5LbLUHp+8RnH0tPw6ToqEHo5lZMzZ9OqVSsGDRrEnXfeSVBQkVRIEzpOnwebairsy9HtJ5jY6QUkWULXBEFhVnIy8tB8PjIG10VYiwxvoWt8OeFO4uPj0XWd9i2eQsWGUAS5E52oBo0qIZexyF5OpkVz6nAUodPWE5EbjCXUzMvLnqZdz9Zs27aNbt26MXv2bBYsWMC5c+eQZZmVK1eiKAoTJkzgo48+IiQkBM2qUuWhHpiLhfJQiz50KVUXgOPHj9OrZz+qlruH/CsDR48XjAa4cp+FKHxtMqm8OuNuqtWIve4+5uTkUK9ePaZNm0bfvn1JSEhgzJgxpKenM/apl/l8x1mcbi+9mtfgsX5tsNvzqVSpEi1btmT//v3kZJ9n99ZZlKtQGwwNCu+tpmmMHDmShIQEli9fTshNForyer00bNiQRx55hGHDhl2z7/Slg3yXNREh+wq3xQU1p0fslJtqO0CAvxJCaIj8t8G1CpRYpNAXyM61MH/+fD7/9gxWV0RhGlshQU4lC5pFBs1LSsoeTC3rcUWnYlZUnmzZmrtr1bnlfvi8PhRVQZIkct0utpw/j9VgoGWZsij/0rigP5OA4R3ghgj7PETea1wJfhKYkCK/RTYUBR1u23ySl579Bk3TiCmZxqC7K9Ku20AkJeonWv3jEULw/YqDHDl0gao1Yul6R52/pE75tyJ8ZxEZ/RFouF35bDvYiA53fnbL7Tw0czHbj57FZHXi8yoInxlZlnB7/R5vzWWnkfkSJ8zVyHd5QAgsksK4Aa3p3+bm/hC8upPtaZ+Q4T5LuaDG1AnvVVg58QqarhP/zpvX5KcIQWLtkHuIjIy85li7x0Oqw06poODrplqFEGxavYVl81dy+NQBth3ZTM1KdWjRtjk5FeM5cDyPUFMe/2m+mwrFjTSq/wT7DgvuvvtuIq3dsJjC0S2C/PEOupQ5QojqQpUFPl1m3czSuN7P5YqNGBRuo/TgUA4c3E9UVBTffPMNX3zxBfO++ArN66N8mRgSExNZv349vXv3Zvbs2dSoUYOZM2cyfPhwEhISCis2rlu3jilTpjDrzbmMH/A2eq4DXG6oUgGu5PjWdHA4QZGY/PYwmre6Vj5y5foHDhxIZGQk77777jXbZ334Ce/tTEVWC/7YjSqPD2hLr2Y1+O9//8u6devwOBL59C07NpuE2SQhSSrYxiEH+7P96LrO2LFjOXDgAKtWrSIs7Jf1pS+//DIbN25k5cqV130XhdD5MvH/SHefRRMeVMnEnbEvUtpW9xfbDRDg78SMN1axdNGewnUhQ155M1qwSpDFyOihzXhha1EFZ4uq8myrtgyo8fPFq1Lt+bh8PkqHhOJ1e5nc53X2rD6AyWLk/rljmJJ1BIfXi0BQr0Qp5vbqg/wP/E/8KxMQBAW4MdaB4N4Enm2AQAp++BqjG6BZy3jeeu8/ONPfpXzJ7zAYLYj0DyFiPpLhr1F8QpIkOveoQ+cet+4l+DshqeWh2Fok7zGyUzQGj+zFypV7qV//1lJLXcxMp2PvbUQWz0GSBAd2VGTbp6lYYqviceRwfsOXnFIMVOoZi8lnIPiMC0mHOYeXMj9iGsVLBBMZGVk4K/K/r0NDQ1mW9CwXnT+iCQ8XnUfw6HYaRw0FICkpiXnz5jF37lzEsMEQ7PdoK5JEndJlrzO6t15IZPSyJSCBWVX5os8AbG4Pa9as4YcffuCHH37AarXSsWNHRj8+ki/azic4NIT7ds7hTN55giw681otJlj1sX5TOT7dNZXPvj3B5cuXcdo2U7F0d3BIhGV7CK7g5sLp4iSdKU5IRD6Va1/isK9IcuPMc9KueW/emTmDY8eOoeuCHRlGLkY3xWAw8OOBjVza+T0ffvgh99xzDwCdOnXizJkztG/fnpkzZzJp0iTAX0ynZMmSVK1bjvgoC8fPJPmjJE8nQkxx0HVIvIjscuMy57Fnf/EbGt7vv/8+x48fZ+fOndc+L5JEgxbtWHBkKXa3X8ri8vg4lphKr2YwbPA9fDXpOx571kp4qBOl8J/CB/Z3EMaqSKZWyLLMrFmzGD9+PG27daPR4xO4YM+nXfkKPNykOer/eNNOnDjB9OnT2bt37w0HwJIk06fMdA5mLSbfl0F8cGtKWWvc3MMbIMDfiI5darJ62QHcbh+KIhMcaqF526qYLQbu6dSAyFAb844e4kJONgKIttroHn/9d/xqXtq8kU8P7UeWJGpGF6fTQcHB9UcQusBld/Pc3G/I6hhTWJhu3+WL7Lt0kZK6he9XHMRoMnDHXfUICQ3IWX5PAoZ3gBsiSQakiPcReg5IRiTJcsPjKlQMRwQvLFhzggCR9wpSxKd/XGcDACDJIWBqTKky8NZbbzFkyBD27duH9QYBOT9Fy1bp+CJzUFX/T3PtRgk4NspsW/MRDoeDhrVqUbVmHfbqJoJOO5ELZOWSkLEp9Wnf2kO7+t8QGpTH6cQgJv83isTz2aSnp5Oeno7T7WDavlaFciSfcLP26Cc8OOFtkpKSyMzMpEKFCtSqVYvQPAc7rBYcskyYLohPvMDs2bMxmUyFy3OXzuMoSJvn8Hjo/Po00mfOoWXLlrRv356nnnqKypUrX3ON29JOcDY/FafuoWGlFMxGH8++0Jbjp4rh9cooUk0kMZfklP3oQqNq+Z4YFlo4bYhl75aqaD4VRdEINkUjc7ywNqLm0/n0o3mUL1+eXbt2cTZXsPvkRSRFxacLIqs1QU8/S2xskRykU6dOfPLJJ7z66qu0bduWBx98kKCgoELDW5IkXl3zLHeXG0tuRh5k5foXQFEVossW4+FPn6B7n65UqVKFzp07Y/d4SLHnk5V4nqeeeootW7ZgNl9fWrpCyUj0q6YUzEaVepX8Rao+emIBNl8oJnMO/zMZgcCL5D0KJn8gtSRJvPnmm9SfPo0fziaAopCYk40mBBObFwVb67rOyJEjefbZZylbtuxPPoMG2UyDyIGF6067i6QTF4ksFU5EiRsHcQYI8HejSrUYpr09hOXf7iM42Myge5oTHhF0zTHf9h/MxsSzaELQpmx5LAbDT7QGR1JTmH+4qHjbvuQkUufvQ3VdlfdbaOi6XhQnouskJabxwjPf43R6UBSZFYv38cH80Vht/+bKEL8vAcM7wM8iyaE/f4DwFgR5XbVNt/+ufQrwywwaNIgVK1YwYcIEZs2addPn1Yy3cjinKHWaLCT6D+vJ9BfmUKZMmUIv5dYjZ3lu9PxrzvV5Ffp1/B50v2FYqbyDKRMEz79VgZycHLxeLzWr10J4ZTD5LT5dh5TzOfh8Pvr27UvNmjURQuB2u3E6nRg3XCTzbB6WEiqXKhtJ9Hhwu92kp6eTeP489uFDka54VSUJ3WIhLCyMXbt2sXHjRh599FFkWcZqtWKxWLBarQTVL4dpSAMks0qOZiQ1JYjjJ4vh9lz5OZQpXaIpne8szSuvvMK+zW/x/pwLHNsRh1aQ/k/TFLLt4USoMvj898tgVjl66DCvzHiF119/nftfeKeogikQZLMx7MlnGTx4MKs2L8JawkvdVhUYMWITFStWpE2bNrz77rs8/vjjhYY3gMVmZsIH9/PiwDdwu90gSdTpVZnnP34aa7AFSZJYuHAhvXv35p3F3/L8wb0gBI78fCa+9up1A48rRIXaePvBXkydvwa7y8OANnXoVD8egNP7z4IOS+dG0bpnDkaTjqz4JeVOp45kjuPq6AG35iPXZPTrzgGnz8eaMwnXGN5z5sxB0zQeeOCBm3kUAUg+fYlxzZ7G6/Hi82o8PHsUHYcGcmgH+GdQvWZpqtf86fzyJlWlU1ylm2or1Z5/zboGRLeqRH7KKTxOL5IkUfKYHXcnBa/QEbqOKyOTxwY/RtkSLZEkGZ9PJz/fxYF9iTRrGf+rr+vc5UxW7zmBzWLiruY1sAWCka8hYHgHuGXOp2bz8LuLuZCWQ5moIPqUVendEYwGDTCD7b4/u4sBgJkzZ1K7dm2WLVvGHXfccVPnxIe04ljuanzCjYSMzRJEz7bDMCnXBmk2r1Geps0qsXf3GbweDYFGs1aVQL9UeIwia0SGptClyxCeeOIJqlatyuXLl/l89X/RG+xHCDBIZsa2nsNbd19fUvmDSZ+xZe1hXA43pjNGilkropTLYf369WRmZmIwGDCeOYupYhw+/BrIe9q15/FnigLxhBB4vV4cDgdOpxOHw0GOI49JiYvJ8jg44QnhwyWlcXmVQs+1QNCuQ1tefXUUAPWb96Jelbu4/5P27DlrRiBfOZArLmNFVXD5nEx541l69+7NY489RohuR8H/B3ilmuLgOzpisd3PWsdzWC/Z0IVG12f70v3J92nSfgBvPPsAJTq0Y0OwleqhwTi8XqwGA816NuSNrVO557kZSLGxrMq4RO9TCTSvXxOAFi1a8MorrzBp0zq4MsNhMrHRpPLoz3ze9SvF8s3ke6/bXrlZHCcPJJBwxMrDPeLpMMBB3zFZeDV49tXzbNg5kfXrGxEa6h+YmxSVIKORXLc/C4wqSZQPK/JOX7hwgWeeeYZNmzah3EJO7Xf+70NyM/MQBff5zVGzaTuwOWqgcmSAAIUIIVhy4hhOn68w6Nqkqjzx8mhOVNvFqo/WE148lIfnjEYuFcTK0yexGoz0rlKN5VX28NHs9fi8emFbFstPe9Z/iTOXMhg6bQFujw9Vkfl2y2EWPDkkUO31KgLhrAFuSJ7DxY5jiZxMSrtu38PvLiYxNQtN1zlzOYuFp0ZjipwCttFI4e8jW25H2ecAv5XQ0FDmzZvHqFGjSElJualzYm116BbzDGWs9akU3IoBZd+5zui+wlMv9KZ7z3pUqR6D3X2CkmWdaHI5NL2gYIwwElWyK/369ePIkSN0796dOnXqcG6vg2buyYys9in/V3sJlUtfb3QDrPxwLaXKZXPvpEv0GJrE0XUHkSSJsmXLYjKZeP755/nx1TcYUb8hLUqXZXyT5jzarOU1bUiShNFoJCwsjJIlS2IymXjr9Tc58uCHtMiLpklCOJuWB5NXVkFXQFNBN0hU71MUwCSp5ZEiv2Zi72hCrDImxe/lDtt2FlVVsJSOwFgjCqmZl/6D+qEoCqPHjOHzpV/iydxP7qXTlA5WeP+RfpSICMZSNwGDWcYrnGh4aNApmQy7h7U/JlO2z0he3LyBrIgwdnicjFz6bWE/Vp1LQpQpgwcZU2QpHpq1DK+3KPvH8OHDkSyWqy+eNMevm31ylcoirKqFYqUjCSlel9b3fo5SYi+mmL1Exj5MWloaHTp0ICsrq/A+v39HL4KMRlRZpmxYOFPb+XNdCyG4//77eeihh6hW7dZiP7JTcwqNbgBd0/FcNXUeIEAAOJRymTVnzvhXJAlZkuhdpTp1SpZiwOO9+Pj4W7yx8XnKVIkhNiSU++o1ZEjN2lgMBrrfWY8SJcOxWI2YLQZq1SlD7XrlfnVflmw7gtPtRRcCj0/jcmbuNZmxAgQ83gFuQHJ6DkOnfY7Xp6PpOgPb1GFM98YcPHiQHTt2cO6yhyvCT0lWyNcNSNb+BOKi/3q0bNmS4cOHM3z4cJYvX35TGV3KBzWhfFCTXzzObDbwwPjOAGzcWIFh997Lopcf5LHqSykbnM2u1Bg+X5TH6g9iady4MSNGjGDp0qU31BvfiGqNNJ6YcQqjWeD1SHQckEWLQVsZN24CS5YsKdSuXy1n+Cmyc3J5ZOrbrNu0hbvaNOSHFauYNGkSZ3YkYYutT4nt7kIAACAASURBVEZtmbwKKoob3FEy3uBr75OkxlGh4kSWT/Vw9nIm+ecz2B1zmC+PnMZRzIbQfJSIqIlP0zGoCik1qrJXFQhNR7jd9KwUTdUyxQHQhXZN23JBPjGXx4dii8In+Y1pnxDsvpiE0+vFYjCw+8SFK6oWQEIoRqZOe43Hxz+CalAwGlXikDnl8SAZDVhUlTt/IRjrRgghmPvJXD7++GOaNWt23f6JEyeyfPlyLBYLHTp04PvvvycyMpKGpWI5MPpB7B4PQUZj4bP2xRdfkJiYyDfffHPLfel4b2tOHkhAFgpGs4FqTStjDb5xvEmAAP9Wcj1ulKvS+OpCEHqTv7NWm4k5n9zHkcMXMBpVqtWI/U0pgU0GA4osoRUMmJ0eH3tOXqBepetTnf5bCRjeAa5j1rJt5Nrd6AV6zbmrdvL0yD6Ujy1JkyZNKB5cnXSHjiYEBlWhTlzMn9zjAD/H5MmTadasGbNmzWLs2LG/y3u0bt2a2u3acuCSzsDUOwu3x5XQOXz4MDExt/6MjJsejNnqfwZNZkHJcl6OH15MaFTznz1v+7I9vPfYp+i64N7nB5CQf5w3V/+IOTKG4g26sjVXY0GP3rRtUo801yWiEnKRhIQrSgJZxiQptC8fd8O2bWYjNcqVgHIlWJZwHkeKfzZAUlTyXF4SLmWgWBW+P38OyWhEAoTRwFa3g+EFbTSKupuNKTPxaR68Ppkf91UAwKDIBIVbyNBzCoOfVFnGWCDNqFa2OAkXMwqLGQVZzaxYeIztq15HliXqNArh+NczGPjmdL7esonG5eNualDyv2zbtg1JkmjatOkN96uqyqeffkrTpk256667aNeuHWvWrKFYsWLIkkSwqSgoKz09nfHjx7N06VKMxlvXea4+sozwZmbqxjYktnIpBk7sdcttBAjwT6deiVLYDEZcPh8+XceiqtxR+eYH3UaTSr0Gt6ci8aC2dfhszV40vWg27qNVuxnSvn5A611AwPAOcB12l6fQ6AYwGFR2791P5XJ+4ykj184zc1dxKjmdOnExPDc0UD75r4zBYGD+/Pk0b96ctm3bUrVq1dvafmZmJgsXLiQ54QzeavHISpHR2LpB/V9ldANElIpBOBSkApW02WzAElb8Z885eziRqQPfxO30l3SfOuRNnI19BNdvR3zxi4zruB2T6mNZzQ689PinuFwuirdWKbUkjbO1gyhTuzRP9e5OfOQv56KPDLYiS4UybzRdJ8RqIs3nRL5q/kdSFLxXpQapEdaNMEMpzuce5PEJ75BvaY1kEJQKNfLSyF4MXPQ5OXY7FpuNNzp1LSxwMb53Ky5n5rHr+HkiQ210r1CBZXtz0HwCXRfs2pLG/LkLadm6AaNq1KJVhy4MSbPg1BXa1anIAz2boyq/rC78+OOP/bKVn5kdqVSpElOmTGHevHl0796dtm3bsnbtWooXv/bzefjhhxkyZAiNGjX6xff9X7799lt++OEHDhw4cNPFeQIE+DdiMxpZNmgoH+7bQ77Hw8AaNakaVexP6Ut4sJVqZYuz73Ry4TZZlsixuwKGdwEBwzvAdQxqW5cdx87j9vowGRSqlI4mvmypwv2RITbefajPn9jDALdKfHw8U6dOZdDw4Tw8cwZGg4E74qtc4528FdxuNytWrOCzzz5j7dq1dOnShckTJvDh4cMcljRkIRMiy4yp3+Cm2hNCsGDdfpbuOErxsCAmDmxHybD7wPUdCAeggbkbKDf2RF/h+K7TXK15UlWVob2GsCr3OO8OXYbV5PfClO++lh1bKnD5tJnPV316Ten0m+WuxhX56NsfMAeHoRqMDOvYgMtnM5k2ZQklsvPJLSOR1sAIukb76BLXnBtrq0OsrQ4Nix8gL+8MX8z/kkpdu1K1+P28XrUWQx4Yy5jRo+laqSgjidVsZMaDdxWuvzN9FZqvaIBstVkIDvIPGCpUiKNqn4c5cSkHSZb5cuMBTEaVMT1u7MUWQrDqo3Wsmb+J3dt+ZOK+Sb94/ffffz9LlizBbLLSrUs/2rXtypq1KwqzsXz33Xds376dQ4cO3fxNLSA5OZkxY8awePHigNEdIMBNEGW1MrHFrc9w/R7c0bQaR8+n4CoIsIwOC6J4eNAvn/gvIVC5MsANOZhwkXUHTlEsLJh+rWphCkQk/+1Jd9hpOvNthEHFaDRSzGrju8HDsN2kBEDXdbZt28a8efNYtGgRtWrVYujQofTp06cwu8UjbZ9l78FTCJuR4FydnqM7MurVYb/QMny9+RDTF23E5fEhyxKRIVaWvzACVXaC9wBIwWCo9bNeWF3XeWniq6ybvgsFvzzDbDMx+ZvHOORYQp86XxJk8gfmaTr891A9ykU+Qr+Gt+6NBejRowdr161nw84DxJaMJthgYHDvGWRbBVqITERUFqHFM0jZXwJrhpWp0wdRq+61+atPnjxJy5YtmThxIhMnTuTQoUNs3bqVZcuWsXv3bhISErBYbqxp3rX9NM9N+gqfV0cIHavNxGffPPT/7J1nYBRVF4afmdmW3gkhoYUeeg1SlF6kSgcB6QiCFAVBEVE/QQSpKgqIQkJvghTpgoD0qnRCQoCQ3rN1Zr4fGxKQUKWp+/zb2bl37mw99973vAd3dyeS07No/v78HFkK2KUq4WO65dnXhrnb+HbkQsxZZhBUipYrzLfHpyA+oJz0n39cZFDvebi7emG1yiSkHWb95m9wd3enXLlyfP/99zRq1OihXk+jzcL660fIsBgJf3869cvXYPz48Q/V1oEDBy8W6/b/waZD5wjwdmfYa3XwcnMU5bmFI5pykCcVixWgYrECDz7RwT+GTRcvIDk5YVFkTDYbicYsfo28QouSefs83+L8+fOEh4cTHh6Ok6cHTbt2Zdv+/VT5iz90RkYGp/ecRacCKTYswG+rDz5U4L328ClMFvtqtKKopGeauJGYRmF/L9DXeWD7M2fOMGDAABRFoes7vfjl619RVZVOo1pTtXFFKpnAGr8s53yTouGayZP9ERcfK/BetmwZ+/btY+iQtwgtb/fZPX/mBmn5NGS5CyAKxCneuLkbafruYXaPr86Ho5azduuoOxKXSpYsScWKFfH29kaj0dCsWTNat25NjRo1UGQ9QwfOony58rzWqQaFivxF/iIlcTl6E6FV2mOxZpFmPoy7uz1Id3M2oNVIOYG3IttwEe7tBrI9bLc96AZQBa5fjCE5NhWfgPsXrNmy4TwGnTtms/06vu7VqV+vCeVDGlKxVDdionRYrTJa7f0tBK2KjT4H5hCdlYhFtkH3ELq+0u++bRw4cPDi0qZWOdrUclSdzQuHneATQFFUrlyOIzoqkds3ECJiEun6WTgNR33Lp+HbsMryfXpx4ODpImbbTN2OJIpci0/hrdlr6PTpIsK3H0VVVeLi4pg1axbVq1enXr16ZGVlMSM8DN2b/djp7kz37b+w/vxZzp8/z4wZM2jcuDG+vr5YVXNu5wLkK/RgrbRZtnJRiQYx97tjtFqYNvkzYmJi7jpftRxBSZuCmrUYsymDCRMm8Morr9CtWzf27t3L0CkD2JC5mI1ZS+gxvhPJycm06zye75drsSoCNkVgc3QwG64WR3oIl5e/cuPGDYYOHYqiKLz33ns5xwsEeZHpZg+6AWSbhisXC6BxthFYMxaz2YYxW3t+O4MHD+L00a+YOL4ybVpWYfHixXh7BYCxCpEXzWxcd4yh/RYQG5OS0+b06dO0bt2aL2e+R9iqEYStHEXEldNs2LABAI0kMnNwGzxc7M4GpoRrLJv8LvPmzcvznvIV8kP4i5OBy0OUjU6Mz+D2PVOtTkvFMq1JvumJMcOFZeH7mfTR2nt3kM2Z1OvEGJOxKDa7VEivYUPM8Qe2c+DAgYN/Go4V77+JxWJj9NuLuXzhJoqqUueV0oz5qA2yojJg+iqS07NQgU2HzuHl6sSQtg9evXPg4GnQulQZ5h47THxGBmazmcK+ftQOLES7CT+SnG5EUVVmrf2N+XO/5cTWlbRu3ZrPPvuMhg0bIkkSnVYuyymQAjBi03pMU2cRFBTEhQsXaNKkCW+06cuikauxWm1kmtPp9umDXShSrVloyxixJkmQogEBnIqncGXXBUJCQujRowejR48mMc7G4T0/0L39SrQaG7Kq5eCRjzlxogzHjx/PKcV+OT2WeHMaZdwDuXT6LB07dqRVq1b0f3slXx3ZT/ipY1gUDQaNyuhHdP1QVZX+/ftTuHBhGjVqhI+PT85zbu5O+Hq5Ep+W652t01tBtde0CCzojbPz3bKeVq/sp2GFVDQaCUjm9CkNy5dsxVVXGUEQUVWwyQoH91+idftqXLx4kWbNmjFjxoycwkg6nY5Zs2YxePBgGjVqhMFgoEqJIHZOeROL1UqpkiVRrCYmTpzImTNnmPDpZ5y4HINBp6F6qUJ0Hd+WLSu242JwRUDgnQWDMTg/WP/fvHUlTh6LxGy2oagyBicNCbGgkez3aTHb2P/bhezqtvee5OhEDQq5EbwkiBikxy/i4cCBAwcvKg6N999k07pjfDNzK2aTfZtckiCwWDIJmTeI9q4CYu7cpkLRAH4c3eV5DdXBfxRjhhFJq0Gn15JhsbD1wjn69unDlR27OH3+CiPmb0URcqUARb10LPqgFy4udxbOaRT2PRHJuauuAipem+ZQzKMa48aNo3x5exVFq8VKakI638z7ipOnTrJ69er7jk9WFdrv+ZKbxhRkK+gkkZIxElGL93Dw4EG8vLwwZUlULt2HyR9vp1L53GJAsiIh5duNqMkHwPeXdvJjxG40oojVbCFi7ApmjZ9Ehw4dctocun6N6LRUqgYUoIjn/aUUtxOflUnnBfOIzMzAcjWa3e9/SLHAO71pj1+6ztCv1mJTTSiqSsOWx/FyT2XVEHd+WjebAoF37gCocjxqfH3AvhKuKLBph5Hp82qiVcqjZhcj0ukk3v2gNcVKufHyyy8zbtw4+vW7W4rRtm1bqlevzgcffHDH8QULFjB16lQEQcAvIIiMoq+gd3FDQKBisQII53dhtViYMOYT3H3dcHF/eD3mvt/OM3vNb0RbMkmOi8Y/SYfGmNtepxfZuOv9+/ahqiqDds/hSMoVXF1ccJL0hNcego/e7aHH4cCBAwf/BBxSk79JWpopp9Qq2P9AfH0C6NK+LU63OUboNBLliubPq4snwpnUa8y7uJ2fog9jUxySFgcgyzKfdp7Ga969ae3egxVT1+EkSXgnJMHFyxQsUID6tUOx3SaB0mkk6lQtf1fQDdCqtD8ayX6uRpQp6hfH2OndWb58eU7QDXa5gW8Bb0a/N5qTJ0+yZcuW+45TEkS+Cx1Abb9SFPfKR++S9fm+z3h27txJfHw88+fPp1GDTiiKSlaWDkW5ra0oIoh2XXOG1cSCy7swK1YybWbMgkybr965I+gGqBEYRPsyZR8p6AbovXoFV6wWcHJCX7IEk44evuucysUD2TyxH/NHdOXb9yvzRmgfepeax7ETK9m2fWMevd657iGKIEkiq3+ai9FyE5BBUEhOi8I7n0yjRo0YNmxYnkE3wNSpX7I87CgdW3zJkH4LuBqZAED37t3JyMggMKAEWlttPP9U0J5Ox5hh4diFa6zf9TuTPp9EQLD/IwXdABHmDK4qRoyKgt47gJSi7ri46XFy1gEyx88sYdSoUcj3kdoJgkDavH28cs2DTyp2ZuXLIxxB9z+MtEwT4TuO8eOWw8Qmpz/v4Thw8MLiWPH+m1yNTOCtPt9jMlkRRQEXVz0/LBuMh6czf0beZPS8jSSmZVKrbBEm9nkVg+7h1T2xMSns2PIHWp2GRi3Ks+Lin5xJiOflQkVoVyYkZ+v2cOJlRh5dhEWxohe1VPYuyoyqbzxUlUIH/y6sigmznIGLxpvN3+/im+E/5CTNqZLAH56niU+6gCRJKIpCjx49aNH9Tb5cdwibLFOpWCCz3mqLk/7ubf5kyzXG7x/H5XhvfFzTqVbkBjX9uhLq2/2e49m4cSMjRozg9OnT6B/TuhBg984zTP3sZ/y8E5g+aTOioOLkJCK6DUB0GwpAojmdljs/RxZyf9Kqegczp8bfT9JTFIXiM6fat7Sy8TIYODrgrYdqX758eQwGA4cP3x2sKykjwbQTUDCaTPQeLBG2+gSx8bFUr1qPOnXqUqiID/PmzWXkyJF88skn97xO2II9hC/YjaIICAJ4eLqwdN3baDQSM2fOZOPKeBRFj4CACljdJNILS7QJ8eSj4QMe9WUB4K3Za/j9TFTOY1GVCc66yOfjP8HTy4nWbV4lOjqaUqVKsXTp0jvkObe4fPkyoaGhREREOOwDnxFWWSZs21HOXo0jtEwh2tcpjyAIXE9IZevR8xi0WlrXKvtQ3suZJgsdP11EUloWiqrirNeyfFwP/L0ckycHDv6KQ+P9NylUxJfp377BmhWH0Os0dOlRCw9P+4pR2SL52fhZ38fqN+5mKgPfmIfJaA/ovzizn8wACZNsY3vEJeKyMuhQOJioqCim3NyGWWN3LDApVo4mRZBgTsfP4PgD+y9xPnUX225OAcBDG0DE3uKYskwI2cbWqihSuGo7bKcXU7VcKfR6PT/88AMAr9WvjsUq5xlw38JLF0T3cg04nLgUARFvfWGqeN/fz71FixbMmzePL7/8kvffv7/c4H7UrVeG/XsusGenTL+hr+GX7yBvDutPhQIdAbuv+LgR75FcMAX38oVAI6IXtXQr8mRyKmbOnIkmPQPFyxNFVZEEgdKPUKCiT58+vPfeeyQlJeHt7X3Hc4LHVDDsIC7qLO+13k7iJQ2dCwxg0i/jaNm6PsuWLaNw4cL4+Phgvk1jnxfHD19BUbLfbxWMRgtJCRnky+9B3759+XnZ9JwJuQBoTAqC1cLoQcMf7QW5jTIF83HwTCRK9udMr9ejSf4dP6k5LlYb21e/TNX6cQBUr16dH8KXcehaJpkmC+3rVqB80QAmT57MoEGDHEH3M+TDH35h96kIzFYb+/68QkJqJi1Dy9B14mJMFhuSKLBi90mWftD9jgWjNLOJcwkJBLi6UTDbRvTA2ShSM4xYbDJSfAZWs42fd52kXztHTtODUJUs1KxFIMchOL2KoHu42gcO/rk4VrxfUJYt2seP83Yjy/aUo4hOhhy3BABbYhKZX31L4cKFce1fC1Nht5zntYLExvpj8dQ5fDP/K1gUI3MvtkdW7Vphm1Vh/4w0UhYWQVTsq5uqViKtS0UGdqhN3ZL+NG3alMjIyEe+VpYtGYtixEObH0F4sFotMjKSatWqcfToUQoXLvzA8+9HWmoWoijy6+7tDBgwgH379pGenk6nTp2Ijo5mxLsjKd+nOTHGFF7OV5oq3sGPfa2DCReZfm4TWSYjp2b+xOKJc/ns1HEiUpIp4+vH3JZt8ctDkpMXN27coGhwMcZ8+gW9erxO0fzed53TN2Q4V8/lVnvLXzQf+doaWLx4MWlpaezcuZPOnTszffp02rVrl+d15szcyoa1x7BkWzM6u+hYuXEkuuzAqW2z/5GZpgICoiSQaotj5uw3CK1W5RFfnVx2/7aXN79cgkuBkri7GJjUpyFVPDsgCcbsM/Qkm9tRNvQ7Br7Znc0x7iiSK4oqYNBpmNi9Hu2avsKFCxfw9X2wC46DJ0P1t2YgK7cltMpmvKwJJOgLQPbkzFmvZcqAVrwUYv/eXkxMpOOqpaiqilVReLd6TbTnLvDD2q0keZfF9UgMhjM3QRTQ6bR0mNePOrVDKBlkn6RarTI/zv2VE0cjKV4qP28ObZwtSfpvoqoyamIHsF3EnudhQPD6DkGfd6ErB/8OHCveLyg6vQZJEpFlu6BVlEG5LcapWKoUPycmAhCREUu/A9+hoiKrCh0K1XQE3f8hZFlm595fsHpbEbMXrDVakXbv1SQ9pBErpqxH0QhkvlQUnZcbwQULUKJEMGlpacTGxt5V5vtBOGu8cObh9dFFihRh2LBhDHvnHT7++iv8nJ0p4PZ4K5uSi5GLaXsoXFvLu2PeoWbNmphMJkRRZObMmffUPj8qVzMTGHUsHJNi30kKGNQQ1yAPNpV/47H6c/Hwpkzn91h/IYutExfTrk45RnWqf8c5SbEpdzxOiUtl/0+/EBAQwMcff0z37t2ZP38OH33Qh/LlClGi5N0rY70H1ufa1SSOHorA3cOJ8RM75ATdANO+7kXXdh9TMLA0VjmeUqXEvxV0p6en06fXG3z55Ze0adMGQRBQbVdQE4Xb5OtmvNyiWbdmDqnpM9m5qTmZFntgZ7LYmLZwNb1793YE3c8YF4OWtKxce0tfD1eKe3uRFJ3FrXhcBXS3ebB/smcn6WZzzlv76W+/4rl4BTVDaxKpSFj/jEGQ7c9arDKLPlrB/Kal+bxfC14uH8w307ewbfMpzGYbVy7HEReTyqQZeRd1+k8gR4EtglvJ1WAi9eYc3AuG5hSvik/J4LMl24mOT6VexWIMbl0L6QGFrRy82DgC7xeUpi0q8tOqI6QkZ4KqUj3Og5OFs9CIIgICkxs3yzk32NWfVXVHcjrlKn4Gd0I8gu7Ts4N/A6qqcvToUZYsWcKyZcsoUCCA7t8FImjNqMhoBD0V/JpTdsSrXPHQsufUZTRArTKFqVehGKIoUKNGDQ4ePEjr1q2f+ni7D3qTH+bOoevKpaiCwKhadelTueoj9ZFhTWDxlf4kJIlsWVuVjDQD/k3f5PLG7/hhziw6der0xMZ7JvXaHZ7ngiRwIjmSil6Pt2Iftu0IkrM7KgJmq401e/+gfd0KBAfk6p1fbl+TjQu2ISgiolZA8bHLSrp27crAgQNJTTpH+QIj2LnaB0XphjH5M5y8Ot5xHYNBy2df3ts5KbhYEPWaeXP58u8cPXCAsJVnHut+bjFy5Ejq1atH27a32UZKAdz512IAXSjVyx7nzGUrspr7umo1AqeOHObb1Xn7izt48qiqipr+Pz5tu5fRKxoiiQKi5Mz0tzuS38uNrhPDSTdaUFWVisEBVC4WmNM21WS6Ix1YEEVKhYSQnpaKZ+ZJEm57VlBBMVsxWWyM+Wo5QcnHSb5eClR7rofVKnP8aOQzuusXFMEZyE06lmXYsvV3BrzrRY0aNahZ8yUOGPORYrQhKyoxSWloJJFBrWo9vzE7+Ns4Au8XFBdXA3PDBnDyaCRavYaKlQuTZDZyIy2Nol7euP8lUc1b78or/iHPabQOngZHLkQzaelOTBYrbzSpTqdXKnL+/HmWLFnC0qX27d5u3bqxc+dOSpcuTaYtmb1x35FmjaWUewPKeb6KIAh83vdVYpLSAZUAb/ccjW9oaOgzC7xnHjmE4OqCKduS5It9v9EhpNxdn+P7cS5tBxbFyM6NNclI0wMCGmd3SrcayJYtW+jYseMTSygu5OKL1ZZdzAXQihqKuDy8pvuvpGSaULktkBcg47ZiOmarDb/2BXE/I+GeoeOPqAt4BrvTrEwzdDr7Vvy7b1qQs1Qkyb4Kb8kYh+LRGlF8tKTVoUOHUqRIEb766qu/palev349O3fu5MSJE3ccFwQDeC9CTR0NcgI4tUBw6Yea+j4hBeJpUfE8G06URhJV9ChUqFiIAgUcVXKfGdYjYFxF7RJGNo0MIybFl0JFhuDqZbfkXDX+DQ6fj872eC94R6XVNypVYdyObZgVGYOkoWbhgiwYPgqwB/QjXxnPhaMRmI0W0IiYytvfVydnZ9o3aM/GVTe4eSMzp+iSl8/DSbX+rQhSflSXPpD5IwgaJK2BTn3W0PA1DQcOHOC3/QdJzDBDtqTPZLGx51SEI/D+h+MIvF9gDAYtobVL5Dz2c3bBz/m//UP1X+FmUjpvf/1TThn1Kct38PnH44g5e4QuXbqwePFiqlWrdkeg6aLxommBMXf1JQgCBXzuDrBCQ0OZNm3a07uJ24jPzLxjpcxqtbBo2VLeaNceN7eHcz4QBQlBEMhIdSbHCVUQcfL048RvG/j8888ZO3bsExmvS4pM7JL95Hu9FqoA7QrW4OV8ZR67v4bVSrBm32l7MR1UsrAhONvvQVFUBk4P43x0AubyNdFrbHwwPpJSpaYw59sFSLecVOTY201VAJV5381g4KD37rre/Vi1ahX58+cnKirqwSffg9jYWAYOHMiqVavyfP8EbQiC74Y7D7r0RDX9wtgW+3m95nkyrME0aLqZeb8ffOxxOHgM5DhufX88nMy46m8gaRK4npbGuYR4gr29qVexWJ5N25cpy4kDB9hy4TwDOnaiZ8XKOc8JgsDkbeNZNHUdW389RaSrCAU8MUgS43u/yisVilGndhLvvhVGakoWBoOWCRM75nmd/xKi20hUp9YgJ4K2LILoiq8vtGzZkuavvsr+d+aQabJP0jWSmGd+iIN/Fo7A24GDF5CjZyOQbbacx7IqUK9VZ6Zs+yk3EPub1KhRg8OHDyPL8hPrMy+uX7/OgXnzURrVR9Tp0EkSfhotv6xazQdvD6Np06Z069aN5s2bI2m0fPvzfvb+GUmxAB9Gd66fU/a8jEdjjietIn9QKteveqHIEjqNRPVSBRk1+mdq1qxJ0aJF6dLl7xWpMpvNdOjQgUFdujCy6UhUVMSHSCK9H0adjK2YhJxgQ5XA4qOwI/Iy5fP7cy0hlQvXkjHb7D/HZpuWXyOrYEoPR5blHK0nTu0g/SJgxGyBxFQfxk+YRki5WtStW/ehxnHjxg3+97//sXz5cjp16sSYMWPwyHameFhuVe/s3bs3tWvXfuh2grYs+K7mzPUtfHUZzl/KoHZbA8HBj58A6+AxyHHNEAAVq1Wl5/s/caKUEa1GwqYofN6wCa1L5T3RTDtxio5BQfSrcneOwZ/RcSyIi8Fa0hub1UKpAB8+fqMppQraV9MDg7xZvPZt0lKzcHN3QpIcWmUAQVMcNMXvOi6JIjMGt2HknPVkmiyUCPRldOf6efTg4J+EI/B24OAFISMjg/Xr17N06VJ+P/4nhVsOhuyKkgadhka1bOrwjgAAIABJREFUqz7RANnX1xc/Pz/OnTtH2bJln0ifqqqCHAGqAppibNmylY4dO6LVapk9fjxHM9IIcnNnYNUauAx+m8TERFavXs3MmTPp06cPNTq8SbIuH1ZZJSImkai4ZMLH2JOvnCQPuhedT7XeB/jhpxtcuWajQtECjO3SAGeDjg0bNtCwYUMKFiz4SAHhXxkxYgSFChVi5MiRCIKQY8f4d/Aw6FGcwBhgX/fXAB4G+4TCSafhNnMJREHBzWBj4+Z9uHpWz3nPBeeuqIIeTFswmj2o1zaMt99+my5dunDkyBECAgIeOI533nmHgQMH0rBhQ1q0aME333zzyLsE8+fP59q1a6xateqR2gFcy/Sj8yaZLKsVVZJwqhBCZEryIxczcvD4CJI/eC9HzZgJqgWDZz/Ol9iHWZExW+x64/G/7rhn4H3w4EHat8/bRnTBL4dydukEScuVm0n4uN+5SyuKAsmChfMxSYT45cPtb/j7/xeoWiKIX78chNkqP1IdEAcvLo530YGDZ8Sh69e4mJRIRf/8lMtndxKxWCxs2bKFJUuWsHnzZmrVqkW3bt1YsqQNv/4ZzeRlO7HYZNrWKkfz6qWf+Jhu6byfROCtqgpqyhAw70VF4FKUG127nsLHx4d9+/YRGBjI639p4+Pjw4ABAxgwYADXr1+n2+TlWK32KNQmK5y9GofVJqPV2INPveRKRb9GzOh/9/UrVKhAWFgY7du3Z9vm7ShpAr6B3gQWf3BAeovFixezfft2Dh8+/EQLUFXJX4CmxUuw+eIFsjIzUTIy6FLWXu1TJ8gYUiMQPAqhEVU0kkL/Jm5UHR9Fo0Ylcla8BUFAcG4Pzu3x9oYFP7SiQ4cOdOrUiU6dOrFz+1o0UgZIgQjC3X7sO3bs4MCBA3z//fcAjB49mtbjB6KcLElF36K0KFD5gfd86dIlxo4dy549e3K054/CvugolOxZhiAIyIrCb1GRjsD7GSNoSyJ4fZ3zWO9yHDIzcx5b7lFl1GKxcPr0aapUydsJR/OXFWyLxULt2rVoULcW9evXp169eqyLjmLagf1oJRGtKLKm0+sU9vR8Anf170UQBEfQ/S/C8U46cPAM+O7IIWYd+j1H59wrIIhLm7ewZs0aQkJC6Nq1K7NmzcLPLzeBr1XNEFrVDEFV1adWhbRExRqsP3ie0jUjealM4b93HfOvYN4PmBCAAn5ZDOhZkFEf7n4oq7jAwEAqlCzKgbNROf7Cekm468/8fjRr1ox3Bo1mWPUPcXVxRbYp9J3YjXbDWtyzzYnL1zl0LhrM6XwwfDg7dux4ZPnFgxAEgamNm/Fm1Ro0ebU5V44dx/ruGBJjY2nRogW1a9cmKfM8L9UqSq+OLXB3r0SbtomcOnOeV8j7/l9++WWmTp3KhAkT6N8jH0p8HVSNHiQf8F6OIPmRmJDO+NEruHwpFpMpiU8+/gJnZ7vV6G+6G/j1rsu6mKNsiT1FRHosb5dufs97sNls9OzZkw8//JCQkEdP5FYUhdMHDmI0ZiFkB+1Wi4UP33mHCy/VpkePHpQsWfKR+3Xw9+lXpTrTft+L0WbDSaOhR4XKd50Tn5LBss27KV7tFVzu4V//ZsuXOHw+GoCsLCOuV5IIiChLlh4WXQ1jwJC38B47CiQJswyiIPD5vt3MadHmqd7fi4SStRyMq0EMQHAfiyDlf95DcvCMkSZMmDDheQ/CgYN/OqqqsuXHXayYso6YiFhKh+auVAL0WLsSkyxjUxRsisLRa9E0zZef2bNnM3z4cKpXr37PP7OnFXTv/eMK3+w4T6Ks59eTEWQYLdQs8zcK3FiOg+VXwL7VrKoCrzR+Bw/fh9MfA1QrWZBfT14my2xBrxG5viscV51A1apVUZUsQHxg0Z5fpu3mxvlYbBYbsk3mxK4/aD+iJdo8Vox+PXmZkXPWc/DcVQ5fvE5ovSYM7trqEW764REEAR9nZ86fOEWsoRAbTt7gu7AVdGvZgEkTP2P6F5Pp2aUfJUuGYrXJLDseR4JzEU7E2dBqNFQuHnhXnxUrViQ15Sbv9DmGTqsCNlCzQIlFMDRl/KgVnD97HVlWkUQdackSrdrZtbljTyzBnG1lZlMVLmfE0iu43j3HP3HiRG7cuMHs2bMf+TN5+PBhOnTowOWjx6jSqCFxFjMaUaRZyVJMbt+JI0eOMHLkSFavXo3VaqVYsWI4OTk90jUcPD5VAgpQ2sePIHd3uparQO9KVe54jyNvJtHls3COXYlD9ClCZFwqDSsXt/u2qyq/nrzMrycv4e3mTN/moRTx8+SPGVuRjl5DsSmYU210aNeBGctnE3b6JEp2vyrg6+xMh5Byz+W+nzVK1k+Q9iko10C+AqbN4NwdQXh6OTYOXjwcK96PiKqqYFqPaj2NoK0ChuZPLTBy8M9h6aQ1LJ24FlOWmf3rDnNszylKtC3A/v372blzJ+pbAxF1udv/BQsGMeqNJ1Ps5XH5et0+LLKCIGkwWmyE7zjKW21qP9IK8x3oa6OmSSiKPW1Lp3NG9Gj2wGa3k8/TlZ8+7kV6lhkXJx0Rl5vTpnVTGlZdRJECCYCE6vEFotOr9+wjPTnjrmMWowWn7CTN25m/6SAma64m9WKSFaPFipPubqnGkyLJOwSvEgXJUrW4Fq1Akpc9gLl48SIlSthdjFbuOUV0iglBsuu/5248QL2KxfJ0NBj3/ttYbq4ht2KNDeQYACKvxCPLt46LXItOymnnLOlJsxrveHwvjhw5wqxZszh27NgdE8oHERcXx/vvv8/GjRuZNGkSPXv2RBRFYtLTAQjIdkSpXKkSX3zxBVu3bmXRokWMGTOGRo0a0bNnT5o3b/5YshYHj0bD4GI0DM7bzWTBL4fIMlvsNoCCxM7jFzh+pjiVQ0owc+1vrNx9Eku2JOyDro2oFuCH/mY6puz2FqOFswcu0MutM5ULBHLyZgxmWcag0dC70uMXcPrHYdoI3PrOyVgtCaTHnsA3f/WcU7KsVtafP4vRZqN58RLkd3041ycH/xwcKcUPQJZl5o4Oo1uhNxlScyxRRz5GTR0PWYtQ08aiZs553kN08AKw4bttmLLsBU/MRgtHNp5k2dJlHDhwgMzMTGoKIgaNBoOkwUmjYdRLD78K/LjIssz5w5e4eCwCRVFyjqekpDB37lzOnj37t6+hqioHNhxl/TdbOH8ijX6jPdj1uzcY2iL6rETQFHzkPgVBwN3FgCSKlChRggM7e5PfJxZ7oQkLpL6HqiTds/1rb7dAn12GWkEmsKw/7j55/3nptX9daRLQPOWqcJFJJkSNPbCXFTh07iopKSmYTKacKqI3ElMxW3N1tlpJJC7l7gkFgKDxR6MvjsVu702WUWXJWhM2m41CRTxQFPvEQpJESpTK1bt/UO41DJIWrSwg2BTGlcu7DH1WVhY9evRg1qxZBAU9XHEuq9XKzJkzKVu2LB4eHpw7d45evXrlBO0Bbm45QfctNBoNr776KsuWLSMqKormzZvz5ZdfEhgYyNChQzl8+LB94SObiEuxHNh3kaTEvF8XB08OWVG57aXHZDJT9+VXcHJyYuGWQ5iyrGjiLSixJr77eT/otEj63Mmr3llH+bplEASBhW3aMzy0Fq+Xq8jclm1pUqxEHlf8l6IpBOS+Lqpio2qNJlSqVIlRo0axacsW2iwN45M9u5i8bw/NFy/kRnraHV3IisJnS7ZTa9hsGr/3Hb+feXxbUAfPB0G9/ZfMwV0sm/wT4Z+uwpxlBgHcvWwsOXYGrS77ZRO8Ef0PPN9BOniuyLJCa/9+WJLSc46pksrVoqcYPXo0PXr0QK/Xc/BaNBeTEqmUPyAnufJpYbVYGdXwYyJORqGqKiG1SlHnrUqELw5n8+bNeHh4IHoFkf/lziiyDAj0bl6Twa0frTDD9De/Y+fi35BlBYvFTL7GLiz6eQEazZPbTFOS3wLzttwDgguC91IE7b2TTQ9vOcH+nw6RqWbwzfppHD95/A79/C3+iLzJmzNW5ST69WseSp9mNZ7Y2G9HVVU+++wzVpwzIrl6IwgiAlAs0JfRzcrQv39/jh8/DtiD8WHfrMNstYGqIAkq26e+hYdL3vILVUklK+4z9u5exoWrJdm4Q0NWVhZXo65Tv/YgMtMkgov78974Nnh550qaEkxpHL92ga5N2hB1+kKecqehQ4eSlJTE4sWLH+o+d+zYwbBhwyhQoAAzZ86kTJnH9z8HiIiIIDw8nEWLFqHVaunZsyfebhX5ec1pNJKIqqp8+U1Pipd0aGWfFuei43j9f4tQAUkUyIi5QuyeJaSlpVG+x2d4X7LmbLioOgGDIoIKnqnJmK7FU7d9Td7+uh+S5r8tqVCVdNSkHmC7ZD/gPhFF9yqHDh1i27Zt/HzqJAmh1RAN9t0nSRAYFlqLITVq5vSxdNdxZv+0N8c9xkmnZcP/+uDl5vzM78fB4+GQmjyAY9tP2YNuABXMRoH4G1oKFMmuOic6dIj/dWJupKAWDYLU8/YDqkq+OmXYsn35HfZ/oUEFCQ169BXgx2H3it+5fCISU6b9s3tk23H2X9lFwWr50el09OzZk3HjxhGTkkX4uq1s+3k1g1uPfKRrZKZlseWHXcjZK7MCIgHGok806AZA3wjMe7Fv0YqAHjRF7tuketNKVG9aCYA0zzh69+7Nzz//fJcsrFyR/Kz+6A3+iLxJAR93yhR6OhMiq9XK4MGDOXr0KPN+XMKISWsRLCKu/q580a8FB37dSvHiuT6+NUoX4vXQQizYfIBaNaqyZ/EMvvtaYfTo0Xn2L4geuOT/gjM3AhgzbgyrV6+md+/eqKrKmI9aUapUqTzb+RrcaVy8GtVKlmf9+vV07dr1jue3bNnCunXrOHny5APvMTIyknfffZdjx44xbdo02rRp80RkeMHBwYwfP54PP/yQ/fv38+OPi9j+hwVRkMj+Zea72duZMrv7376Wg7y58sdR0n9fRqV6LfDxcOXjjz+ib98ooqOjcRYyud7AFVEBnxM29IkK1uzcgTQvb346MgnNfzzgvoUguoHPWlASQXRFEAyIQK1atahVqxaNo68y4Oe1ZGXXcBAFAY1453foj8ibOUE3gMVsYtGKtfR4rTne3rlSNFVVOXjuKrHJGVQtEUiQn8M55kXBEXg/gBKVi/LnvnNYTPZ9XFEy4J1PAsEVVBnB/X/PZBx/RN4kbNsRtBoJ9xCZU7YrBLv6806ZlnjoHDPd54mzsw6cnaByCJjMiE46qjZ+sp7bj0pmahY2a+6Ps4iELsqDaL9odu/enWMfGOzkxLCur/LFu/0xm83oH8FT91Zi1R3HxCef7yA4tUVV08G4EkQ/BPeP7GXJH5JPPvmE2rVr8/XXXzNkyJC7nvf3csPf6+npKNPT0+nUqROCILBnzx5WLj6M+zUZWbahTUrn0onrd+i7bxF77gjNCglMfLsD19rVpFatWhQsWPCu4Ph2evXqxfvvv0+7du3o1KkT9erVo27duoSFhdG0adN7tuvevTuLFy++o+/ExET69u3LwoUL8fK6t92f0Wjkiy++YNasWQwfPpywsLCnkhgpCAK1a9emcqVqtGv2JbKcK5+KjIwmKysrx7HFwZPDbDYzbNgwJn37LtEeP6NIFs6qLqxb9xNjZsxglSpDtmTrRj2Rgr+Y0WbafxcsFivHj52meo1Kd/Qp2xRESfhP5kcJggBS3i5PNQKDCMnnz9n4OABcdDo6hpS/45yqxYPYdeJSrl+6KLJ57XI+HDGI0qVL07hxYxo3bsze6xY2H7qQ027uiA6ULeLYFXoRcLiaPIBydUpz4WgEMRGxuPu6MWHNewRV6Iegq4ngNgxB++i2Wo/K5RsJ9Jm6nAvXErh4I4E//kggyT+eKHM8h5Mu07Zg9Qd34uCp4eSsQ1ZUzp2LQe/ujKuHC+9/8hrOLs+vMIR3fg/WztyMeltlFo1Gy5yVsyhT6U6JhsFgYPXq1VSsWJFChQo99DU2b9nMhtUb8dB4odXr0Gg1vLtgMPkKPdg68FEQBAFBVxHBuRuCUxsE8dFWbiRJokGDBvTo0YPmzZvn6KifBTExMTRu3JjSpUuzePFi9Ho9H7yzDJtNBQRkWSHiUhzJ6XZv5MqVc23cPvjgA/r370/RokVxd3encePGdO3alWrVqlG0aNE8r6fX65k1axb58uUjNimNgrXb4F+uFrOmf4mamc6FrVdZ99UvGDOMFK9UNCfwCQ4OZvjw4fTt2xcXFxdUVaVXr17UrFmTQYMG5XktVVVZs2YNrVu3RqfTsXr1alq3bo1W+/QSUwG0Og0Rl2KJvZmKbFPQakUU6SLvjR2KxWKhfPnyGAwPPzFzcH+mTJmCTTDi3+YCitaIqFFJMEegl1zJcC/LgRvXctJ6BQUMySq6VBVJEtE7yUybPZKVK1ciyzJFigQz+ZMNTP5kHcsX/05QQR8KF71bAvZvIM1s5kpKMs5aHdqHXIQRBYHXSodQ2teXekWKMu7lenj9ZRJbulA+jGYrUXHJ5PN0Y9qgNrw7ZAAjR46kTJkyRERE8O38Bfxp9MKm2ush2GSFm8nptAjNlX2dvRrLzuOXyDRZCPJ9svapDu6PQ+P9kDxNL+UH8eOWw3y9fl+OtzEaBbFSBmKgGRGBPU0+Ric6Ni+eN9eik0hJzqRYCX+cnJ6/C8MXvb5ie/ienOBb56TjuxNTCSpxd0GZESNGkC9fvoeqYqiqKlOnTmXGjBmsWbMGMUVP/NUEKrwSQlDJAk/8Pp4UCxcuZMqUKRw+fPiZWNWdOXOGFi1a0K9fP95///2cHYJWDSZjNufuRgQV8uH81TA+//xzXn75ZQBSU1MJCgoiPj7+jiBy165ddOnShR07dlCu3N0WbO+++y4rVqyg7WvtOGwNxKyIIIjoNBK6JTvRp2lBBr2znh4fdaTzqFz/5Ndff53uHX1pWk/HiT/S6DPkNw4cOIbBYMBoS+VQ4mKybMmU9WxOeqSeYcOGERsby6xZs6hf/9mWsZZlha2bThJzI4VqNYKpULkwZ86cYfLkyWzYsIH+/fszYsSIZzrJ+jeRbLnGthtTSDXfZOuiPxnV40sOyDNRJUvOOSXd6qFkduS9HVvIstp3hHWCSD+3EK4fvElgkDcDhjbC2VnL1q1bWbBgAX8cT6Ng/jqg2pNsdXoNYauG4O3j+lzu82mx92oUAzesy5GKLGnXiTJ++chKN6IzaNFon+7/dUqGkSZj5mK7bVfIHBdJVZdkGjdujFNgKab9dBBFVZFEkTeaVGNAi5r36dHBk8Sx4v2QPM8tsai4FH4/G5X7JRJUhCImBGcFV42B3sH1/pNbdi8a7h5O5PP3QHuXU8bzoUzNEuxcshdBEBAliWa969O4xyt5nmsymVizZg3du99fJ2uxWBg4cCBbtmxh586dhISEEFg8PyWqBt/TOeRFoWLFiuzdu5fffvuNFi3uXVDnSbB7925atmzJpEmTGDJkSM73UxAEnJx1nDpxFZ1WQpQEyvf+k0q90hG8Uynl+TKSoGXLli3cvHmT3r1739Fv0aJFCQwMpM+4D9iggXnHjyCrClUDApk+fTrLly/n66+/Zt6SNTgVqoA120pQtsq4/R7DLQNl2SoTF51A2yG5BXNKBB2ncvF1aDmPh/MVenapgKtvN2yKhSWRbxKdeZwESwRnErfz6Ttf0bl1b+bPn0+xYnlb0D1NRFGgRKkAKlcrin+AfQfEz8+P1157jc6dO/Prr7/y5ptvEhUVRUhIyH2lMg7uRFatLL4ygGRrNFayKFDahZVL1pO/jA5JY/8cawQ9ZTyaUjewDtGpqZxLiEcSRN6qUZMRLevRrGUlar1cCr1ei5jtTtSpUyfiY7RERyXnXEtv0FK7bil8/V7s345H5bXli0m3WLAqMmZZ5kRMDMdGrGX2W/NZNvkn/Iv4EVyhyFO7vkGn5WpsCtcSUhEFAa1G4pNezfFw0rBp0yZWn05E1RqQFRWbrHDy8g36NQ91xBHPCMeK9zMmOiqRq5EJBBfPR0Dgw/0ZWGWZoV+t5dTlGBRVRVfIhq18MnqNhmlVelLZO+9tZwcOjBlGzh26hJu3K8Ur3ftzkpCQQLFixUhMTLxncmRiYiLt27fH09OT8PBwXF3/eatUqampVKpUiZkzZ9K6deunco1ly5bx9ttvs3TpUho2bJjnOefP3iAyMo5TzpPQ+ScCIAk6yno0o37+txkyZAiFCxdm1KhRd7WNz8qkzrw5WLP/JJ00Gto6u7NwnD35MDAwkIAiJQhuOxyLzZ7kJqHi8+Nh5OyVdhWVcrVLM+O33BwVOb4Vgnz+titJCPmOEme5xqrIkdhyXJmhiK4ObYIn/J2X6akTGxvLzJkzmTt3Ls2bN2fMmDE5uQ0O7k2qJYbwK/2xqbnvt4dcjEZFBrElZjIWJZPS7o14xf8txOzCLyabFQEB/QMSq7f/cpoZX2zCnJ0z5epmIHzNUFyeoyzvaVDyq+nYbrNwldJNFP34JKote/fRoCUs4mu88z+9CaGqquw6eZnYpHRCyxQiOMAn57nXJvxIVGzuBEirkTgwa6gj8H5GOPQJTxlFlTmbuo1U6w0Szngzd8I5JI2ELMuM/6wDNV4q/sA+tJLEnLfbEx2filYjkt/LjTSrEVetAekBVfwc/LdxcnWicoPyDzzP19eXggULcvLkSapWrXrX8+fOnaNly5a0b9+eSZMmPVIRlRcJDw8PFi9eTLt27ahWrRoFCvx9aYyq2rB7qWmYMmUKX331FTt27KB8+Xu/7qXKFCCohIGLl9O5Vd9GVi3EmezJUNu3b2fp0qV5tr2YmIhBr8dqsW/7G202Fu7YxqZNm3I0+q/UrIqvv5bjsSCgkp4YS4/JHVg6dg2SRsJoNnJBOonFYskpTpOWocFVpyJJ9j9fFZHw8OUsX7+I+h8KaPX299xmUZCkvKusvkj4+/szceJE3nvvPebMmUOjRo2oUaMGY8eOJbSKE2raR6BmgHNPRJeez3u4LwzOGi9kmw2yN+4sJpmzx67T0j+IvsXz/kwaNA+n62/YtBypKVlsWHsUd09nho9+9V8XdAM0CS7OzisRmGQbBo2GAtdtOUE3gEanIfFG8lMNvAVBoEGlvOOL4a/VZcz3m7gVZztWu58tjhXvp8zmGxOJSN+PTTUhW0ROzCtNzNF8AOQP8CRs9d0uCw4cPA8GDx5MiRIlGDFiBGdOX2Pn1j/w8nbBwy+TPn16Mnny5LukD/9UPv30U3bv3s3WrVv/1iRCyZgNGXNQUdm5P5B3P45j48ZND1VoRlFlFlzqSqYtCQT79n0lr3YUMjehcuXKxMXF5Tm26+lpNA77AVO25ZhitiDt3c/UXn1o06YNoigyf/58duzYwaw580g3mtmwagmLFi5k07pfSItPx7+IL6/3fB2DwcCSJUv49ttvCV/4CRvDPJAkFa1W4O0PkolLe4levXrhXzuFE6mrkW0KcVfTmNfvLGELlt3XKeVFw2g08sMPPzB/7hfsWavH2elWLQYnBI8pCIYmz3eAzxGbTSY+Ng1PLxfW/7yWaT++T89pZZEFI8ZrbkzruQfFKjB16lQatm3L9yeOYpFlelasTCmfJ5tM/W/AIst8d+QQp+JiqVOoMEFnMpne/1vMWWYEUcDdx42wiK/zrKb7rLhwLZ7TV2Iokt+bqiUerjCWgyeDI/B+itgUM99caIXKbVUDI13Z+0k1ALx9XFj+84jnNTwHDu5g2bJlLF++nE8+msnYEUswm22IImQaE/h0SlvqN6j3vIf4xJBlmfr169OyZct7emM/CNVyGDWpH7dKQBtNAnhMx8Xr3uXs/0qy5Rrzfh+EzkOmQv4mvOI/hLCF9iJHy5cvv2e7jRfOM2b7L2SYzdRwcaNb/kA++fhjZFnmo48+4mohgbCre/Fwc+ft0s1pHViN1157jeDgYKZNmwbYdf2vvvoqV65cwd0liKDAEhw9tpHiwVmElG/Ihk2HOHv2LB4edseDNGssZjmDXh2GsGvnbgwGAyNHjsxJHLXJCtp/gF+zNes35MTB6LTm3INO3RA9Jjy3MT1PbsakMOLNhWSk26udXrr2M2vWzaN8+fKoqoIgiEyYMIGwsDCcfXwwdnwN9DpUwEmrZUPXHhTxdGjoH8SGudvY+N02vPw9eGtWHwKL353k7uC/gUNq8hQRBAkBgdtnNqrV/pLrDVo6dX+0KoEOHDxN6taty5AhQ/h57dEc1w1FAU/3/BQu9PeqD75oSJJEeHg4r9RpxbnjTmg0Orr0rE2Dxnc7hdwLS9ZFVKsVXfYuu8GgRdTFP9I4vHRBbPkki1GjRtGgUjPALjNp1KhRnuevijrA3Evb7S5LB/cyrHJzhg+w2/21btWKDRs2MCF8NmK3SohOOtJtJr48s4HS7oEsWLCAypUr06BBA1q2bMnJkyf5888/cTOUxcelDsYUqFh6KGUqWUFKpUULP8aOHcs333wDgLvWH7T+zJ+3gLJly6IoCkuXLuW3E+cwFapFhslMmUL+fDXkNTxdX9zCYhpdUSRt7rZ6ZpbChE/mU6thedq1a4cgCCiKSmqmETdnAxrpnymrelhmTdlMUmIGSrb7UclCbShb1v49ELKljBMmTEAQBJYcOYSo03LLk8cqy2yPuEy/KtWex9D/UbQc0JiWAxo/72E4eAH4d/+iPGckQUMtv75oBD060Rmt4ERNr/50712HDz9tR/vOoc97iA4c5BAYGIinpycpqQmoau4ujaravcr/bTgZPCldtBPRUalcuRzPtEkbOXks8oHtMjIy7FvuzUehyLm2gAIi6B7dU//06dPZq4tGFNMuzOm7aNTobnu+40lXmHV+MynWLFJtRpw7VaFJ7w651xcEWrVqxfBJ45B0uZpbURC4nB6Lt7c34eHh9OzZk+rVq/PSSy8RGBhEcFADJEmHJOlQZMhI9mfZsmVMnDiRn376iX379t0xjoCAACZPnkxiS6hqAAAgAElEQVRAQABxcXEk+FYi3WhGVe3b118s3/XIr8GzRNAEgfungBMgcT6yCN8uTKRz586ULFmSxat/pvn782j+/nwajf6WPyNvPu8hP1XiYlNzgm4Am03BcltlxFt89NFH1HupFoLOhFdwEj7FE3HOl46L7un6tjtw8G/DEXg/Zar6dKJz4dk0DRjDG8V+pFmdprzRvx6htUs8uLEDB8+YYsWKsSDsIwxOIs4uOvR6Da3bVyWgwL9vK/nC2Rh0txV7MZusnDgWdc/z09LSmDRpEsWKFePQoUN8/e0m+ow0cTFSB5rSCJ4zH7mgVmxsLDabjYD8bqgJrZCThvP9dGcKu3+Mqsp3jjc9Bvm2CZFOp+NCWsxdfZb1DEJ3m7uEVZYxJFsZN24cr7/+OiaTiZMnT7J+4y+s27z9rmqjGklLwTKVmb5sK4M+mMTQwR8zYcwK5n61ncxMuzyjb9++GOrUwnvIeyi3JXjbZIXLMYmP9Bo8D0TnNgj+JxD8/6Rag+3Mnv017u7upKen878VO4m3pmBRbKRlmXl37s/Pe7hPlYZNymMw2L8HGo1ImbKBOY//yufvDMejcBaSRkUQQetmxuqU+iyH+0Jz9s/rhH2/h182nLijsurt2GQFs/XuiY2D/w4OqckzwNcQjK8h+HkPw4GDeyLLMp9++imHDh2iSpUqrNwwmovnYnD3cKZI8L+zspy7p5bMzCwEwf4zqChWli3/gfJV3KhSpUrOeSkpKcyaNYvZs2fTpEkTdu3aRUhICAsXLmTluuvM+OYQou/jlWI+deoUFSpUQDD9hCrHIolmXJ0FsJ0Gy37Q1805119xxmq2gC5bR61CSXe7TlRVVWat3cu6/X/g5mygXdM6/GI6RFpKKpHfbqbrqbm0aNECFxcXQkNDiba5MmH9H2g3n8Mjnw7lRiZajQ6NRqRS/RIcPdSEX/68iWsGeLvWZd+eC2i1EsePXOHrBf04GXsTU6Xy6C8qCNwZuIeWfvjqp88Tu4uDfex9+vTB39+fAf8bjVt3J1QhBRQBeZ8nCamZnIuOQxJFihfw+de5P3TpWQuDk5a53/xI6EvVGD2u6z3PjTEl46LTk2nL1scLKufTbzyjkb7YHD5wmY/HrsRisaHXazmw7yITJnW845zlv57gy1W7URSVJlVL8mnvZkj/UIcoB4+PI/B24OA/Tnx8PN27d8dkNtP/0zlsPRlFq48W8OHrjanwLw26IyIiaN+xGTZTfooWaIhGo6Fx8yo4e/nRqlUrQkNDGTFiBFu3bmXOnDm0bNmSffv2UbJkSQBsNhsjRoygXbt25M//eEG3KseTlrCRBi8Hg2oGbl/hFrKP2YmKimJgs86EDmnPzRAXBAGGlmxGiIfdjWDN3tMs330Ck8VGSqaJsLBErqyZTb06tUi8mkWDdu1YvXo1H374Ie279aTdhIUoNhmzVSbOR6VCkC8tQqtSoVJhPly9w25xKIiIsUYE1R5oWq0yVyMTSUxIJzIlBUkUUcW7V/UGtfpn5q60aNGCspqjpKgmBOyTGbFSKtr9fvSdugIVlZplCjN1QCtE8d8UfFto0+gbWtTajyj+iii4Ax3yPLOgsw+3+zEoZitXfzuFJaRdji3lf5Wli/bl5MaYTFYO/J+98w6Povr+8Dsz29ILKUDoJRCQDhK6gAjSpElHEQSsCNiwC3xVEBHxhwooKFWaoEgHadI7SJESOiEhCenZNjP398eGkAihQyDs+zx58uzs3DvnzmYz5957zudsOkZKcga+fp4Ix25OnJzKNwuKoWouR3vd/ij+3HKIdvVuPq/ETf7A7Xg/Qpy4kMD2f88Q7O9N4ypl8tnDw83tsGXLFrp06UKPHj2o27YHX8xei2wwcSnVyntTljL/4+cpXMA3r828q6xbt44uXbpgMBioV68gRuMxfvllalbF0bZt29K7d28aNWpEyZIlmT17dlayoy4Em86eZvqcOaRrGj/88MNt2SAcexCJL9A80k6bhhKCOqi6CV1zosgGFKMfmOoArhjwli1b8s477/D6669fs7/th09jyxaXa1AU/lixlsjHytC3b18mTZrE0qVLad68OQdOxWA0KFnFdVCMFK1Wmme7u67nmGXN6kczShgga01bCIGnl5mqpkLoQuAMFRhOA5KEWVHo3zISD/PDG/NrlVQuZ8NLEkiJZqw2O1KmTvW2f8+w5fBp6lUskXdG3mVE+mRw7MIVnaRCyjCEuT6ScvWE0sfowbc1+zD8n/mkqlYah5Rn40+/UOeXOsycOZNy5cJBOwEYQSmW73YHrof5P+E5TqeTJ5s15YVetXmx42rOXyyIQS6EHZduuc2hcvpi4rW6cpPPcTve+ZzohBT+/ucEiWlWpq7cgRCgyDJPVDnOZ32evnEHbvINqqbz3aJNbNh/guKhAYRmnGTMyM/46aefaNu2LaPnrs3pvMkyp2MTH3rHe8mPq5gwZCqqU6NUozDm75lO+YjyhJapxJmEdLq3bIHRqBATE8NXX33FlClT6Nq1K+PHj+ePP/6gW7dutGrVio8++ojR/x5g4+lTpAmVEp+8j8N8e6t8ImU4iAw8L4t/pH3L+6MrUiRoL02aNqfS48OQZC82btxIx44dGTduHF27dr2qnwsXLjB27FhmrNpBSI0WGBwCOcmGMdiHIB8LTZo0wdvbm759+zJ//nyaN29OkSC/HJ+zBDSrXg6n08lnn33GroVLKPxEDwwGhfQQCSXJjqfJAwmZlwY2w8vLTEnMTGrdji82rscepNK8UGlaP1aeiGKht3U/HhQahkSw4eJh7LqKRTZSxq84B82JODPjdVWnk5R06w16echQTwHZpBUlI2ixcA3HG6ByQDHmNxyS9Vos6sCkSZNo3LgB21dUIiwk3vWGpRn4ffXION8vvtyEQ/vPggSaJujQuQ4lyzUkPe4bdN1B+UJxCHHlXlhMBiL/E5al68K9IPYI4NbxzsecirlEr1G/4tQ0VFVHz/ZRGw0Kyz57kUBfzzy00M395NuFfzN77V5sThWEDtYU5n/yPKVKufIPVu46wqfTVmY5ZRaTgd+HvUCI/8NXGv4yJ/85zet13see4aryqBtkbE1KY/OIw1SkEla7HQ+LmTDtImt+/Z5evXrx9ttv5yiAk5yczNixY/l+7hx8+/dBz4zJlIHnq1bno4ZXK5DcCD2uOWgns14LZEIqxlK5clWGDh1K8+bNWbRoES+++CIzZ86kWbOcMmSHDh1izJgxzJs3D4PBwOO1a1O2/DMc/m4tkiKjCEGU1356D+nBe++9R2pqKhUqVGD27NkcSRJMWr4bNVPJwmiQGfpMLb54fxCBgYFMmTIFzejJgZMxrFw0n3+2bCDq+AVefqUvb7/zRr52pBy6yuTjaziQdJYagSVp4lOFnl/8itXuKnEuVDs+J9cyecJ3lClz46rDDwPCtgKR9A4uPXoJJD+k4DVI8q1976NPfIevNO7KZFLyRPL/Dslc726b/MCSEJ/K4YPnCQ7xpVyEqyqusC5AJA8DrByODuLLpfU5fEKmgDOV3q0burT049IYMmERiWkZVC5ZiG9fbYePZ94V13Fzb3FH9edjfl27hwybA4dTy+F0AyDEVWoGbvI3G/456XK6ASQZxTuAQmFFs95vVj2cPs0fB9VGoJeJsS+1faidboAz/0ajZCvqIqk6JNoQBStgVzVkxYDdqXFG9+fQoUOMGzfuqqqTfn5+fPrpp/z2++850ggFYLcdRI9/Bv3SAIR2C0lmXn2Ayw9WDw4eL0Pr1m1xOBx4eXkxZcoUBgwYwJIlS7KcbiEE69evp3Xr1jRu3Jhjx47h4eHBhAkTWL5sGfHz97jGZ1fRHBolbRU5cuQILVq0oEGDBqSlpdGwYUNGjv4ap5YtnlzXGTjkbXr37s2yZcsoXLgwRYP9efrx8nz2/hCOHvuXUaM/Ytr0n3j11VdR1fyryGCSDbwc/hTfPd6XPmWaUCK0AFPf6UqHBpXo/EQVFn0+gHatWhAZGcmYMWPQNO3GnT7gSJbm4PshGCqAqR5Sgdm37HQDFAq14OGRLdxCAPqjFUpRIMiH+o3KZzndAFjaZsqMmokonMLPr1v48/NBdGhYlalTpxIWVoQXRk7nUmoGQsCh07EPvCSnmzvDveKdjxk1Zw1z1+8j+ydsNhiQFYmna5Xjwx5uMf9HBVVVaff215xPl5AUV4SZj4eZdWNevmoFs0qVKkydOpWqVavmhal3leioGPpXeTNrxVsYZFJaRKCG+UI2N9rf24M1o1+6bl+qrlNj1GdkeFjQJQlZd7Kg2SIqBiUAMsghSMF/IUk3F+Ms7OsQ9m2glCK8ylDmz/mG6T+/R1BoLSZNWceKFSsIDw/HarMzdspsFixYQOq5o3Ts0J7ff/+d8uXLM3r0aA4dOsTq1as58N1ZZP3KJMPgodD1+6cpWLAgoaGhhIaG0r1rfypVa8QuuwkrGkLXkDQnP77ehhpVrp3k9euvv/LVV1/x119/0a1bN3RdZ86cOfj7+9/UOPMjUVFR9OvXj7S0ND79chyztpzkUloGbetUZECryHy9K5AbQj2BSGgP4vLKuTdS0AokxV1SXggBejRgRFJCcrx37sJF2o2YSTYpdcLDgpj9Ya/7a6Sb+4bb8X6AiE1MZfXuY1hMBlrWjsDjDgsTnI9PpvvnM1E1HSSoUDyUlo+Xp2CAL5ERj1biy6NMVFQUPXv2xNM3EL/IjpyJS8HLYmLcq89QtXTYVeeXKFGCtWvXUrJkyTyw9u6zc+U+/tdnPKmpVjKqFcFWLggFDVUHL08vBIKhXZrQtm7Fa7YXQhBzIYnjx4/ybLcOfPH7ApyyTEOf7wn3zV5cxgMpaBGSofgt2bds2TIWzR/K+M8EqakZGI0yDtNgjL69mPTTZH7ZHoPBOwCTyYRJODg49yueaNiAmJgY9u/fT+3atXnyySfRjhrZMncP9gw7RouBjoPb0Pez7lnXmTV1IzN+/hubNQOD0UyiIYEU5SIjhzxH+1bNc7VPCEG9evVo07IXNarXYeGiX1i/YSWLFy/OClN6FBFC8MPEH5m0Ix7ZZAEkLCYDgzs25NmGVfLavDxBOA8h0qeAZELyGnDL34VHESEEbT/+mQsJKehCYDEa6NK4Km+0b3Djxm4eStyO9wNASrqNrf+eZsT01Tg1DVmSCAv2Y+bQ7piMd5b/Gp+czuZDp/D1tNCgUkm3ZugjhBCCyZMn89577/Hhhx/y+uuvI8syNoeK2ajkOvEKCAggKiqKwMDA+2zxvUHTNKZOm87oOWvwLlYe37KBWEjFeO4ifbr2pmxYUK5JgXa7k3cGziTqaAw2u4MyZUx0b9sIDx8PqtVehGybC7hW0x0OCS1wA17et5Zg2KZNG34ZE0+A75XCMw6nQtHq8dR4qiOX/MuhZqr2aU474sRWWtQMp1mzZtSvXx8PD1dQrRCC1TM28ONXPxNWIZSvZ43M+oztdifPPDk6q6iHEK4kLrMHFC4VzcRJ31/XxveG/My2zSfx8vJCliQiG1v4dvwXzJs3j/r169/SePMTR8/F8cLo2VizJas2rlqaMQPa5qFVbh42Yi6l8um0FZyLT6ZhpVIM7tQQo6LcuKGbhxK3qkkec/x8PH3GzMHh1K7IewEXElLYffw8kRF3tmIQ5OdF2zrXXslzk784cSGBCwkpRBQLRbWl0a9fP86cOcO6deuoWPHK34DFlPvXXghBamoqvr4Pt5IJuMayZMkS3nvvPfz9/flp5EjGRp/h4MVY7JqMqUwhChTxJqJo7o7yogW7OH4kBodDRXJoRM3Zx5cLDyBJEpXqhzN8agSydhCBwoRfi/HT9KbMnz+f8uXLX9c2VdeYdWoj287/y0G/VKzWZAKy3XJJ0vD392f33n0UqlMCxeiSIPP09OTt4SPoUL/SVX1KkkSzXo2I1k+xYsWKHBMrTdVz6C9LkoQQIHQDa1btxel0YjRee4ctPi6VfbtiUGQTNqsTSQI1ozS//PILHTp04JPPvuScHExSmo0uT1TliSqlrzv2/ERogA/ZV6501YmeEp9n9uRnHFoG2xNmkuyMJtynMWV9G+a1SXeNgoE+TBh0be10N/kPt+Odx3w5dy3pVgfX2nZwr067uVlm/bWb//tjE0ZFxqk6Ob/6F7o/04J58+bdUmGLtLQ0LBYLBsPD/a9h8+bNvPvuuyQmJvLFF1/QunVrphz9m727o7NiKR1C8POe3dQrmvvkNiEuFcfl1czYBHCqWeWe96w9yA+TmlC2WhdMZl8eb+DNpfTl1K1blxEjRtCtWzc8PT0xm81X7S6MOvQHK6L3YdOdBHaqxf/t2MKHTWKwmCWsNsH0+XbKlatC+2e78uvBNFIz7AjA02Ki8Q0c22rVqjFy5Mis13a7nWHDPyYxNYYAn3D0bMGksiQTGhrKmjVraN782uEmuqbnsF8IUDWN5s2bs2zlKvp++yey+RIgsTcqmjEvtaFuhRLXtTG/4OdlYXT/NnwwZSlpNgfVyxTk9x+GQfQ/fPrRMLYv3oOm6dRv/zje/l73xIZLCWn8teIfQKLZ05XwD7g318kr9lyI5lxKMpcM35CqnkETTk6lbUcVdiL8Hpw8pUVbDjL2tw1ouk6f5o/Tu3mtvDbJzQOKO9Qkj+n62QyOnovLcczDZCCiWCgTB3dyO99ubohT1ag3aLwrlh/XSm+ZEB/mDe93y32dO3eO2rVrc/78+btt5n3h8OHDvP/+++zatYvhw4fTq1cvFEVhbcwBPtw9nwtR3pCppSsD9YJD6eIXSExMTI6f2NhYYmJiSEuWKVf8WRTFhDh9HunCldVMyQBe9cDpZSUjIwOr1fU7MTGR6OhoDAYDQgicTiceHh54enpm/fYZ2RbJcmVyo6Zaqb9mM907laNKjQ5Y/J7JcnYvpWSweNshhIBWtSMI8ru+Y+V0OvHz8+PixYucPn2aHj16UKJECSZOmMj2zWeZPGEtTqeG3W7DP8BC5BMmdu86yocffki5iMIoSs7/OUIIPn53Lnt3nUJVNRRF4ctve1DhsSLsOxHNq98uICNTbg/gmToV+eS5p+70o3zoEEIgSRKJiYk81+N5MtbJeMheSJKEd4A3k/Z9hU/AnasEXUpI49iRGAqHBeDja+HFHhNJT7cjAT6+Hvw0cwA+vh437OdhYMyWjUzZswtvs53OkasxKFcqpYZ5VKZT8a/z0LorHD0XR+8vZ2epRnmYDIx5qe0d71i7yZ883Mta+YDujasxcs6arLjbUoUK0L9VJPUquuOx3dwcqq6j6VceSJIkYbTcnj57cnIyfn5+d8u0e8bJpERWnziOr9lCu3IR7I+KYujUKfx74CCvNGrMr7/+isXikutLTU1l1p7VOGUHHgFWrIkegECzOtj7/QQuevtQsGBBChYsSKlSpahbt27W6yNHjvD6Kx9TMfwpanWsw55fVqHanSgGhbCyhRi/4guM10iCTk5O5oUXXuDs2bPMnj2bggULcuLECX777TemTZuGIzkds+XKfS4ZWoRvf9h2zbEG+nryXLOaN31vjEYjEZWqMuT9T1j463RGjvyCPn36IEkSbTqE0rR5JbZuOsapUyf5aNhrBAe/R8zJEN59YyZlyhZk9PieGLJLMEoSn37xLOv/OsSlhDRqRZameMlgAIJ8vdCyraALTcWg26+y6VHg8kQpICCAIc+9y6g132K3Zarp6IJ1czbT5qVbm5DEJaXx59ZDSBK0rVORi2eTeHfgTCRZQlM16jYMJyPdhup0ff8zMuxs3XSMZk9XvruDywOsTicTd+1A1XXU/6wPSsh4Gh6cHJRj5+NzFL6xOZys276P2uVzihjoQkMXGgb59gpvuckfuB3vPKZt3Yr4eVvYeOAkJUID6fxEFXdShZubJi4ujjfeeAN7hh9eRcrh1FxZ8c83q3Fb/T0MjveRhHg6zp2FU9NQJJlRy5aQqGvIocF4F27KUg9PKq9fx5b1G1i7di179+6lUOc6BHaoiVeQFbOPA0UzMPvJVyj9zge5XiclJYUWLVoQGOxP/4F1ad++PRcGN+fv+Vvx8PGg2XONspxuh83BH9+vIP5sPPU7RFKpQQS//fYbw4cPp1q1ahQtWpRTp06hKAohISGc/noJpT/piBDg7eXFp5WfvaN7ciptO4eTV+JlKMDBLaXRq7Rnh1UQ2f8zOnXtkePh7+llpslTjwGPsWz5Mk4cj0NRXPHbx4/FsGHN4cz3r6Ao8lXHAMKC/Hi5TR2+W7QJWZLw91IYN3QAZT2tdO7c+Y7G9DAjyxImkwmrw5Z17EYqUpqmE3UsFlmWKF02lEupGXT5bDppVpfzPvOvPZSKk8mw29GDBFIG/LXyAKAhZ0pYSkiYrpPD8TChCcHlGEynZmDd4fJEREehxhgpFGmmwdP989bAbJQrEpwjhEsCfhr3JTNGv0+PHj3o3r076X5HWBM7Fl1olPB+nFZhn6DcpPSom/xF/viGPuQ0qlyaRpUfnYQkN7fH2eRk/j5ziiBPT5qWLM2smTN56623eO6555jw8ces3neKMxcTqVOhBLX/U4r4ZklOTn7gEyun7duN1elEAE507AYFWTa6Xus65xMT+XTFaqp4+6BpGiEhIQxt2J35qcdIMgoMipOPajxDad/g617nzTffpF69eixZsoQWLVoAUKhkKJ3ffibHeUII3mk2nGO7TuCwOVk8aRU1Xohgw4G/2LdvH2FhYfz7778UKVKEUaNG0a9fP6xWK3t7jcezcAG+GzGaSv6393mBy+lecn4YqrBjSzczb1XjLK322OQMvv9zM+91bXLNtu2e6cTkH9ahZK7ACV2QkXFrK9bPNatJu7qPkWF3EhrgzZ7u9enUqRNbtmzhyy+/zDVpMz9Tu3UNChQOJP68S6nGO8CbRp3r5Hq+06nx9mvTiToeCwKqVC9OxRZlSbfaUTWXQxefmETKpWSkVySElwAZLH8ZCY8rxMXYFADCigRQp0H4vR/gfcDbZKJ1eDlWRh3HrqnEfu3EvssLRZI5alB4Yv55arUIuXFH94EyYUF8+vxTfD1/A6qm079VJJ2+G8TmzZuZOXMmjZ+O5LXZFVBMrsnXmfTd7L20kBoFHt3J6aOM2/G+CwihgXU+Qj2JZK6PZH505bXc3BsOx13k2fmzXRVIhcBw9jwsW8mSJUuoWdMVhnAtpYtb5UFf8RZCcPrkKYSuQ2YolsFgQNP1rARl2WRElCzOypmz+eCDD+jbty9Op5P3ixenU/cuBPj40ab1tUM3DsfHsf38WWKPHmfVqlUMfLs/ikXLkuy7Fkf2HePIjuOoDpcqkcPqZOeC/ZRqUYojR45QpkwZxo4dy6hRo+jVqxe+3mHUq9+R6OhzXEzayfmTZ+7onhxIWooqXM6y3W5AVgSXI49UTSfmUmqubVu2eZzpkzehqQJZljEaFerUv3XHzdfLgq+XK7SnevXq7Ny5k169etGkSRPmzp1LoUKFbn1gDzEWTzPf7xrFxgXb0DWdeu2un1y5dtUBoo7FYrO5YuW3bf6XuWvm4F2zDiiuiYvQBY4ayZj8/CBzU9TxlMrwBl04uz8eJInqtUpiNOafHdOvnnqaJceOcPpiPH8O2YauCVQ0VIfGtE/nUqtFtbw2MYunapTjqRrlchyrX78+9evX53RKf/44+wEiU3pUEw427l1OaLm6FClSBKGnIFL+B+oRMDVE8nkDSXK7Z/kV9yd7mwgtBuwbQPZDWJeDfQ1gRWTMQvgOR/Zsl9cmuslHfL9zOxnOKwlsSqFQVq1dQ4nAAnf1Og+y4717924GDx5MgtOBV48uIMsIoG6RYvx1MirHubawQhw/fjwrznvy5Mk0bNiQXVu289VXX12z/79Pn2LAkj/QdYEz1UaJfv3YTgwV+tj4++IkGoT0x263s3fvXrZv3862bdvYvn07cdHx1HA2QcqshCkQxF66iFcqLF26lGrVqnHhwgUOHjyIp6UAVcKfQ3OYCCngR3BgOY7+e/qO7ounIQCEDJKOj18GHp4OMtKMaJrAYjLQunZErm0DAr35/ue+dGzzGu07dKT/q60oEORzR/YABAYG8ueff/LZZ59Rs2ZNZs+eTYMGj1ZBEA8vC816Nbqpc9NS7Vka6+CK0x85+G3mHInifHwyqqqSmBSLoXIGJuXK91NRZOySk9r1yt51+x8EZEmiTXh5HMUcLP5PqI5seHgmGAW9ymIymrDrTkAg6QaOb02lSucqlClThnmTjBQOuYQsqaCeROBA8n0vr812c49wq5rcBkI9jUjoAMKVwSywkuNfgiEcOWhxntjmJn/y2rI/WXrsaNZrs2Jgda8XCLvLYSGjR48mNjY2V+c0L4iOjuaDDz5g+fLlDBs2jL59+5LssLP57Bn8LBbqFy1O7Z8mEG/NyGpT0NubzX0GAKDrOhUqVGD06NH06NGD+Ph4TCYTZ07Fc+Z0PKXLhFIoLIAOc2exN+YCkhN8TkhIroKvGE0qbbr8zcZxcWz4cz/h4eHUql2b2rVqERkZSUREBJOGTuP3cctwqA6QwKux4PXBw4i5kIy1WDoTzy9ByKBvthJysBRSpo8lUMF0nNXrZtz2/UmxxfHN1k5YfGQ8vT2IMHdn88ZQYhJTaVunIs1rlrthH9/+MInpG48TViaC+o+V5I0ODe5arsmKFSt4/vnnGfzWOzgKVuLouTjqVChB/1aRGBR3AjlAzIUk+veahDXDgRA6vn6eTJ71Ml4+ZnYeO4eERFzUP3ySvgpjtpVzCYlNTw3HID88TujtMuWDWSz8dqlLg14XfL7sAyo1yH1S+aARbz/Jupjx2LQUKge0pXJAG5xOJ+vXr+WJiq+RLTeTDHsQHkU28vmvf/Hn1kNYTEY+6dmMptXz5wTrUcPteN8GevIwsM7icubHZRmpLIzVkAvMyRvj3ORLsoeayJJEo+IlGf906xsmbN0qH374If2jvjAAACAASURBVGazmY8++uiu9ns7WK1WxowZw9ixY3nxxRd5//33c12NX378KENWLsMgy6i6zv+1aM1jIaF8sGYVB86dJS4uDo/AQPSkJJYPHMzRLWf5ZtQSFIOMpul88vmz/O/EJv6Jj8OUBJYYCTlTdlBRVGrWO0LLUpHULNWetyev4PCZWHw8zHzUuT7L5k1jypQpPNO0PZ2e6cLjTavTrfMnSHooWgCk9bdBpoiB0MBzlhnTSZejZPC3IxXdwS/j/o8Qy+09VL/++mt+njqZOs0qMeaLb/Ex3nrca6fhU4k6H4ckK5iNBjo1rMybnW5utfZmOHXqFB0++AF8QkCSsZgMdKhXibc6P3HXrvGwc+ZUPL/P38Gv02fxQrenade9GSHFcuYhNFn2KSm6k7RYL7QUBf8YlQ9qN+fJJx/D28eSR5bfP/75+zAxJy9SsV45CpcueM+vF52QzMdTV3A+PoVGlUrxZudG90T8QI+tDSIRAFWDtRszeOGL0hSq3QaROakyGRSeCStBqL8PnbrVxtfv9pSr3OQ9bsf7NrjK8caAhAySCRBIgdOQjHceb+vGTXayJ1c+WaoM8l12ugFef/11ypYty8CBA+963zeLEILZs2czdOhQatWqxZdffkmpUqVu2O50UhLHLsUTXiCIor5+NJ0+hbPJyS51hEwkAWF+vgT+mkx66hXFCaeWwj+25fg/3wNTuoLlgoyU6XgbjCoNnjzKiJaj+d/UzazecyxLM1132GjoFcM777xNkSJFAHA4VNo0GYWuCxwVVaytHWC+PDaQd5rwXmHAp3Aa9d7fg1DAy2SgWmAn6ga/cFP3SBeCU0mJJCck0CyyDnXr1qVt27a8+OKLN9U+OzaHSv1B4135A5mUCA1gwae9b7mv3BBCUPPVcTmqZxYM9GHpZ7dub37m79+2MqLb18iKhEEx8slvb1GredWs9+ef2cqHK9bhTFEoutyBYhMoskRQgA+Tpvd/JJzv+4UQgtYfTiE2MRVdCMxGA12eqMKgDne/YqZw7EEkvgjCBkpBrOaJ9Br2G6cyrsgOSprA56QNix2Cg334adZLmM2PXuJyfsAd430bSF7PI2x/uEJNJBnJWAV8PkLSo8FQAUkJymsT3eRDivr50b1SlXvStxAORPJ7jH5nJaq2CeGIRDI9fk+ulZ3kdBvWTDUMSZLYtm0bgwcPxmazMX36dBo2vPmHXHF/f4r7+wOQZLNyPiUlh9MNrto50amp+OhajuNBBUK4+OceTqcks/3cOf5cdoAT5+PQhUpYIXj58ddZuXgdG3b+i3rZiwYUo5mWbZ/JkTwoOdYjSa7rKgkyOeLQhERyIROJrYy0jDyIwawhS6AKjV0Jc6gR+Cxm5fpFVuyqSo8FczkcH4fN4aDam4PZ/9NURo8efdP3Kjtmo4KPp5nkdNdERJagVKG7mzsgSRIB3h5cSnWFAwldx6DZbtDq0WPcy5MQqkBTBRp2vn15EtNPfJ/1fqdikXzo2IrXOTuKTSBrIDRBSoqVjev/pUXrqtfp3c2tkJphJ86RjO6rQqoBu1Nl6+E7S4TODclUDUK2g0gDyRcvSWJAt3YMm74Sm+NySCsoNh1Ng5RkK0cORVO5mrtAz8OIO8DuNpAMJZCCliL5vo/k+zlSwGRkYxkkc0O30+3moUSkTwLbKkxGgaclDZHYH6Gn3dNrTly8hafenUi7T3+m1+fT6d6zFx06dKB///7s3Lnzlpzu/+JjMmPOVvY++0prkIcn7dvXxGwxggRmi5GeLzREURRKBQTStVJlJr7yDP3rlaC66RJnFsylWtl6/PDDDxT1kRGaK8lVlsDToDP0rSEUKlSIF198kX+2v4ucNpg+PXdgNqmY4514rjFhkgwYJYVwDwtFvBLQvMBg0nLEdQJomXkj12P2wf0cio/DqqoIWSbKw4JP6/78vuc8t7OBKUkS377aDn9v12qpyEjig+5Nb7mfGzFmQBu8PUyYDAqBPh4cWjyZgQMH4nA47vq1HlbsNmeO17ZrSDuW9A9Aksgxobv7e19uZp7bAE/Eo9RLRmlyCYOHRLki15cgvRMkSUGS/bLCB5+qEU7/lpGEBvhQwGIh4LQDOXO9QNMFXt7u3Y2HFXeoiRs3btAv9QfHuisHJC+kAvOQDGXuyfVOXEigxxezsGeWWNZVJxV8HEwaPghv7zsvqw2w/fw5+i/+nVS7HSWz+p2elETrwGA2W4zoUVb80mXebt+U5o0qsm3bNtasWcNff/3Frl27qFatGk2bNqVJkybUrl0bs9nMa6+9zoEUI/4lK1E02J+PejYjxN+bkydPsnDhQro1m0RosCsMJepkABdi/ahQbz5GvwxmnXwJVbNjdziJjyvAgV0ladx6NwaDDqrCqT1pfNhyEQUKXH+1ecyWjXy/Y1uWfCIaeEVL+DpNjH2pLY/fpoa7EAKb3UGFiPLMmTOHxx+/+zseqqaTnG4lwNuTlJRknnvuOeLi4pg3b15WqM6jzOT3ZvL7+GXY0u1YvMz0+LATXd/NqZB1KimRF+bPR597EZMNzAaFwEBvfpjaDy8vcy49u7kVojMS6bxxLA49c7VZg+DEYOZ0fAUfj/t/j9NSbbz24hQuJaSh64KmT1Vk0Lut7nqOj5v7g9vxfgjRM+ZD6v9coS6ePZB8huabL6AQAoGOLOX/LP0HBU3TWPVHN+pV3Y2XZ+YmmOSLFPI3kpS7fvWdsGjddkbM2YDGlc+5e5NqvPXsE3f1OkIIHJpGrerVmTBhAoGBgbT9fR6qpysxSRICc3IK58eMo0yZMlmOdv369a+aAMybN4+hQ4eya9cu/DNDWv6LHtcCtBNXDkjeyKG7+Tt2InsSf0PgcsqdDoWVCyIxm2Q6tPCgVqnHmD5yHRvW/81ff/2Fp2fuiVP/XIyly/zZ2FQVBEga+ERJeBlNDO3SmDZ1Kt7RPfvmm2/YsmULc+bc+wRxXdf58ssvGTduHDNmzKBp06bYtXQAzEruutf5FSFcpeWP7zlBRGQ49dvXzvXc9HQ7WzceRQio2yAcT7fTfdc4khLNgG2TSE7T0TUJo4fK00UqM6JKl5tqfyjuIhtOn6Kgtw9twsuhyHceXOBwqBw7cgFPTzMlSz8YhYPc3B5ux/shQ6jHEfEdgMvxkR5I/iORLE/npVmA66Fx4VIqICgU6HvLk4GjKetYdeErNOGgrE9Dmhd+z+2A3wPSHA5S7XZCvb2JuXCBnj17EhV1jDf62unTPZhz0RmERcwgILjeXb2uEIJNmzbxzTffsG7jZsJavopisoAkYzYaGP96e2qUvfurnlFRUdSrV4/z58+jKArlxo/FqV/RTPaWFdZ1f47AwMBc+zh27Bh169Zl+fLl1KhRI9fzdPtm0s8/j6oK/Hw9wfd/yJ5t+Tt2IrsT53M5IdvleNcmPjaAnk2rM6RTI3Rdp3fv3iQlJbFgwQIMhtxTcHZEn2P8lq3sPHwWw0WB4pTwMBmZ93EvChe4Mx32lJQUSpYsye5df1OseBkkyXTjRnfImjVr6NGjB2/+9BTm0jEAVPBvQZPQQflmUcHNw4NTV6n36zjiLwkkBJIE49o0p1Xxyjdsu+XsGfr+uRCnpmFSDDQqXoLvW7W9D1a7eVhwx3g/ZCTE7sTmyJ4YZkM4j+WZPZfRdcHQn5bQcdgvdBw2lbcmLUbXb35Ol+aMZ9WF0ajChkDnRNoW9iYuvIcWP5r8+s9+av74PU2mTeGJSd9Ro24dSpUqxdmz5/n0KxsJ0iJG/Vif6b/uuq3+hRBsO3yahRv/4cxFlzyWw+FgxowZ1KpViz59+lC1alUCfb1pVkilWY1yREYUY3T/1vfE6RbqcXZu+YFnO7VEURRUVcXrUhJ6ZjEii8HA0+Ujrut0W61WOnfuzLBhw67rdMclpTFq6mmqd1CYNKccUtAiZE/XA7dyQBuMkgdOm47qVLgU50vCRX8sJgO1I1wJUrIsM3nyZBwOBy+//PJ147VrFS7C1I6dmNb5WeqUKkadiOJMGtzpjp1uAB8fC38vjqCwsT0ithp6+qw77vNGNGnShMVbp0DYOXQ0dDSOJP/FqfRt9/zabtz8l7j0DFKSFBASQsgIXWbd0fM31fb7nduwqSqaEFhVJ3+dPEFcehLCtgphW4bQ0++x9W4edNyqJg8YQqhgnZNZfr4hkrkhqqqydOlSfvrpJ06f2MTWpdkTPCxIpup5Zi9AbFoaK/YcYeOBk9idrknB1sOnWbvvOE2r5a5NvG/PacaNWkqG1UGrF0LQw0XWVFAVdhLsp+6D9Y8O8RkZDN+wBofm+ozO2m20GjGMea+9QeXKlQkICKB06dL07t2bt99++7YkBcfMX8/CjQcQCIQQRPqnM3fyeCIqVGDYsGGUKVOG5s2bM3DgQIYMGXK3h5gDPfUbSJ/C03XttG3kTXrqCbp0G8iZXbuoMvAVPAqHERlWhLfrXr+i4qBBgyhXrhwvv/xyruccPx/PC1/NIS0tDc+avUkMKotkKJH1vp+pMP4H2vHPkXl07NKPj2bvo4CfkVfbN6ZexSvnGY1G5s+fT+PGjXn/42FUatwWIeDpWuUJ9L06/KRGeBFqhHe65XtzPUT6dMJLJCFLAnBC6kiEuSGS4dYnRkIIThy/iMOhUrZcQQzXqTZo8tPwsFlQhSuhUBc6qc6LtzsMN25uG5uqomTbaRGQo3Lw9TD+p5iRU3ViPdcV4RfjyoKVA6HAH0jynVeIdfNw4na8HzBE0iBXKXpsaOlz+G1lFYa8v5bixYvTr18/nn12FhbjPkTKCBB28OqPZK6fZ/bO+mcfIzasxZQkITv1rOx6Xde5lJKRa7uE+FQ+fHM2tsws/lnj42jypQOTByCBQTJT3Cv31UU3t06CNQODLGPPdLwlg4EtBw4gyzIFCxakR48eADRu3JiEhAT27dtHlSo3L19otTuZs24fWrYwjh2xOpEvDufUxRTGrDlF1Fsf8tGHH96W3vStILQ4SP8JcODtCUKks/iPtsTEWAgvWZIVb7933VCOy8ycOZO1a9eyc+fO64Y8/LB4M+k2B5LBhAKsPXSeSykZOZzlNcs2U7ny0zxZugODtnzMhJkzqVLlsav68vb2Zs78hXT49GdWz1+PrCj8vGIH8z5+jgDvexNznwPtFLKUTWlEMoB+Abg1x1sIweefLGTLxmPIkkTBwv6Mm9QbDw9X6IpTt2LT0vA2FECSZIp45Pxbs9vtBCnl73Q0btzcMiX8A6gYEsqB2FjsmorZYOCFqjf3PHqrbn12RJ8DJHShU987lQBjZt6HADQNrH+AV897Zr+bBxu3450HpNscjJ67lkOnY6letgiDOzbEbDSga+kI22qkzHrSsmSnbtV/WblyJRUrZk+YqocUvDxvjM9GhtPJsPVrceoaDgv4ckXjSpZkIivkrjF6+mQcXNFlQM2wYN7Zk5CndmDTUqkS0I5w38b3eASPFiX8/PE1W8hwOhGApEPM9r1MnTqV3r17s2DBgqxznyjagqH1PiesRGHemvIK5R+/cVVFTdPQszndAEafQM4mpCGApAwHRZv1pm/fvnd5ZFeTbI/DQwiMmb6yJOkUKezNmTMn2LFjx0053YcPH2bQoEGsXr0aX1/f657rdObUBZcANdu9EEKwatUqhgwZgq7rREVFUaZM7ooxh2JS8PDxw+7U0FSNdJuDNXuO0bHBjWNM7xTJ3ARh/QNXHokEyGC4cdn5/3Jw/1m2bjqWJZF37mwCyxbtpUOXx/k3eTWrY8YAEv7GwnQq/jUB5qK0KzqSrfFTEUJn9bRz9N8/hIULF2I0uguFuLl/yJLE9HadmHvoAPEZ6TxVqgwVQ0Jvqm2F4BBW9nyBnRfOU9Dbm5qBB9GT54O4vBAlgBvLhrrJv7gd7zzg3R8Xs/PoORyqxunYRPbsPwhRG1m7dhVndhbAZHJ5CwIIK1KeogXuTKXgbpBit6HpggCPKytuB/79F01VQZYQRkgtISiU7kHdosXo07wWRYNdyg/r90WxcPMBgv28eKVNXc6cOMawEZ+TkVEeWXY9UM0WI+XCqtG8RO+8GN4jgdlg4Pkilflmx2ZUWWCKVSlkq8zvX6/kmabts5Q0Fk9cRfyeVFSrzulD53j3qRHMOv0DXn65q0wcPXqUfv36IQU/hqlQOQSuh5fZqJCcfsUBtaoCp6phMt67fz0OXeWFHYv5X1FvwkypnHP44InKtz8mMH78eIoXz31CGJuYyvIdRxC6ylfvvsIXX3xx3VX/M+nxfHZgAccD4hCYkYSEUVGIjChOcLb7FRUVhaqqREREcO7cOQICAvDyyv1+GhUFWZaBzN0JCYzXCdO4m0iWxgjf4ZAxDWR/V70C+foTj2uRnmZH165MSBx2Jx9/NIwpv6o8+T8dyeCaeCc6zrEpbgpNCw4izLMSHYt9BcAzw5x07NiR5557jhkzZqDcg1LdbtzkhtlgoFfl2ytIVMjHhzY+rt0aoQciyQVA0wEdJC+wtL6Llrp52HA73nnAZacbwKnpHE9wYjpzBiEUtvzzBA1rbEWSTK5sat8P8thaGLFhLTP27wWgeemyNNPgu/Hj2bNnD8XfHkyyxYxT1zF5G3izbSPala+Q1Xb9/iiGTl6K3amiyBJ/rN3OuaXf887bb1EpojHjv16F3e6kResqNHv63q/mPeocPx2P5ZwEmsBv/kGUVBtnNB2TxcSJ/acpVbk4+9cfwmHNGc94/ngM4TVKu/o4GsOEb1eRkW6nfeda7Ny7lDFjxvDxxx/zyiuvsPnwGaITUqgVXoS56/ezaMvBrM+/eGjgPXW6AU6mXSTRkcGAo40wygKnkHHqMsE10ujcuXOu7WITU+nyv+lk2J1oqopXZGe693wu1/Mdukq/bRNJcmRgNRixlTEhX9JoXaEMo7q1yQpN2Xn0LL/MXU7dp9oCgrOnNlOrRqnrjuGJKqX5ecV2zl5MIi0tDbPJQrPq4bd1P24H2bMdeLa78Ym54HA4mDN/EulWA2ajF5ou0HWVpLRjpNp9UGR/Lgem6aikOM5e1YfRaGTOnDk8/fTTTPy2My/1EiBZkHzeRTLdmwqubtzcbSTZEwr8AbZFLglgS0t3ob1HHLfjnQd4eZhwpFqzXutI1G7SkpUrB+Hj44NQT4F2HowRSHLuagv3g23nzjL7wD9Z8muLD/7D2s3bebNrV37//XeEovDDzu2cTk7i6TJlaVEmp3Pw55ZDWUVSNF1gMHqwcsNWHivtihdt2tz9AL2flA71Y5XmxHjRipzuQNIEIOG0OVn+8xpeGfsC5WqWZuufO7FbXXG+uqZTsIRLNzYpMZ03X51ORrorAW7U8IUoXv+yc+dOSpQoAUDDSlecyjc7NUTTdbYcOkXx0ECGPffUPR+jn9ETVeg4MOC4vNguQWIlfy7akgmxXFv5Y/mOI2TYnaiaDpKM0eLNtn/P0LjqtUNCLmQkYtOcOGwyaRe9wShBqMyy5FN0jblAzcJhTF25g4lLtmKz2/HyLUXimWeoWTKKuT9o6KnjkH3euGbfZqOBae90Y8uh0/Tr358DJw+ifdYPzA9+yMWJEyfo1q0bwcHB/DTje9auOkZ8XCLjvhuK3ZlAz56VUJR40oQBgYQBnbLma1fh8/DwYPHC4cjJL2btzovE5yFoOZJS8D6Oyo2b20eSvcGze16b4eYBwe145wHNqoczd/2+rNceFiNtOnbFx8eV5SwZSkA2RYS85EJaKtlzyhSzmYEfvE/vGrWyjg2pk7vec2iADwZFdjkzgKwohAZdu/iIm3tHRrqdtav38/OIL0kPDCTQvwxyNrk6g1HB08cVRtRhUCt2rNvN7mX/EBAcwNDpr+NbwPW3efxoTI6/B0ky0L5t3yyn+7+YjAY+7PHkPRvXtSjo4U/f0k2YcGwVIlsegUFWSHXacnW8TQblqtLbpuuEdxSw+CCEQLMbcAWGZa7gCsHBuFhqFg5j0pKt2BwqSAodauzBQzmOwZAZfpE+GeHRKtfqoCajgUZVSvNUrQg22hMYN24cH3yQ9ztg12PevHm8+uqrvPfeewwa5NLgLlPWVUnT7HOGtfvnElg9msbeSWy3+ZGqGyhnshLhUSjXPr2M+9EtEldyQmRw7gO34+3GTQ4upWTw9W/rOZ+QQota5ejcsIpbB/8BxK3jnQe0iayAOdsDXZZlKpfK/cGTl9QKy6lkYFQU6hcvcdPtB7SKpEiQHx4mIyaDwuvt6hHsd3dKgru5OdLTbPTrOZGxI5fgZaxOKXtR1k8bSnCEDygCT18PAgr6035gSwAUg0LIE96Ue6kg82J+okazK7sSIaF+qNkSCc1mA2FF83ZX5lq8UPoJRlTujEl2rS0YJYWCFn+Ke+W+xft0rXCcGSkYZPA0GwkvEpylsX0tvA0WRlXrgZeHDNlcdlmSiAjKrCyX7aEX4puO2ZAtCVMygBZ/w7E0adIEPz8/xo4dS0JCwg3Pv19ciklk/dzN7N9wiIyMDAYMGMDQoUNZunQpgwcPvuqBP3DgQIpHypiNYJZ0mnpeor33RSqY1Sy982uiFEUi24q4UEFxl5d3c3tomsZv3yzmi57jWPrT6uvq5T9M6Lqgz5g5rNx1lH1R0Yxb8DfjFv7N7HV72Xn06lAuN3mHu3JlHrH50Cl+Xr4ds8nIwHb1CS8SfONGecQ/F2MZs2Ujqqbx2uN1iCxS9Jbaq5rOubgkfD0t19QidnP3EUKwbPJfrJq2HpuAY1aBZHI5LxYPI916V2fgoG7Mm7wQH09fKtYrh4fXFeemTZs29OrV65ox0QvmbmfS+NUgILJ+WT4a0RHF8GDO4bcnHGdZ9B6CTL48X6oR3sZrhzQADBs2jE1btjH0i3GYTUZqly+GQbnxuIQQzD6wn6+2bEQAgyPr0qtyNQBm/bWb8Ys2AVC5yHn+r8cSFNkOyCD5IwWvdm1DX4dLly5RokQJunbrhq2MH807tSEyqCylfe7+im+8PZW3d8/gWOoFinsF8VX1XhTyCLjqvNOHzzGwzvsgQFVVEi0XKf5UMBMnTryuAkzUiRaEWU4iSQIZOOLwoVjIBHw9auXaRggdkfwu2Ba7DngPRPbOXVPdjZvr8VXf71k3ZxP2DAdmTzMdB7fmhRFd89qsOyY2MZV2n/ySFdoJmUnZioIsS/RvGUnv5rl/z9zcP9yOtxs3+ZDlP69h/OtTsGfYXUEQZiNUjQBJwsPDSJJ1O116NOHVV1/N0S763CUWzNnGpEk/Mn3OSKpUvXZCn6pqOJ1alibzw87WrVt55pln2LNnD4ULF76rfe+LiibqQgIVi4cSHnIUkT4NZD8kn0FIStgN29tsTpo2fJ7Aqo8RXzYVqZKCQVb4ttYLVA0ocVdtfXnbj+xNPI2GjoxEMUsgIwq1JiMjI8fPklFrObntfFb0h2yQmXnye4LCCuTat9AvoV9sgMSVxN1kqQwBoUtvyjYhrIByX0rYu8m/tPLsjsN25W8wsKA/c6J/zEOL7g5Wh5Mmb/2QVcQOIXLsuHmYDGwa93oeWecmO+4Ybzdu8iHrZm/CnuFKgJQA4VSRnHYMXl4IWUWX4q+qxBgfl8IrfSaTnmYnJLAan7zzBz/NHEBQ8NUrmAaDct0qhA8TaWlp9OzZkx9++OGuO90AVUoXpkrpy/2G3FLBKyEE7w2ahZcxAtsBHa8jnliFA1tlJz9HrWNczd531dZjqTFouPIxdAQnU2JpO6Atnp6eWT9eXl44z5qyy/BjMChoqp5Lr1f4b7Spn/HGE4+sttJ9KB7kJt/j6eORw/FOd6STmpqalWP1sOJhMjL8+RZ8PHU5QrhCT7LXEsAd6/3A4Ha83bjJhxQsFYrBZEB1XN52FNiLeeMwG0jx0Bjc/tNMnegrbN98HDXTeZIkCdWpsX3zcVo+U/0+W39/GTx4MA0bNqRDhw55bcpVJCdlcORwNEK4HpqSU8K004CzsoZBunvhPbquM2PGDGIvHMXjsSKgSCiSTIWQkkw+cuSq8w9uPsI7zYZjs9rQ0anweDghxa4vkSbJgQiP1mBbAUIHJCTv1+7aGNy4uRnemfoawzqNQTHI6LqOT22JChUqMGbMGJ599lniMzI4FHeRYv7+lPS/OszqQaZZjXAaVCpFaoaNXcfPMXzaqqzZ7itt6uatcW6ycDvebtzkQ/p81o2Dm/7l3NFoHA4nUovHSAs1AyChMH3jUZ5rk7MyqJePJadiiSzh5Z17THR+4Pfff2fNmjXs3bs3r025Jpb/hPIISSB5S3gqJgaUvT21mHPHLvDb2D9BuBRsopPOMXDgQADGjR3Nn+aTHEw6S1nfQgyvfG3d84p1y9H1q1b8NPIXjp05isGQflPqCZLvSDC3AD0GTHVcCk5u3NxHarWoxoyT33HhxEWKhBfCJ8Cbv//+m1dffZX/mzeXhCfqY1QUnLrOsEZNeLZipbw2+ZawmAxYTN60qFmekqGBHDwdS+lCBbLturnJa9wx3g8Jx4/EMG3KBnRNp/vz9alQyZ3V7+b6REdHE1mtLhMnT+DLdSdJTrdlvefjaWb9mFdynK+pOkMHz+Lfg+cBKF8xjJFjuz+wiZO3y8mkRH79Zx92q5VJr7zGgukzqFOnTl6blSt/LtzFhHGrMBhlJINEl8/r0qR8RUI9bl2WM/58An0rDsaaakMgkAxwNGAXI0YPo0ePHlftglyP4cOHk56ezpQpU7DZbCxZsoSGDRvesk1u3DwIqKpKve/GEZdt/mhWFOa36kJ8SgaVSxUmwNsd7uTmznE73g8BsReS6NdzEtbMgiZmi5HvpvSleAl39Ss310bTNJo1a0aDBg0YNmwYPy/fzo/LtmFzqFhMBvo0f5wXW9a+qp2uC6KOxQBQumxBZDl/xQWeS0mm5cxppDsdCF3HDGx56TX8LQ/2AzXuYgoJ8akULxl8Rwmtyyb/xXdv/Hwl/t8g0X90Lzq90eaW+2rTpg29e/dmaPxAWgAAIABJREFUyZIlzJ8/n/DwcLZv335Lzvv9IC49nVGbNhCbnkbnCpVoU658Xpvk5gGl6bQpnExKvHJAQOgJIwZZQZElpr3bjWIhD1f4iZsHD+XTTz/9NK+NcHN9Nv99hG1brsTfCl1gMhup8fj1y067eXQZMWIEp06dYvLkyciyTLUyYZQpHESxEH+6NKpKxwaVr9lOkiQKBPlQIMgnXxZemHvwABvOnELLzPi3mEyEFwgivMCDPYn18jITFOyL0XhnCa0xp+LY/PsO1EzJMYuHhWY9GlKi4s1LhK4/dZJO837ldOGCKIEB9GnSlIkTJlAgsAAZFxxoieAX7IPFK+/DlByaRqtZ09h94Tynk5NZf/okpf0DKVPApb6yb/1BJgz5he3L9lC6agm8/b3y2GI3eYlZUdh09gyqrmOSZeREgZwMTlXDqeokpGTwZPVrKz25cXOzuGO8HwIKBPnkUBDQdcHCudtp1DiCchXccVtucrJmzRomTpzIrl27UJQrjlqjKqVpVKV0HlqW93ibTMjZJhQC8DaZ886g+0zdZ2pSMCKIk7vO4OHpQUSdstTvcPXOR25csmbwytJFWFUVyWBg/YXzlAwJIXRAX7y2C5aN3MgGz10oBoXvto+kcOm8rS55MimRRJsVNXNj16qqjFm6GKl8RUxWD8b0mIjd6kCWJbYt3c3Uo//ndr4fYbo+VplQb282nz1DsNmLKTM247is8iMEVrvzBj24cXNjHqw9QTfXpHqtktSsnXN1W3Vq/P7/7N13eBRV98Dx78zOlvSQRiChE0IXpBcFAQUVaXYFxIJgwfra68/yWl97RxFFBStNUYoCSpEmJRCkB0ghvWfbzNzfHwsBlE6STbmf5/Hx2WRn5ixJds7ee+65363xU0RSdZWZmcmYMWP47LPPaNCgeu6G6k8jWrfBUlCIZgoCrVa6NYzjvMbH352ytrFYLOwNT2bo//XnzeXP8+Ivj2M5jbaQ+4uKsBxRSuLUdaZs+IugyEYEbCxANRScxS7KCsv48rnvK+MlnFBRbjEpW/bjcfnK8nZtSqLMeXhtgwUw8vN5+eWXuW/Mw7icvpIb0xToHp2tq3ZUecxS9XJB0+Y8dl5/xnfryjnN4nDYNBTAYdUYPaiLv8OTagE54l0DKIrCzbcPZNXKnXg9vub4qqoQECg3kpAgt6iUD39cSU5RGet+ns5NN93EhRde6O+wqqXFCxfh/OxLPp//C8EBAXSoH3vUCHht5vHoJCVtJilpE3PnzsFuP/2R/mbh4UfNvtktGkKYKCYH+wT7vmmaoryOvKos+WY5r9z4HhZNxeawYuvj4Y81S7nimaf5uawYVVFoHBbONxPuIPRpBz+88RMfP/ol3oM9nd0uN/Xqh1VpzFL1pSgK70wayazlm8kpLOX8js1p17RiZ3CcXi+fb1pPdmkplyYk0rmBnMGuC+TiyhrktRd/ZPGCLagWFZvNwnuf3kJ0zPG3Z5ZqP7dXZ+RTU8kuKsUwTDB13p50OX3ay/r/fyorK6N9+/Z88MEHXHTRRf4Op0p9P2MVH7/3K7puEBEDX3332Bl3q9l4IIM758wkIz+Pm3r3ZdqmDRiak4bvbUXb7gKvwGrXeO23Z2jTI6GCX8mx6V6dYWFjy5NoE5Pw5kF8tuE9goODKXK7KHK7aRgSWv5By+Py8MCgZ9i1YQ+GbpLtSOWax4fzn//8p0piluo2wzQZ+c1X7MjNwW0YODSNT4eNokf8qa+3kGomOeJdg9z70KVcfFlnigqdtOsQT3CI/xcvSf61Kz2HYqfbl3QDqBq/rNkuE+9jeO655+jRo0edS7r3781lyoeLDy7OVigpsPDT7L8YdnnXMzrfObENeKNLD8aPH8+jDz1Op9gGPLHlS8qei8P6axFqgYGrVwitu7es2BdyAq4yN4ZXL3+sohIdWp/g4GAAQu0OQu1Hv1/aHDZe//0Z0ndl4gi04RJOBg0aRH5hMU16Xkx2YQlDurWmS4Js3Xq2hL4X9L9Ba4mi1e11JofsKchnV14ubsM3i+3SdT7ftF4m3nWATLxrEEVRaNPu1LdYlmq/8OAAXG5P+WOrphJdL9iPEVUvG3el88wXC8kvKmHvmq38MeNdv8TxxaYNfLhuDQGaxtP9B9K7UeMqu3ZWZiFWqwWP25eYejwG6an5JznqxAICAnA6nQBckpDIpwfC2Vuag3eIr1RDVRQMYaIpZ9eF5Vj2lmTz/JaZ5LiLuaRhJ9plB/LAAw9gsYcR4A3B8BoIVTD4xgtOei5VVYlPOLwWYvGSJVzy4DuoOcsRqPz451beuH04PVpX3c+rthGuxYiCu0HRQOiIsP+iBgz1d1h+F2i1+rorHSQMg/V//snWZgm0adMGgMz8YnKLSmnWIJIAm9VfoUoVTC6urMOEEMxavplHp8xj2qJ16IdGTaUaY/rUj8n8axEIkwCblUbR4dw4uJu/w6oW8kuc3PH2D+w5kEdBmYfI9uezbu/ZJZxnYknKHl5YtpS04iJ25ucxfu5M0oqLEEIgvMkIz3qE8H14EkKw4PMlPD70Bd6751NKi8rO+votW8VysHsiAHaHRrdeZz7qKIwMmoU9xJ9zdcy8GxFmATc064dDtYIAxWsytGEXNLXik2634eXW1R+xMX8vqWW5TN66kBvee5ybb76ZeenfcPm9Q+l5WRecjXPJtqee9vld2AgIr484eGt0e3W+Xbqxol9GnSHMYkThI4ALRInv/0XP+DusaqFhSCg3nNMZh6YRbLMRFRRMP3sg/fr1Y9SoUbz82WxGPPUpE974nmFPTCEjr8jfIUsVRNZ412Ef/riSzxauLd9UZWDnBJ4dN8TfYUmnQAjBI488wpdffgnA7yvXICxWGsfUQ7PIz9MAG3alcdc7syhxHZ4RGNarLU+PHVylcby6YhnvrV1V/tgqBA936sINHWeDezEoKljiUCK+Zt4nK3j/3s9wl7mx2jWatm/Mu6tfPOue6nt2ZfH+mwspLXVxxTU9ueDCdmd8LjNnGELfjoIJaGA7DzXiQ1bl7OD3/Zt568kX2fLVIkJDQs4q5mNJKcli3Mr3KDMO/0x71GvJ2z1uOup5mzZtYuDAgWzcuJGGDU99wVpWQQnDnpiCR/dN/1tUheG92/P49YMq5gXUIcLIQOSMBJHPkStyBYHsK11Afl4JiW0aEhRc+0smhRDH/RvempNNnrOMjjGxhNjtlJaW8v6Hk/lym45y8MOrqigM6NySl8fLmYLaQJaa1DGrVuzkp1nrCKsXxPyCNFwe3/Szy6Mzf+02mXjXALquM2HCBDZs2ICu68yYMYNm8f7tl1wdxUeFo5uHZ3EcNo22jetX2fWLCsswDEHjoGAUXUdovrdbQwi+efcernjRSVAgIEB37WLBd+P44AkL7jJf0ud166Rs3kdhThHh0WfXbaNZixhefuv6s31JPvrOg0k3gA56EgA9ohLoEZXAEvNj5syezejRoyvmekeIcoRiHjFWZFc1EsP/nVh37NiRiRMnMmnSJL7//tTbGsaEBzP2wi5MW/QXmkUl0G5lwqU9KyT2ukaUvA+igENJtxDg1VXuebQl+/Z9gtWmYbVaeOeTm4htEO7fYCvJ3uT9PDb0BbL25tD8nCb8d96jRMQevfNlm6joox4HBQVxw0238N0RHwBNIcgrPvvZL6l6kIl3HbJu9W6efew73G4dVVXIb2mDgMO/AkEO2Z6wOjJNwftzVzD3z2TCg+wUbViAUZxN48aN6d+/P/369fN3iNVSVFgQL95yKU99Nh+n28vF3Vpz+fnH3rGzIgkhePe1+fw0ez0gcOppxA0MJ7N+FDaLhaf6DWDUxG4YeXcDvjppVTUIDhJENowgIycbUf55QSEwpJptZ6+1BH07HBrx1tof9e0xY8YwderUSkm8gzUHDze7hCeSvkULtNM5ohm3tBx4zOc+9thjdOrciS8WvkLbLs1oHNSFKHuzk17j9mF9uKR7G/JLnLRuFEOAXdbWnhFRChz+4CuwUKo8wO496ZimgddroKoKUz9awsNPjfBfnJXo8cteJDMlG4CUzft4+srXGPXUNbRIiKVRk8jjHhcVFkSr+Gi2p2bj0Q0cNo0rj7PbsFTzyFKTOuTl5+awcN6m8sciWMXZOgSLRUU3TV4eP5S+7U9+Y6oKXt3gr51pWFSFTi3i6nT5xNdLNvDmzD98sxNCoAqDiT1jeP3Vl1m3bh0OR+2fqq1JNqxL4YkHv8bl9LW2U1STh58axYALDyeowixB5AzB687CYgHVEoAS+T05B+pxd+/HKMorxlnm5P5PbueSG6tXmYMw0hH5d4GxC6wdUcLfRFEPj1iWlZURFxdHcnJypWzi9NJLL7Ft+3Y+mvzRSevIp224jwNiPY4AO6piYXj888QHdarwmKR/E571iLwbABeGqZGU7ObtBRPYWKiBArZ8neD9Hnr0asHz/7vW3+FWisHWqzGPXDtlsxLQtxOmYfLoM6Pofd7xt593ur18On81aTlFXNSlVZ3fdbg2kSPedUh0dAhWqwWv1zd9ZfeovH/PlbhViIsMpV5IoJ8j9HF6vIx7eQZpOYUAJDaK4cN7rqizyffqbfvKS4JQFEyLxjPfz2Lm55/LpLsayskuRuFwPafFYiU3u+So5yhqMGa973nj2Y706d2ZPgPfRNFaEh0Pn+18m4zdWdxx352syN1OxNYEurZqVG1+/xVLQ5So7477/cDAQO6bdAHp2++kfshglKAxKMrZj9qvTU/jtz27+HDFMr589PGTJt0uo5gCRzI2LJjomEJnVe4XMvGuIoqtM0ROR7jmo6mRuCM7srFwEagH+6iHaRRjMj8zGeXjOTwyekitm3Vt1aU5O/7ag6EbvtXNIUE4y3zrE957ff4JE+8Au5Xbh/WpqlClKlQ93smlKnHV6N40ahyJw2HFarVw/bi+JDSPpX3T2GqTdAPMX7ON/dkFlLm9lLm9bNufxbLNe/wdlt9EB1gQxuEexUII7AP6UBRZ7wRHSf7SsdPRrecsFoWuPf7dVz1pSwYvv6uzasuFKNbE8q9bbVaim8XgbX8hP20r5j8fzuWW/32D92C/3+pOuP/k4Ynb6JyYBCVvI3KvR4iz65i0OGU3Y2d9xwfr1kC/vkw+kHbSY4788HOISsV3WpGOT7G2Qw25DyXoBkxbPYICj7jPWBQ84VbMkAh+XL2N0c9Owen1smL/PjZlHqA2TMY/M+dhulx0DjGNo7DEREDzwz26vXrN+HuWKp4c8a5DgoLsvDf1FjLS8gkKtlMvonr2e3Z5vJjmkavgfdNuddHq1at58+Fb6XzDQ2QUGAiLoKyhwNAUVu7fxwVN5UY51U1MbBivvTeWqZOXoOsm193Qh2YtYv71vGXLlhEdHV2+ycuRflnzN0VuA0WzUeb2siM9h2VJe7igU9VtSnOmRNk0LOqhv1c36LvASAHtzH9XJ69bg0s/+OFT01iRuo+csjKiAo8/YGC3BNOx3mVsKfjZFxfQK/rGM45BOjuJ8dH/SKYFiuob+1MtGim5pXR/63WUwAAMIRjSMoFXLxxy1h19/KleTBjP//gIAF98+gdfT1uBx6NjtWlcf0PfMz7v/LXb+Oq3vwgJdHDf5efTvMHx68Wl6kcm3nWMxaIS37h6/5EO6JzAe3NX4PEaIARep5dYezVbYFZJhJEGnnVgacAvv+YwduxYpkyZQvvz+jJk2qd4D964AjSNlhHV++dYl7VMjOW5V6854XOWLVtGvXr1jpl4u3XjqA+f4OspXSOooYAFODSiZ4ASdFanDLTaUDjclE4Igd1y8tHr82Nup3lwH4r1LOIDOhJqk91//CUqLIgP7rmCl79eTKnLg6rAnsz88t9zTbNQqJrg9ZVi/LJzOzd37kLb6H9/aK2JRt94Hi1bxbJ7Zyat2zbk3G6n90HU5dF5a+YfrEhOIS2nEMMUKArctCeDOc/cRGiQLDusKWTiLVU7MeHBDG3QhB9XJWPoAkeel2cf+pZvf7wPi1Z7q6OENwmRNxpQ8Xo97NpYwpw5c+jVqxfbt2+nZO48gi+7BBO4JKEVV7Rtf7JTStWQECbCu428rOUEBSUcM/Ee2LklH8xdiXnw5hrksNGnXdOqD/YMKMF3I9xLQbhA6BA4FsVydm0cH+pzPmvS03B73OiGye09ehFit588FkWhkazprjbaN43l84d8CynTcwu56dVvKCpzAdCpVyN+ydpV/lxVUSn1eo55npqqZ58EevZJOKNjn5z6C39s3o3be7hERQhfq8Htadl0bSW3mq8pZOItVUup27Oxpx9+03W7dAoKSomMOrwpx+6MXP7en0WLBpEkNqr5oyKi+H8gfO3lrBrcdkMgav0OFBYWMmzYMJ6+/35uueUWTCGwqLX3A0htJoSOyL8F0/0Xbz4Sxm/zPORsz/vX86LDgvn68dH8+GcyFovK8F7tCAmsGSNaiiUWohaAdzOokSjWM0s0jpQQGclvY2/ip3VreOLe+7jrnv9UQKSSPzWMDOPH524mq6CYesGBpBTls/TbvTh1HZuqEhMURMcYOUNxyIrklKOS7kO8uklMeMVvViVVHpl4S9VSh06N+Ts5FSEUFAUCg+yEhx+erl6ycRePfjIPVVUwTMGDV/VnZN8Ofoy4AoijSwkURcH0ZnHNNXdw4YUXMn78eAAsNbjmsc5zLwLvBjatsPDk2ARAIPgFPcvChFfGHvXU+vVCuPniHv6J8ywpajDYK3bjmcjAQMb0PZ+H0zPYvXs3LVrI9mo1nWZRaRjp2xyqTXQM3111HbO2JhPqcDCmYyfsmkxRDokOD2ZvZv5RX9MsKpNG9KFxTO3cgKi2ksNmUrWimyb7CwtJPDeY3MKtBIfYadYihlffGX1Umcmr3y7B5dUpc3txe3Ve+/73Crm+EAJxcNS5qinBtwMOfJ+HfRWtevYl9O2az2uvveaXmKQKZhaCMJn6YgPcThW304LHaTLzzXl4XLVrWr2y/GdSZwrSnkG4fvV3KFIFaxMVzSPn9eOObj0IPYVSouoqdXs6y2auIm1nRoWd86VbLqVecAA2zUJESCCf/ucqfn/tDq4bcG6FXUOqGvLjpFRtZJaUcNV3M8guK8XlcnH5pPN4ZcJtx3xuadnRybFpnl27MgDh3YTIuwVEEcLSDCXiMxRL1ZWwKPbeEDkDUfAAGDsBA6sGD99Rgqqd/euTqgF7P1Be4t+d0mp+67SqIErf444xKWiWHYiCDYjg21GDJ/g7LEkqt/Tblbwy7h0sVguGbvDol/fQe3i3sz5vq/hoFrx0K4UlLsKCHbLcsAaTPznplLk8OpN/+pMnPv2Z3zbsrPDzP/vHYtKLi3xtwzSNH3U3bv3o8ovc3FxuuukmUlfNw2pR0CwqATYrN1x09m9sIn8CiALABCMFUfjoWZ/zdCnWtqAEcmQipiAObr8s1XSKJRYlciY3PNEOe4CCqRg4guwMu30Itlq2eUilKP0Uq+bFV23lhNJP/B2RVAcUlbp44KMfGfr4Jzw6ZR6lJ5ideueuT3A7PZQVOXGXeXj7zo8rLA6LqhIRGiiT7hpOjnhLp0QIwaR3ZpKUkoHHa/Drhp08fM0AhvVqV2HXSC8qwjhiKFBxmqxdt4cOreMICQ1g+vTp3H///Vx11VX89cubbM8oJCklg4SGUfQ5y63uhdDBPHKRmwGeVQg9FUWLP6tzn7aAy6F4O+AEbKAlgiI3y6ktFK0JXYe/wp2fL+TJu57hxU/eoutg2XnjlCi2oycHlJpbjiDVHA9O/pH1O9PwGiY5haW4vQb/m3DZMZ+ru48eLCorcfLn1r0s+msHDSJDuX7AuThsMvWqy+RPXzqhrNISMkpKqG8PZOPudHTDV/Lg8uh8u3RjhSbew1u3YWt2Fm7TJDTNIHqll1fmz8IwDNzqWjKzdzB79my6d+8OQJeQELq0qpikWFE0hNYe9M0cvrN7EHljIPq3Kt3EQQm8GqE4wP0zWJqiBE+q0ZtISMdWphTToGsE3YZ09ncoNUfIU1D4ACgaCB0l9Cl/RyTVARt3p+M9eO/z6AZ/7Ug97nMvv/dSvn55Nq4yN5rNwt6ATO586ztMVGyahWVJu5nyn6vle3odJhNv6bhmbk3msd8WollUVAFC1bEYB3caUxQiKnib+bEdO7N40a9s9riIWqNh6IJS3Q1AUEgn1q6djtVqrdBrHkmJmIzIvghE0cGvCDCzfOUnVTjirCgKSuAICBxRZdeUqt7u3btp3lzuPHo61IDBCGsi6DtAa4WiNfF3SFIdEBcVxp6MPAQgTBOr4uGuNZ9S6C3jqia9uDTu8ALH0U9cSfOOTdmxfjeturRg8t872LD7AOBL2rfuzyKroIT69WQLwLpKJt7SMemmySO/LcBjGGD43mwi4sG634pVs2DVLNx/Zf+zvo5pCqYvXs/itdvZuyEDc6+Tc5oHsc9Vhq+zh09gQEilJt0AihqBcAwC54/AwRo+xQFKaKVeV6pbhBDM/GY1vy8oJLZBA8pK3QQGyZKJU6VoTUFr6u8wpDrktYnDuPPtmaTlFBIbGUxm2138mX0AVIWXtswmxBrA+TFtyp/fe3i38gWVn+1fj6KYCOEbtBKmINBeufcyqXqTibd0TB7DwDiiU4iiqtSPj2bqraPIKiiheWwEgRWwGOz175fy/R9JuLw6hAjs8Q727CyizJlDWGgDTAPsDitDR3Q562udCiXkMYS+H7zrQI1ACX8PRTn51tSSdKq++mwZ0z9fgdtlZ99uL4/dP4PXP7jB32FJknQcjWPqMefZmzBMky2F+7lr7aeUGb7BGZfpZUnmlqMS70NKvDk06fozm3Z2xzBUTFPl0gGOGrMZllQ5ZOItHVOg1UrvRo1ZnZaK2zAI0DSu73AOMeHBxIT/e4vrMyHMUryl3zOkg4vfkptT5HLgDtcITrXSp283zr+gHTu2HaBTl6YMHFw126MraghK5JcIIWQNnlQpfpu/GbfLC4BhCJI3p+Jx69js8u1Ykqozi6oS4wjDEIcHpUyPjpFZDMfYv63UyCM8XGfUuMXkZYcSEOSma6OauSmWVHHkO710XB8NHcFHf61hV14eA5u14LLE1hV2biGciNxR3DUwFSEEE/qv4Zr3r6ao0IbdYaVX39YMv+LsWwSeKZl0S5Ulun4YqfvzME3fIl67XcNqk7MqklQTxAaEc1/roby6dS4CQWNbFB/d+DjWCWk88sgjmEBhiYt6IQFE2BpjUWzYbC7qx+WjKXZahpzn75cg+ZkixL+3cpCkyiZcv2AUPISKbyMcl9fCWwt6sWxeBy7r34HxdwxEVWXyK9U+Gen53DvxM0pL3AghePK/V9C9V0t/hyVJ0mnwmjpuQyfY6iAtLY3rrrsOJbQ+eovz0U2T8KAAPr7vSkLCnPye9T5legEdwofSNvwif4cu+ZlMvCW/2LT3M5qpLxNk9U25u3ULBD9EQPg4/wYmSVVA1w2ys4oIrxdEQIDcOEeSajpd1+l715t4xOHOX51aNuTj+67yc2RSdSO3P5L8YtJvJaSVBVPq1Sj1ahR4A3GEjvR3WJJUJTTNQoOG9WTSLUnHYZqColIXNWVsUFUteI9IqUwhyMgtOsERUl0la7wlvyj2wshFo7iwYQqaarI6pxXLbg7zd1iSJEmSn/29P4vb3/qeEqeHiJBAPrr3ShrHhPs7rBNSVYUuCfFs3J2BVzdw2DQu6CRLyKR/szz99NNP+zsIqe7xGibrMjJJLghnb2ksYzv1oGd8I3+HJUm1VkrJapZlfUxq2UbqOxKxqgH+DkmSjmncKzPILizFFAKn20vSngxG9j1G25BqZkDnBPJLyrCoKpf2aMMdw/rItUrSv8ga71pKmMXg3QKWaBSthb/D+RchBPN37WRT5gE61K/PkBYJspOIJFUwl+FBUyykOTfwY+qT6MKNioUgLZKxzaeiqbLURap+ekx6C69ulD+OCAlk0csTKuz8O/7azc71e2jesQmJ3eSotFS1ZKlJLST0fYjcKwEvCB0RfBtq8G3+DusoiqIwpGUCQ1om+DsUSap1dNPgsY0zWJqVjIrKDc1L0YUbABMDl1lMrieF+o5Wfo5Ukv6ta6t41m1PxaMbCMNLoCevwvZWWPTFUt6Y+BGKoiCE4PY3buSSWwZVQNSSdGrk4spaSBS/CqIQRAnggpJ3EGahv8OSJKmKzEpdw4rs7ZhCoAuDtdmZ6N7Dk5ter5sAi1xTIVVPL48fyiU92tAqPppRfTtw4M853Hjjjazav49316zip+3bznjR5eSHvsBd5sFV6sZd5uHjh7+s4Ogl6cTkiHctVFKcTrDNPOIrKggnIG+0klQX7C3NwW16yx/vLmlCt2gF3SzAEDorv8olxfUqTfsMY3dGLn3bN+OK8zvKci+pWghy2Hhy9IXlj++7/HwuvutOrvtuBoqm4bBorEjdy/MDTr8ntjCPTtgNwzjOMyWpcsjFlTWY0+1lwbrtbNufRcPIUEqKCnnwwQf59rsFXDY4EItqAnawdkAJHCtvqpJURyjAkswt6Ae3trZa7Pxfx+doFz6ArpHXMLjLWP77/Z+s35/HvuxC1m7fj0VV6Nwyzr+BS9Ix2Gw2vi0pJMflQgBe02RrdjYTu3bHop7exH1gWADrf0tCVVUUFfaof5NdbOPNlxbxw4zVxDYMp0mz6FM+36/zN/O/F+byx+K/SWjdgPDwwNN8dVJdIxdX1lBOj5fr//slmQUlCCFQTZ0dP7zOlSOH8X//939EBO9AuBaCpQFK0BgUxe7vkCVJqkI/p63ny5RlBGsO7mszlFahDcq/5/Hq9L77Hcwj3v6b1q/HD0+P80OkknRyI7/+ko2ZB8ofa6pK8u13o51m4g2wefnf7Fi3mxadmrIiKZlvpyWhqlYA7HaND6fdSlx8xEnPs2rFTp597Dvcbh1FgaBgB9O+u5PgEMdpxyTVHbLrgawKAAAgAElEQVTUpIZalrSHrIISnO6D08mmzqOvfsjd11588BmRKPaefotPkiT/ujiuMxfHdT7m96yaBZvVgsujH/yKIDo8uOqCk6TT9Oh5/Rg363ssioohTO7q3uuMkm6A9n1a075PawDW/Z1VnnQDWCwqe3dnn1Li/eey7bjdvr8hIXxlLLt2ZnJO5yZnFJdUN8jEu4YSHD1RYbc7aNiwoZ+ikSSpJlEUhRduuoSHP5lHWWkJwtC5urtMFqpaqcvD/75bSvLeTLokxHP3yL7YrPK2fCzdGsYzf/Q4Nh44QKOwMDrWj62Q8ya2boDDYcXl8g1ilZSWIdTSUzo2rlEENruG52DyXVJahimcFRKXVHvJGu8aqmFUGL+s3obHq6NZVMKCHDxyzQDsNvmmLUnSyTWNjeDqfufw6qOTUNOTWP7HHzQ5pzcZecXERYWhyjUhle6+9+ewdNMusgpK2JGWQ1pukdzt8ARC7Q5aRUZRP7jiZmcaNYlCURR27cgkJDSAc3sG8Z8HbyUxMZHExMQTHpvQugFbN6eRmVGIxaLQoo3C40/dTrNmLVi5NIMZ05aTk1VM2w7xciMdqZys8a7Bylwefl2/A0MIBpzTktAgWVcmSdLp6dOnD0lbt5Mw6l4sNgc2m412TWN5765Rp71wTTo9PSe9hefgRjFdm6byzMglxIQJCLgcJeQRFEX++/vDn3/+yZVXXsmIPleS/ms+rlIPF43rz6R3bkY9xt9Eaakbq9WCzaaxYsUK7rvjE0IDmyCEit1h5ZJhnbj9nsF+eCVSdST/qmuwQIeNy3q1Y0Tv9jLpliTpjDRp0oTGXQeBNQBdKJS5vWxOOcCGXen+Dq3Wiw4LAiA80Mlr1/5MTGixb/+Fsm8QZTP8HF3d1bNnT+bPWcjW7/ZRlFuCx+Vh4edL+fnjX4/5/KAgO7aDs829e/emXkgLhPClV26Xl6W/JldZ7FL1JxNvqU7YX5rLi1tm8+LmWaSUZPk7HKkGc5a6mD91MfMmL6Ior9jf4Zy1yIBoQotjj+pvrAC6YR7/IKlCvDrhMsKDHTSNKsYwjixFcIJ3g9/iksBbZBAUHFT+2F3mZvu63ad0bOg/WgpGRIZUaGxSzSYLgqVaL9tVxA0r36VUdwEKv2RsZHrfu2gQUM/foUk1jKvMze1dHiInLRch4NMnZtCkTRw7N6TQuG08T3x9H9Hxkf4O85QJzxrMDbsI2BWGu01DhKaCKQgM1OjcQi7WrmyJjWJY9NJESkoPYC+cU/51QziwaMfuSCNVjcZt4jGP2FzHHmjnnH5tT+nYJ54dxaP3z0CYAptN48EnhlVWmFINJGu8pVpvbuo6Xtk6B5fhW7VuUzXuaX0JVzSW7Ral0/PHD6t4Zdw7OEtcvi8ovg4hwhSoFpXmHZvw/rqX/RvkKRJmKSK7L9ef25icDBtGsA1P8ygU3SCl5Ce2bk4iuAIXsUknVlL4B/lpdxMc4OWnTW1Zm3Y1r00cWesW5SVnZ3HbT3PILC2hV3xj3rl4KEE2W6VfVwgTUfYt6Mko9l4ojiEnPWbzsq28Nv4DSoucXHbbRVz/2OWnvBGdy+UlN6eY6JjQ8jIUSQI54i3VAQ40nCUeCnPCMNwW7AEmlkT5qy+dvn/dc4Xg0NCFaZikbN5f5TGdMTMTEPS+uJD50yNwl3gI2ZpK/daxxPYbxGUPv0tIRDQj+7Rn3EXd5M63lez7VQG8N+cGvAdLfALs6azflUaXhHg/R1ZxTCEYM/M78l2+lnsrU/fx3B9LeGHg6W/9frpE0RPgnAu4EM5ZiJA01KCbT3hM+75tmLL1zTO6nsNhPaVe4FLdI2u8pVotIyODJ6++jaLUEHSnhjBV3GUaszfs9XdoUg3U/eLORDQMx0DHEWTH6rChar63UdWi0rhtDdpy3dIQ0Jj4dDqXT8ghsXMpzbq46DCiDZkR51Cga6RmFzJ53irmrNji72hrPafbi/GPOvvDGxzVDkVuFyUed/ljj2GwcHUSC6ctpbIn3w/sXcCqtZEcyAwGnFA6rVKvJ0nHIxNv6YScTg//++9cbrzmfV54ehalh6bYq6kDzr/57cCbrMyeyso1v9O9e3cuGXIxihqI71bm22Es6YithyXpVNkcNhpfEUHcoAjuenc8n2x+ncTuLTDQadm5Gc/OfsjfIZ4yRXGgRHyOxZHI6P+46Dcyl53r7Pz88V+4nd7yVnYuj87y5BT/BlsHXNKjNQ6bhqKA1aISHhzAuQk16IPcKQizO4gMDOTQ3IniMdDXZPDmbZP57vW5lXbdVct3cOvdl/LiG+dx693DWLk6HlRZRiX5h6zxlk7ouce/Z+WyHXg8OlarhXM6N+GFN67zd1jHlOFM5od9D6ALN5gqualOznXdy4hhoxg6fRrbcrIxhEBTVXrExTNt5JX+DlmqQdYu2MiSb5Yz7dvP+Xj+O3Tr2RWA5ORkLr/8crZu3ernCM/ce/dMYda7vyAMgenQyL++C2gWAOxWjZsGd2P8pXJNRGXbm5nPT6uSCbBbubxvx1rZJjalIJ97fvmJLbtSCUjOJ+abPSiGIC6hAVO3vXXCY8v0AhYfeJM8zz6aBfekd/RNqIrlpNe8dvib5GQf7kAUEe5kxqzLUWznnvXrkaTTJQtdpRNavzYFz8HpTq/XIGnjPj9HdHxbCn7xJd0AqklMo1B6NvWtQv9w6HBu+3E2O/PzaB9dn9cHX+rHSKWaZsXsNfz3ujdwOz1EK3FMu+8Hui7vwrY1O3n5pvdpuC+RBZ8v4aKx/f0d6hkpK3IiDN8YjOrSqbc8BefAVngMk15tmjBucDc/R1g3NKlfj9uH9fF3GJWqaXg9Zl59PZeFjMFddrjsJCzq5C33Zu5/kDz3XkwMivIPAIK+Mbee9DjPP0p23HrYKSfdQgi5vkGqUDLxlo7L4/HgNYsRQi2fdo6JDfNzVMfnsISgomHie5NVVLCrvj6scSGhzLl2jD/Dk2qwWe/8jNvpAUARKrs2pLBz/R4eHPQMzhIXKlbeun0y9eqH021wJz9He/qGTryIJd+sxF3mxuqw0sju4N3XbkexqHL3SqnCKYrCg1Pv4OUb3sFitaCqKne/f+IEWjfd5LpTEPgWn+rCze6SP08p8R55VXe+nrYCl8uLw2Fl5JU9TnrM/m1pPHbpfzmQkk2zDo15/qdHiWooF0tKZ08m3lK5zQX7yXQV0CG8Mfl7D3DttdcS17Al9Rv0ITuzhMioYJ56ofLKMzxenb92pqEqCucmxKNZTu+G3yXiKnYUL8VpFCGEQbvwi6lnb1RJ0Up1SWhUCKqqYB5c/GaagvRdmShHJKXuMg/rf91UIxPv1t0TeOOPZ1nyzQrCokIZOvFCNKu8PUiV5/wretHhvDZk7cshPrEhQaGBJ3y+RbFhUwNxmyUAGLrArp5aInz9uL40aRrFtq0ZtGrdgPMuaH3SY54c/hIH9mQhBKRs3s9LY9/mlUVPndL1JOlEZI23BMD72xcwPWU5FkXF4/Ww54nveHL8vUyYMAFFUfC4dWz2yrsROz1exr40nYzcIgAS46P58N4rTzv51k03Wa4d2C3BRNqbVkKkUl2UuTebO3s8gsflQffojHv2GnoO7cJt5z5YPhJuD7Rzx5s3cvHNA/0crSTVTullW5iT+hgeswyzOJCPxifx4w8Lad68eYVfa4jtGgz98AY69WLD+SZ9coVfR6p75JCGRKnuZtqe39GFbwpPIBj8vzuZ2H9i+XMqM+kG+Hn136TlFJa3z9qWms3yzXvod06L0zqPptppGNi+MkKU6rD6TaL5fOfb7N60j4jYcBo0rw/AhP+N5b17pmIaJudd3oPBN17g50glqfZqGNiOCQkz0YULqxqAfcL79O/fn0WLFtGqVasKvVZi9xZsW7MLw2tgYqLUMzBNE1WWXklnSSbeEoYwgcOLRxRVwRpQ+TuJHcnl8eL16v/4Wu3qYSvVbAHBAbTrnXjU1y6bOJhLb70Q0zBlaYYkVQFFUbAqAQDcdttt2Gw2LrjgAhYuXEjbtqe2pfupeGbWQ7xy47vs3rSXVt2b82vaj1xxxRW88N67LE1LJchmY1TrtgRYrRV2TalukHeKOkYIQaHbRZDVhtXia8MUag2gX0wbVuRsw23oWFWNG5tX7sidEIId2w5QXOSkdduGbF32C163gmZ3oKoqgXYbvds1qdQYJKkiqKoqR8EkyU9uvvlmbDYbgwYN4u2pM9iRqxMRGsj1A88lyHHmA0hhUaE8N/eR8sePuO9m7N13cfEXU9HsdjSLhS+TNjLr6uuxWU7e0lCSDpE13nVIgcvJ9T98y868XCyqyttDhjKwua+UwxAm89M3csBVQI/IlrQLr9xFiW++Mo+FPydhURVc7jLynAv56PNPWbMnD82iMqJ3eyJOstjmdAgh+HX+ZnZsy6Bth3jOv6CNbBElSZJ0BCEEc/9MZsnGXTRvEMktF/fAYasZ43Ovfvg5X6w9gKpZsWoWmtavx5ePXH/a64RO5IVlS5m8bg0cvHcEWa18MmwU3ePiK+waUu1XM/6ipArx/B9L2ZmXi9c08Zomk375kfW33oFd07AoKpfEda6SOFL357Fg3iY87kOlJCrXX/UIndu2onPFzRQCvhuJEDD53V+ZO3MdbpeXn2avJ21fHteN61uxF5MkSarBZizZwNuzluHy6KzYkkLSngw+vOcKf4d1SnK1SFQtFwCvbpCaU8ieA3kkxEVV2DXsFg3NYkE3D62HQo52S6dNJt51SEpBPt6Dbxjg2zo93+UkNvjkGxdUJJfT84/ewCoej3nc55+OzL3ZrJyzlsDQAPKw8NmUZb4NEABd913D7fIy89s1MvGW6pxitxtVUQiyVe0aDqlmmLV8c/naGo9usG5HKk63lwB79a9jDg0KwKIqGAdbfnq9+lmVmhzLmI6dmLFlE06vjkDQrWE8HevHVug1pNpPJt51RE5ODmlLfofmTcBqRVMU6gcHERMUXOWxNGseQ4O4cPbvy8XrMbA7rFw2sstZnzd1RwZ3dH0Ir0dHURW8ViuiTQtQlH/tPhYQUP1vJJJUUYQQPPLrAn74OxnwJRCPn9dflltJR4kMDWJXei7mwQpUFUjNKcA0BS3jovy+mZLXMNi0OwOLqtChWYOj4hl/cQ+WbtxFqcuDx+slN3kFf2/sSMMBAyrs+tFBQSwacyPL9u0j2Gajb+MmqPJvSDpNssa7FhJC8N30P1nyazIN4+rRoUsAt98xnmuvu47mV4zi5907aBQaxlP9Bvgl8QZwOj3M/WEdhQVl9B/UloTEBmd9zvfvm8rMN+dx6FdaqApKmxYQEgQKaBYVu8OKoZv830tXcm63iu/9KknV0YJdO7hvwc+Ueb0ABFqtfDR0BL0bNfZzZFJ1si+rgBtfmYHbq1NaVoY77wChDZpgUS20jItk8r1XYvNT9x63V2fcKzPYn1WAANo3ieXdu0YdVcPtdHvZui+T8OAA9m/fzBVXXMG0adMYMmSIX2KWpGORI9610PczVvH5x7/jcnnZvjWd+T8XMuWTKVw0+CIAbuves9Ku7fbqTP9tPem5RQzs3JIebY7dmSQgwMZV1/eq0GtbNBVFVRCGL/FWUMoXwdhtGg8/NQK7w0qzFtFERYdW6LUlqTpLLy7GOKLMzOVy8cfGDfSKb8Sm35P58tnvsGgWxj17DYndWvoxUsmfGseE89Pzt7AvK58Fv69k8mKTUrsBGGxPy+bHVVsZ1beDX2L7ec3f7M3MLy+F2bL3wL/2egiwWzk3wbfQsXmDfsyePZsRI0YwefJkhg8f7pe4JemfZOJdC/2xeCsul/fgI4XgwEi6du1d6dcVQnDHWz+wZe8B3F6DH/9M5r83X0L/09wE50yNuPNifpmyGK9bR1Egrm0jvC0aYxqCsbecT9/+J98mWJJqo57xjY4qK1FVlY+eepqv73uGmL0tMLy+pHzz8r+ZnPQasU1j/BWq5GcOm0ar+Gh2tUqgbP92DJtvIMPl9ZJXXOa3uJwuL6Z5eILeFIIyt/cER0Dv3r2ZN28el108jJlPLiBrez4xjaP4v5kP0KRt5XbukqTjkc1na6GG8RFo2uEfrWpRCQ5xVPp1c4pK2ZziS7oBXF6dLxatq/TrHhLTOJopW9/g7vfH88iXd/PO8mf5+MuJTJlxG/0HtauyOCSpumkdFc34mIYYe/fRRNWYftW17FizlqsGXY9hHL2wOen3rX6KUqpOCq1eTLsCFsACpg1EhP9ShgGdW2KzWlAVBQWBq7SETs2iT3pc165dGdPtVvYnHcDr9pK2I4OHBz9XBRFL0rHJEe9aaOJdF7JjWwbpqfmoqsLjz47EVgW9WB02K/9cMrB1Xxb5JU7qBQdU+vUBwqPDGDT6/Cq5llR1ct3F7Cg+QHxgBPGBkf4Op0YRQpCWU8jqHxcQuWkdE7r1okuDOAB6D+jJ8mnrcJW6AfB6vUQ3kv++ElisKnarhsvwlXbYrBZCg+x+i6d+vRCmPzqaH5YnYVEUVsycynWTHiOoZTcC7VYevmZAeZnJP2XvzkM9YpwxNyMfj9uLrQZ0a5FqH5l410Jh4YFM/mIChQVlBAU7sFqrps9oSICd6wedy9T5a8u/5tUNpvy8mvuv7FclMRzidHvJKighNiIEu9zKu0ZLKtjHpDVTUBUFr2lwb8JQ/v6zmM0pBzi3ZRx3jejrtwVf1Z1hmtz/wVxW/b2XkpAEGBDHVtPAFAJVUeg7qgcr5qxl6Tcr8Hg85GrpbNi7lk6093fokp8NataCl5f/juE2EUCQzcag5v6t/4+LCmPScF8b2Nbx0fznw9kU5hYBMOmdWcz6v3FEh/+7YUCH89qQuS8Hr8uLwCQoIlAm3ZLfWJ5++umn/R2EVPEURcERYMNSgbt2nYrwoAB+WrUV/eD0tSkEcVGhDOycUGUxrNueynUvfMn3y5KYvvgveicUExFcCmq0bJ9WAz3w1zQyXAV4TANDmPw+L4Md2/LJzC9he2oOaTmFXNBJLgg8lkV/beer39ZTbPVS2lTBG2pjq7OM7fm5XJKQiKIo9B3Zg2G3D2Z11jIa9mrF5KlfsCFX5cP561mRnEKP1k0IrOB+yDXNR+vWcMfPc/kqaSMtIyNpHBbu75AqXYDVysg2bQmzO+gV35jnB1xIVFCQv8MqN3P5ZjalZJY/dtg0OreMp3HMv382nQd1JHV7BvkHCohLbMhaz1LchovevSt/7ZMk/ZMcJpIqVPMGkcSEB5ORW4TXMHFYNUb0rtrRs4c/+al80Y3TLXjq89/4cuJccAyB0Bdl8l3DlOruox6bWVY8pm8dgdurs2zzHn+EVSPkFTsxTBN3pDi4okfBi2Dhrl3klpURGRgIgBZoJyOmM+m5RdQfMI6k9GIU1UJuUSmT3p3J9EdH+/V1+NP8XTt4c9UKnLqv5OLWubNYNOYmGoRU7cZj/hAdGMTErt39HcYxtYyLwmHTyruceHXzmEk3gCPQzmNf3VP+ODX1HgYOHIjT6WTwbdeSWpZLp4imNA+uXyWxS3WbXFwpVSirZuGzB6/l2gHnMrRHG968YwTdW1dtr+CiUtcRjxRySxwgnOD8BXS5cKymuSKuO8Ltu7k6VCtBwUePF8RG1P4E6Ez1btvUt8mIwPdfOYF2xOYj3/6+idxSD4pmxRSgqL7yNMMUbE/N/tfajbpkbXpaedINoKkq23Jz/BiRBDC0R1uG9miLRVUJsFt5/LpBNIo+tZmI+Ph4li5dyg/FG7lr1RTe+Hse41a8x+qcnZUctSTJEW+pEoQFObhn1Hl+u/75HZuzbHMKbq+Ow+rlovY7fN9QVBClfotLOjMbPvqRWCOHC24eRfPg+rRu05gbHviE4DQTxYSEyEYYuolFk+MI/9Q4JpxP/nMVr//8B4tde7FqFkDh2vYdCHMc7nRUWOrEoxv/PoEQNIgMq9OzRO2i6xOgaeXJt9cwaVEvws9RVT/CuwlROgWwogTfjqI1q9TrqarCo9cN5JFrB5zR72dkTBT2AYmYCFymb4b03e3z6R4ly9akyiUTb6nWef7Gi5k8bxVbUnbRLf4XRvdaB1hBjQRrxzM6p8flQbNpqH7eMrmu2LntALO/X0NBYT5fffE969avICbG11t65Yq1BKe4UVXf4qh1y3cy67s1XH5ND3+GXG21bhTDh7deTkZxMWvSU4kNDqF73NHdHwZ3TWTGkg24PDoWVUFRFAzDxFtawL1j63aXoOGJrdmcdYCvNm/C63RyntekUViYv8OqVoS+E5E7BnACKsL9G0T9gmI5ebu/s3U2HwoVRYEjZnMEdXdmR6o6cst4qVYT3q0I5yxQQlGCxqCop7djpcfl4ckRL7P+1yQ0q4UHP7uTflfKBTmVae+ebO68eQoulxchTBwBGl/NupfQUF9Lyltvvp9928MxjMM33AEXteORp0f6K+RaIXnvAb77PYmgABs3XNiVyNBAXnzxRTZt2sT06dP9HV61kJyczOhrL2DZ4v8RENQEbH3r9GzAIaJkMqLkdeBgSY4ShBL6LErAUL/GdTJv/f0z3+9fhSlMFBRe6nw9vaJb+TssqZaTI95SraZY26BY25zx8TNenEnS78mYhonHMHl53Luc078d4dE1a8RL1w00rWraSp6tZUu34Tm4YEpRVFRVI2n9PuIbR5C0IYWFCxfTvuVVGAf7CzscVjqd29SPEdcObZvE8uSY2KO+NmnSJFq2bMmmTZto1659lXdJqm7aJMCyOfVQSp9HeO3guBgl7AV/h+V/lkjAyqHE2zB0NLX694OflDiE7lEtfYsr6zWlZUjsyQ+SpLMkE29JOoGULal4XIe3JdasFnLS8mpM4p2emsfD907nQHo+9WPDefHN64iLr971qaGhAWhWC56DCyqFEKTuz+WFp2diGAYt44dz4SXnsGn9XoqLXFw8rBNDLuvk56hrp+DgYK65/D7unzgLVZ3LxZd14u4HL6mzo7yi5F3sNhNFAUQZOOcigu+rkpKKas1xGTjngOcvDEPnh3llDBzRkqhq/s+iKAo9oxKAqmt3K0l1e/hCko5jTXoqfT/9iLkBeZgHP54qioJm04hLaODf4E7Ds4//wIH0fISAzAMFPPvY9/4O6aQGX3oOzVvE4AiwYrdr9D4vkYU/b8Lt1tF1AVj4ee4GJn8xga/n3sO48f3rbCJY2VJ2Z7Mz2QRUTFPw6/zN/LZgs7/D8iODQ2XBe70OtnkCKNPz/B2U3ymKFaXepyhRc9DqL2D9riu55tpr0Y/oBiNJko8c8ZakfyjxeLhp9g+Uer3QpR56cSOaJZXRokkD7nrvFgKCHCc/STWwKmcHe/dnl68dEgLS0/L9G9QpsNk13vhwHHt2ZWGzaTRqEsnN131w1HOEEAgBMt+uXOmpeVg0CxycfXC5vOzfl+vnqPxHCboN07WSeaXB7NPtKFhQ9z7EtU3fJ8xWcz6QVwZFUUBrCsDzzz/PkCFDeOyxx3jppZf8G5gkVTMy8Zakf0gvLjr8QFEovCCOiBub88qwmrN475u9K3ln2y+ojVS0XSqKoWC1WujQqWp7qp8pi0WlZavD9Zbjxvfn5WdnY5oCi0Vl1NXdUVWZdVe2lomxmAd3oQWw2zU6dm7ix4j8S7GdQ37Yu+wrehYdAxBglrIu72sGxN5z0uPrCovFwowZM+jatSttW7SjaXhLIhvWo12f1nJ2SqrzZOItSf8QFxJ61M0hQNPo9o/2a9Xdp7uW+HrTjoSAeTasqRbO69aaux64xN+hnZHzB7ShfmwYW5L206hJFN16tvB3SHVCTP0wXnj9Wt59fT7b/t7JRZedy7ldK7c/c3Un1Ib4FhIe7ntuimP0QK/jIiMjee+VD3nl6vcJDAhEURQG33gBd751s79DkyS/kjXekvQPQTYb00ZcQbPweoTbHVzRth23dO7i77BOi/VQv3E7OEd64D545OmRBAXZ/RvYWUhs25BRV/eQSXcVa39OY96fOp7zhwSwP2Otv8Pxuyh7U+o7WqEpDlQ0rIqDThGj/B1WtbR6xiYsQsNd5sFV6mbe5EXkZxX6OyxJ8is54i1Jx3BObAN+HXuTv8M4Y1eFdOKNwkUEOQIxFbi39aX+Dkmq4YYOHcro0aN55ZVX/B2KXymKysjGL7GtaDEuo4jmwb0It8X5O6xq6ciOUD4KhlcuuJTqNrmBjiTVMrqu06dPH0bcch1dh15A8+AYWsj+tHXWvqwCPvppJU6PzuiB59K55ZklicuSdnPH69OxBwYzpGsiT465CK2O9/WWTmzT78k8esnz6B4d3dSJaB7K19umyDpvqU6Tibck1RLJSans2ZXFilUL+HP1QhYuXCi3uK/jCkqcjHhqKiVON6YQOKwaUx64mtaNYk7rPPnFZVz6+Ce4Dm5s5LBp3HZZb8YMqlklWFLV27UxhTU/r8cSpHL/y5N4+523GT58uL/DkiS/kaUmklQFdNNECIHVUjm7R876djUfv78Y0zRxu1zcOulxmXRLbNiVjmGamAfHV9xenaUbd5124p2eW4TliN8nl0dn697MCo1Vqp1anNOUFuc0BaBJjwYMHTqUhMTmxDYLJVCLwGEJ8W+AklTFZOItSZXsrVUreGfNKoQQjO7YiSfPv6DCp1o//Wgp7oP1lKpqZfa3SVx9/QUVeg2p5okICcQ0j2gHaNOIDA087fM0jgk/6rHDptE1sdFZxyfVLd27d+e/rz/OrLy7CFOCAMFFDR4kIbSfv0OTpCojh8SkGq/E62JPSRZu458LefxvbXoaH65bg26aGELwzZbN/LpnV8Vf6B8VYwJZQSZBx+YNGNarHZqqgKnTrkksw3u3P+3zhAQ6+ODuy2nRMJLosCBGD+rCyD6nfx5Jij7/AIHhFnThQhdu5me8JNsxSnWKHPGWarQ/sv7msQ3TURUFu8XKRz0m0CQoyt9hldtbWIDC4dFt3TRJKSio8I1B6M0AACAASURBVOuMvaUfn360BGEKFFXhpglytFvyeeiaAQzp2IjLhg/now+2nPFsS7umsXz7xNgKjk6qa0r0XJQjhvxMYaCbbmyW05+JkaSaSCbeUo0lhODxjTN8G8UATsPLC5tn8kGP8X6O7LBzGzTEox8eibeoCj3iK36K/vJrepCQGMue3dm0at2ANu1kezPpsBaN4nDmedmxLZ1WreXvhuQ/bcMGsyJ7CrpwYVGs1HckyqRbqlNk4i3VOAfyitm6L5MGkSFHlZcIBDnuYj9G9m/uA5kUfv4l59xxGza7nXt79qFDTP1KuVbHzk3q9Hbe0rHl5ZZw+02f0CHhWu6d+DmXjujC7fdc5O+wpDqqU72RWFUHu4qXU8/emJ5Rchbl/9u77/gqqvSP45+ZuTW9E0IPvUoTQUERsaCCva+9rWXtumt3ratY1rL2+lMsWFGxoIhgQ0UQgdB7QiCkt9tm5vz+CFJshJQ7N8nzfr38I9c7c74pJM+cOfMc0bZI4S1alJ9XF3DJI++i6xrhiEmwTznuzvHoHhc+3c0RHYY4HZHSylremP0zgWCIlx+8jdvPv5ALz46dWXjRtrz20teUl9Zg6B7CYYvp783n6OOHk9MxzelozSJgVTBny5OUh/Ppnrgfw9JORNPkcaZYoWkaA1IOZ0DK4U5HEcIRUniLFmXy1C8JhHfMcutLunDowCxq4jVGZ/bmuM77OJgOqgMhTrn7FcqqA5iWhT7oSCYcfaKjmUTbVl0dxLJ2dDbRDY3a2rCDiZqPUop3NlxLaWgDNibFobXYymZExqlORxNCCEAKb9HCFCcVYxxaAgrsvDi0fD//Hn1GzOygN29FPjXBMKZlAxq6y81n81dy7oQRTkcTv1FYWskdr3zOppIKxg/pyUWT9sXQdX4p+4Dvil9EA/bNPLfFz8wdecwwvpq1jFDIRNehfU4K3XL3rI93SxG2aygNrcemrkuGqYKsqpothXcrppQiErbweKWcES2D/KSKFmNR+QaquxejUTd7p+9Vzf7d+8RM0Q0Q53Xv0sjPZejE+9yO5RF/zLJtzntgKlvKq7FtxauzFuD1uDlibAJfFT2JqUIAzN7yPzK83cj293U4ccP1H9iJyY+dzuS7X8S0Azz81NkYrtj5N9OU3LofXXPvaE+ndJLdOc6GEs3mx7mruePGtwmFIvQb0JG7HjiZuHiv07GE+Eut87evaJWWVhSg6TtaobldBvvtG1sdGob36sTevTrh97iJ87rpkJHMpFH9nY4lfqO0qpaSylpsu+4yKRg2eeiFN/jbxROpDdTu8t6twWboux5lfft34MDDOmMb6/DHeZyO02x0zeDIDrfi0nwoS8MdhgOSO6FUwOloookFgxFuv+EtAoEwtq1YvnQTzz85y+lYQuyWzHiLFqNnYjb6Tj2xXbpOr6TYms3SdY2HLprE4nWbCUcsBnbLxuOWf2axJiXeD2rHumeXoXPshHGcfdSpfFJ86/YZb9u2yfT1cCpmk0rqFsLfbxMban6ic/wwp+M0my4Je3Nh7iPUbDkWj1WDt+a/qNA7kP4OmtZ6LzramvKyml3uLkYiFuvWbnUsjxD1JTPeosUYktaNS3odSoLLR6LLx+V9DmdASuxtW61pGgO7tWdYr45SdMeo96e9R8GsKfg9Bpqm0a9LO/55ysF0Tx/O/lkX4zeSIexl7gs1ZHl7OR230eaXvsWGjHfoO1Hjg/xbmF/6ltORmpUenEaiK4jXqwFBsAogPN/pWI1imhbhkOl0jJiRmZlEYqIPfdtdUKVMho7o6mwoIepBU0rJ3tJCiFatoLaU/yx5j62hSjqVuHj5wjv5+OOPGTx4MKZl43YZvzvGtm1GjtyPcWNOo2ePfuw/ri89e7d3IH3jPbXiGIL2jh73PiOJC3u+42Ci5mVXPQY1jwPbClUtDi31WTTPcEdzNdRbr83l2Se+QNmKseP7c93NkzBi6NkWp2wuLOe/937Els3llFYsx5dayskXXwfA+KE9SYzzOZxQiN+Tf7lCtAGvL/6FsS89y4QpL/FDQb7TcaIqYpuc//1T/FiymjXVRcxiPf96+zGGDBmCpml/WHQDKAX9up3Cj99s5fWXv+XKi14ib1HL/Npp2q6fo84ff86thRZ3CuipoMUDceDeC9xDnY7VIF9+voTnn5yFZdrYtuKbOcv5/JNFTseKCdntUxi5X082byonWJXFprJe3D1lBpPf/JIT73yZqtqg0xGF+B0pvIVo5WavW8sdc2axoaKC5SXFnD3tHQqrYmuHz+a0KVBOjRnC3rYiVPe6WePd/ee/YV0xJcUBdL2uK00oaDLt7XnNmrW57J91ES7Ni1v349K87J91kdORmpVmpKNlfIyWfDda6sNoqc+3yE10Xnj6S+69430iEWv7a6FghE0FZQ6mih1rVxfx7OMzMbddlHirNIwym2DYpKImyMwFq5yOKMTvyAJUIVq5HzblEzB3rA01dI28rUW0T0x0MFX0pHsTsHdaUefRXeQm7L6Ptc/n3t71BOoenI2L82Badky1sKyPPskHkeHtRnFoLRnebmT4cp2O1Ow0PQl8E5yO0WDVVUGmvvItpmnv8rrX62Lo8K7OhIoxm/LLMFwG/Lr23QYjaAEubMtmp2fxhYgZLeuvhxDNTFkl2BXXY5eeiV07zek4TaJnWjo+Y8fSAtO26ZqS4mCi6Epw+di3IBHCFjoa/ZM7ckGP8bs9rn2HVA45fBC2imCaQeISvEzftJ59Ln2Yk+58meKKmiikbzoZvty6ArwNFN2tQSRioWm7Vo5+v4drbpzIXkO7OhMqxvTsk11XYG+j6Rp6mhePoVNbUUI61dSaIcrDNcjjbCJWyMOVQmyjlIkqnlDXAQET8EHSHehxRzkdrVGUUoz99y3kpybjdbu57YBxnNh/oNOxoqakpIS+ffvy2eef07t/X3xG/Tc0WrZsGUdMOJk4fzJZh5xAWSgC1N01GNm3C49eekxzxRZtnFKKm699g5/nrycUiuD1uLj1nhPYe2R3p6P9qZ83F/Jm3iKSvX7OHzqcVL+/2cdcsmgjjz80g2AwwnGnjkTL8qFQ1Bas4Pppj5Jx8kh0TWNYei4PDD0dty43+oWzpPAWbZ5SCk3TUOZ67OJJaOy02YZnDHrac86FawIFBQUMHDiQpcuWkZWZ+btZtNbu4osvxjAMHn300T0+9u6776awsJB169dT0OHAXf5fTnoSH955blPFFC1AVSiEbdm8POMnNmwt56AhPTl0eO9mG88ybT6d/jNFRZWMGNWDfgM6NttYjfXz5kJOfWcqQdPEpeu0T0hkxt/OwutyptBdV13EqV89jKnVlThe3cWlvQ7jpK77OpJHiF/JpZ9os/JXbOLGI+6hcO0WuvbvxPirBzDxgADe7TsOu8CIrZ0x/4htK56a/h2fz19JTnoSN546nuy0Heu377//fs466yzaZe1+XXNrsaqgmPvemsXCwGaKMtM5esTeVIfDJHj2bAOVd955h8mTJ/PJpzOorjEpD2touoHXbTCyb+dmSi9iTdiyuPDD9/hm4wYsyya+SMdVCl8vXkttKMwx+zXPHSTDpXP4US2jG8vbS5cQ3PYsiWnblAUCLN66hWHtnfkdWhSsxOv2YJp1m2GFbJP8QIkjWYTYmazxFm3WrcfcR+GazShbsWbReh6/5EMeePo0fvo5h1BYB6MLWuKVTsfcrec//YGXP/+JtZtL+S5vPec9OJWq8hruPPkhTulyIXMe/4mLzr/Y6ZhRU1ET5JwH3mBO+Qa2+sJo6SlMX7Oai6e/X+9zzPx0Mdde9iKRmo58uqiSH35IwJgfImVlkA6JCRyxTz+uPfHA3Z9ItAovLVzA3PyNmLaN0qA608ZyK4Jhk3e/Xux0vCYRMS0qa8uxyy7H3rI3dvExKHN9vY9P9flw6ztKiohlUhUKYdr2XxzVfHon5aCjo217wtKnu9k/q58jWYTYmcx4izarcM0Wfl1opaHhDruZPctgzqxxdEjezGOv/Yd4PcnZkPUw55c1BMN1M022UhRX1nD7WY+y5NOFREImaXo7nr/qDe75+EaHk0bH8o1FAEQS2D61YCqbuQUb63X8R+8v4PH/ziAUjJCVNox5byzCUHUNEowgdCjWuOm03T+c2VzeXrqEx3/8Ho9hcMv+BzKqk8y8N7d15WWErB0t/VCgXKBbGulJcc4FayLTvl3C3a/NRNkme3Xy8vBp1fjceajSMyFzVr2Wp507ZDgfrljO1tpaakJBQkpxyUcfkOaP4+0TTyErPiEKn8kOyZ44nht5IY8s/5iqSJBTu41m7/TYXR8v2g6Z8RZtVu8RPXG5t3X70DRIjAdAoZO/KYVL9rmJcDDsYML66Z6TjrHTH0ZD11k+ZxmRnVpsLflmmUPpoi87LZGIaaNHgJ2eYMmMi6/X8R9NW0AoWPcQJUoDtaMrmQYUbChtyrh75LuNG7hl1uesLS9jeUkxF9//AheNup4r97+ZX+bkOZartTuoW3f829Yqa9v+S9Q8pCb4ueaEsU5Ga7StFdX85/WZREwL09ZYVJDJS98MBhTYW0AFdnsOgGSfj49PO5NnJh6F2+UCTSNgmmyuruLOOV826+fwZ7omZPHgsDN5ZuSFHNiuvyMZhPgtKbxFm/Xvd65l7wlDyOyYDhkp0L1T3f9QCkyLss3lLPsh9jdguOq4/SFQigbE+zw89PdJdOqRjabXlYuappHTI9vZkFHUOSuVK44dQ9IWA80ETSmSvT6eOGJSvY5Pz0hA13ed4fu1flca9Orr3LbxP24q2L6O1lNYS9qTeaz6fhWLv17GDYffTf6KTY5la83GdcvlrnEHMyirHaM7d+WN407i+StO5IM7zqVDRrLT8Rpla3k1rp3ajYZNFxtKtrUb1dNBq39nEq/LRffU9F1myC2l2FTddjbsEmJ3ZKmJaLOS0hO5/b1/sq76B97Muw2lbWDtpzmser8zrN+ErSn8CT6nY+7WiqVL2Pz5C+QtW05CnB9N0+g89Squn3AXBSsKyemRza1vXeN0zKg6aexgjt63P7k9ejDto+kM6dcPQ6/fPMPFVxzCsrxNBAJhLNNm7DGDmDUzD6syTO9+Odx21/HNnP7P5aam4nO5CJgmvlWVsFNTKk2DRV8tpWOvHMfytWZH9+nH0X1a3xrhbtnpeFwGAU3DVgqf2+bAPgVgdEdLfXSPuyBlxMXRPTWNVaWlRGwLv8vFMa3w6yZEQ0k7QdGmVUa28OLKM1F63SyiFdTIuyONLTPc7HvU3vzr5cscbb+nlM28kqmsqf6WNG9nxmRdiM+o61iyvqaY77Yu55WnnmdsZj+uuerq3x1v2zZ6PQvO1uarr77i0ksvZeHChXt8bDhkUpBfSmpaPCmp9Vui0tyUCqMCn3Dhm/P4ojyRpKVVZL+8CjNQtyzGF+/l3+/9k6EHtZ0e7aJpbCgqZ/LUWZRVBThu/4GN7tJSGQpy/7dfs76inCN79ub4fgPaXBtTIf6MFN6iTftx7XS+KLkfX8KOW60dqg5kgDqR3nv3cPyPxffFLzOv5HVMFULHRaYvl5O7Ps7SigL+/sPTRCyLcDDEqPZ9eGTEOY7njSWXXXYZWVlZ3HTTTU5HaTSlTFTpyWCuIhCoRTPi8GZP57HLP+LjZ2cCcPQ/DuPC+8+UnwHRIJtKKvnnMx+yfksZg7rncM85E0iMi/07fkK0NLLURLQ5ZaXVfPLhQiIRk1fee4DD73EDdS2vXJqPQb33pVdST2dDbrOycjamqutDa2NSFFxFxA7w8trZBKy6mU7d5+bnivVsCpTRIS7Nybgxw7Zt3n77bWbOnOl0lKYRWQDmKlC1+H0AIQi+yeWPX8EFk09H0zR8cd7dnUWIP3XZ/95l3eYybKX4cdkGbn/lMyZfMNHpWEK0OlJ4izalsjLABac/Q1VVAMu0QBvDAaljmFf7FKYKs1fq0fRMHOt0zO2S3NmUBNdtfwzapXlxaV50zUBjp4f+AF1mOgEIhCJ8+sVs0tLT6dOnj9NxmlHd99sfL7OSzUEpxYbanygPFfL24mreXFREgsfD5IMPY2zXbk7Ha1JKKdZuLt3+yEDEslm8drOzoYRopaTwFm3K99+sJBise2gONDxuH/nfp3L+sW86He0PDfGdyfyVc0hvH4euuzii461oms6oyp7MfWAFBMEeYLPf+X1o7091Om6D/brGtKSyluPGDOS4MYMadJ5vlqzj2qc/IBwOkzjmTAqKK1p81wkA3EPA1Yvayp8BiItLRIs7yeFQrducoidYXP4Rpm2RlG6TkTSMgrJ0LvnofWafdT4ZcU3Tvztim2wKlJPuTSDB5cxFlKZpdGmXyoYt5dhKgbLp26WdI1mEaO3a5lNXos3y+dzsPC+s6zoeb+xef95/52MUvdWfc3pO4cKe79AlfjhVlQGevO0ztBoNzdLwLvXQf0lHp6PusU0lFawpLKE2GObsya/zXd56lm0s4oG3ZvPJj3ved1wpxT+f+ZBg2MRGJ6R07pzyeTMkjz5Nc6GlvcLVtwW46xHQMj5GM9pOi8hoi9hBFpZNw1RB0CK4DYtRPVYC4NJ1NlSUN8k4BbWlHDV7Mmd8+xgTvriHOVuc68X+6CXH0KtjJn6Pi0hJPqPatc7Hv5RSfPLjMm558RNemjGPyM4bIwkRBbFbcQjRDEaO7kWX3CzWr9kKGrTPSWHs+NhsdZWXl8drr71GXl4e8a707a9v2VyxS59pM2yxfGnL6d+slOKe17/gg++WoGkaHdKTCZtW3UwbEAybzFq4msP23rNlIhHT2r6DZ904sKWs9fQPLimp5NV3yklIMLnnofTdH9CKKGsrBD8EXOA/Cs2BHWW1bQu7bKXoltI0d5fuXTKN0lA19rZz37TwDb48+FZ0LfpzYh0yknn1htMAmDlzJmeffTaHjR9HYmJi1LM0p9dmLeCxad8QDJt43S4Wry1k8oWyll1EjxTeok1xuw0eeuIMfvl5A7Zls9fQrrjdxu4PjDKlFFdccQU33XQTGRkZu/y/9h1SYad5e6/PzeChXaMbsBGWrN/C9Ll5hCJ1M00bt5Zj2Ttm1zwugy5Ze17YeNwuBnfP4edV+dho+DyuPS7eY9n8+fMZMmQIc+fORSnVaruXhKwIr6//lsLaMg7M7s+I1FRU8ZGgagANap6DjA/R9Obbgtyt+xiUMpG8ik+wsTFtRV7+QHJTUrn34ENJ9dd/U5m/UhSq3F50A4SVSdi28BnO3ow+6KCDGD9+PDfccAOT770ft8eF4Yq935MN8ebsX7ZfoIcidRf5pmXjcvhrLtoOKbxFm+NyGQwdHpsPR62p3sJ7G39kw5p1bKos5qKLLvrde+Ljvdz38GlMvusDKitqOXjCICYeO9yBtA1TVlW7S2/xsLntVq+yMQwXA7u155zDRjTo3I9ccjQjT/g7/fcezcT9BnPygUOaIrKjQhGTe16bycwfFnH5Nam8kdsFs2gSrrQH0dyx0X2nqSil+Me8F8iryCdsm0zftIBHe0B/XxXGtl77qHIIzQH/4c2a5YB2l9A1YQQVkUI6xg3mir5dmnyMw3MG8+zqLwhaEVTEYlBmLj7D3eTjNMQ9d93DUd1OY9ITp+NyG1zx1IUccsZYp2M1WnKCD4p2fOx26Rh667yIFbFJCm8hYsSGmmLO+e4Jaq0wCpus2yYRxMTN7/8Q9+6Xw7NTLnQgZePtlZuzy055v3IbBreccTBH7NPwpT/5G9ZRMv9Tpkx7NuobB0UsC7fR9LOCD709h0/nLedv+y5gwuCV+D0ayl6BKv0bZH2FpnmafEynlISrtxfdACE7wvuL59NrLxNjW7dE21YYWvMXp5qm0TVhzy8AayMRyoIBsuMTdrtb6und9ifO5WX2ljzmvj+TAwcPa2jcJjfzha9JUelYtk0kZPLwRc8wdPwgMnJadsvSG045iPMffBOlFDXBIJ78nzFNE7c7Ni54ROsnhbcQMeKLzYsJWXUFh2boKEPjp9K1jG0Xm2vQGyop3sfL/zqVO6d8xo/LN25fZhKx61qaNca0adOYNGlSsxfd1VVBHrjnA5bnFdK+dwaLqKaksoZu7dN54rJjyUxpumUQ81bkE4pY7N2tAL9n28+HpoAgWEXgankP1v5WOGJy92sz+XrxWgKuBPRhlWjxNjoaZqcT8MW9CnYpoXCINevD9Bg+iqbsWh6xLG6bPZOPV60kMy6ehw49nH6ZWXt8no9XruCqGR+haRpZ8fG8ecIpZMb9+c6nmqZxfOeRHN95JNOL2nH99ddz0jHHx8RusxuWFmBF7O0fu9wGxfklLb7w7tUxkw/vPIe1m8vITPZz/pl/49SLriZz0FgSfB4uPXo/OjdgqZsQ9eX8v24hBADxLi/GTg9V2SgSXK1zU5Sc9CRuOOWgXWaIfR4X/bo0rlPHe++9x1FHHdXYeLt11y3v8P03q9haVMns4kKKK2tQwPotpdz84idNOlbfTpm4XQZ5mzIJRnaeUTfAyGzSsZzy33e+4tN5KyitCmCXGljfpGDWhEgwvJzT8zDmWJN4LzCET9edzr/uOJDTzrid/037mlc+/4naYLjR4z8+73veXbaU8mCQlaUl/O2dNwmZ5u4P3EnINLlqxseELIugabKpspI758yq9/GHH344/ngfr874L6urviFiB/b002hSoyYOx7ttUyZN0zBcBp37tvyLPIDEOB+DctvTPj2Fm/7zMKv1Tsxdup4vfl7FGfe+Rnm1s1970bpJ4S1EjJjYcRjuijB6ROEz3OyT3oNhablOx2o2HTNTOO/A3tjBapLifJx72AjGDe7RoHMV5Jcy9dU5bFhbyYEHHtjESX9vyaJ8IhELBdjuHetDLctm/ZayJh3rupPHMTg3h2fnjGT++lxs5Qa9HVrqs2ja7y/MqquCLFywnk35jbt7EE3zVmwkFPl1Nl/HCLnwvb2Sq41RzCt5gMUVn/DTvCqevDlMsCqH8oIkpj7xFY9N+4Yz73udiNm4lnA/FOQT3KnQDlsWW2qq9+gcleEQaqcHJU2lyK+srPfxNhbnPNGbwnYf8umm/zBl7QWErJo9ygCgzPWoyDKUatzX5IAT9+XvD55J7l5dGDxuAP/9+k7iEpvmodJY8sPKTWDU3fy3lcKyFUvWyeZBovnIUhMhYkDQqmLD+o38culzvP3dDLIzsuidlNNqO1f8av7M9zmmaya33vr7h0jra/HCDVx/5WtETJM+3Y7nxae/4sJ/jG/ClL/XsVMaq1ZsAaVw1drYHp2EdUFctTZaXITleZvo3S+nScZK9Ht56srjt3109V++d8O6Yi6/8EWUrYiYFudfchBHH793k+RoTn06t2N9URkRs25pQ1Kcjx5WDquW5qFyFqOwWf1RZ6xw3Yy/psBdZVEdNCksrSRv/Rb26t7wr/fg7PYs2Fy4vfg2dI128Xu2XCjDH0fXlFTWlpUSsW3cwKTe9e+qs6FmHpa/HI/SiagA1abFssrP2Cv16Hodr5RCVd4MgWmgGWDkQvqraFrDN+U58oKDOfKCgxt8fEvQLjURr9u1/cLPsmwykv98eZAQjSUz3kI4SCmbjwvu5JmVJzA9cBnXPnU4Y7sPoU9yh1ZfdAeDQV5//XXOOuusRp3n+SdnEQxGsEwFyuDdqT8QDEaaJuSfuPmu4+jYOQ1Ngz5mHJ2rXbgDNhoQqY1w/VWvoVT0NiApK63h2n+8zAWnP0V1VZCamhDhkMlTj3xGOLRnSyaccN2JYxnSoyMuQ6d9ehKPX3YsA/r3J2/xUlzbZvUNjwX85muq1c1S+jyNm0O6bMQoxnfrjs8wsMrLeXrCRLyuPTunpmm8ftyJHNunP73jElBzvuH0gYPrfbyldv0+KWX/7rW/FPkFAh8AIVC1YK6E2qn1P76NOnb0QPbKbY/HbeA2dE47aCi9O+35+n4h6ktmvIVw0IqqL1lTPRcbE92AxH7FFNQuokPcwGYdN7/mZ+aVvoFL8zAq8xzSvU3fKm13pk2bxpAhQ+jSpXFj79wD/FfNXfS2z0nl+dcu2t5P+4K/PUXVTkPW1oSorQ0THx+dNfp33vw2S37Jx7J+/3mHw2ZM784KkOD38uTlx+3y2qYBA5g6dSr/7PAA0wv+zYATCpizMhWX5iUYNDGzffj8HvYflEuvjo1b6+51uXhkwpEAHHzwwazvM5B9unTd4/Ok+PzcM/4QlFIMeewJZsyYwWGHHVavYzvHD8PvSsI2LZSycet+eiWOrf/gdmndTPe2HwFFiHBkA85sQt9yuF0GT1x+HEXl1XjdLlISWt9yGhFbYvu3sRCtXFVkK7baMTuroVNtbm3WMYuCK5mWfyOmCgEaG2sXcEbui8S7otOt4IvXvuapa/6P0uISRp6yf6PPd+Z5+3Pj1XVLTfx+H+MOGYDfH50We7/elRg6IpdNBWWEQia6odEuO5m4uOi1+Vu1YjOWZe/ymsutM3hoVxISW2bpVZycyLohA3nkm2KuHPUCSd1Mzp8az4olm4lP8VOtWyT4vQzKbd+kd4dGn3sM/w18y4y5pfyj9wT2St3zC0NN07jyyit58MEH6114e3Q/p3Z9iqUVn2GpCL2TxpHgztj9gdtPMAzwoDDQsDCVxrtbZ9E5nM1+Weft8efQlmiaRrvU1rVDp4hdxm233Xab0yGEaKtcupelFTOwqXsQytDcjM46H6/RfGsMl5R/wsba+fw6NWZobjK9PaIy67120XpuOepeqstqwNbYurKMviN70b5buwafs32HVD75bApdc9vx90uP5oRTRkZ9mc5eQ7tSVlpDeVktPXplc9s9J0S14P3+m5WUFFehFGha3WzngQfncuPtp2C0wB35Zq1bw7WzPkelpLCipISPVq7i3CGjSUqIo1OXDLLbJdM5K5XstMQm/V7nVeTzSOlsIvEGW4IVfFb4CwdnDyLJE7fH5+rbpyflnyjhgQAAGYRJREFUBbczqNsMXOSBZ5/d9lx36R6y/X3JieuPx9izMTXNC/4j2Vy7gPxQNbMDqRRZLrYEV9Az6QD8RtIefw5CiKYnM95COCjL15OJHW/nh+IpGJqbfTPPIdHdvOsLzVA8KAO0uhlSW9l7NrPWCKsXrt+lR7EZsVj50xqGjGv40hrLspjx+bt8//33dOvmzI6kbrfBZddMcGRsqFtz/u/r32LN6iJyu2exZtMHDBg6Are7ZW7z/f7yZdsfdLRR1IQjrCgpYVC7xrWb3J15JWuwlA0KvLNceL5zcZ72FOf+/UBOOHXUHp3LHf4vF50Zh8e9GgIbUOZ6tPQpzZS8jmZkk6dGsCRQsv01XXMRtOrfXUUI0byk8BbCYZ3jh9E5Pjo71r00Yx5PTl/Hfocm075zCR6XwcCUI2jvj84mPbmDumDbO5ZEuD0uegxpXLH8/fffk52d7VjRHQvSMxJ55Jmzt3980kmfUFtb62CixumQmIjHMAhbdXeCIrZFetyezzrv8bhxqbh1F6ww8X7vRrM0LGxeenYO/Qd1ot+APehjHfwcj/vXln4RiMxDKRtNa947EH2TD2F55ReYKoQVsfF7/GR6uzfrmEKI+mt59yCFEA1SWlnLEx98Syis+OKDEbz30jgqfr6I/ds1vJXfnsod1IXLn7iA5MwkElMTOOPfJzJ0/KAGnau0spbrn5vODVO+ov/BJ2H/wUOWbVVcXFyLLrz/Pnwfeqal49Y0sCyuGTWaDonNv1RiXLsBHNJ+EK4SA3ZaMq9pkL+h5M8P/CNGB3b5E6unNXvRDdAhbiBHdbyL3kkHEVqVw+KndAxrOcpu2v7yQoiG0VQ0e14JIRyzoaiMk+96hWB4R4uyMQNzefji5t/psakppTj+9v9j49ZyTMvG49K54IhRnHPYCKejOc6ueZWaojsxdANfxvXo8ac6HalBbKVYmr+RUcOGU1JQgNvtjtrYP/+yjpsuf53QtlaMXp+L/z1/Hl261n9JljLzUaV/A7sYNG/dhkeeIc0V+Q9Vl36JXXY+fn8chqGhpTyJ5h0Z1QxCiF3JjLcQbYBl27y/bjnVnW1qMy2UpvC5XRw7eoDT0RqkoiZIfnFd0Q0QNm2+WLDK4VTOU+EFUPUf4v0mPm8Iqv5T91oLpGsa/Tt1pmt2NgsWRPdzGDyoK9fcOJEOndLo3DWDW+46fo+KbgDN1REt8wu0rDloWd9HvegGiLPuICFew9ADoGpRFddFPYMQYleyxluINuDeb+YwZdFCAm4T0hTp7eK574BD2G9Ay1wXHe/34NINItvWA7gMnU5ZyQ6nigHmsj94bSk4UPQ1lTFjxvDVV18xYkR072aMHd+fseP7N+ocmqaDFp02nX/I/s1DlarKmRxCiO1kxluINuDDlcsJbOsSga5TZNewb/+ujmZqDLdhcN8FR+L3uHEbOp2zUrj2hAOdjuU81x88JOtqXPHYnJRdg7IKUcr+0/eccmwqo/q9il15N8qWwnGP+I+FbVvoBIKAr+UtKxOitZEZbyHagOz4BLZUV2/fcDvF52/xW9Lv178rsx+8mOpAiOR4X4v/fJqC5tkLlXQrVD9Q90LC1WievZwN9SfswHSo+CeggdER0qeg6bvODtu10xjZbxq6FoLaKajwXEh/LyoPKbYGWuI/UUZnVHge/33sEwaOGMykSU6n+mtL1m2mvDrAoO45JPqjs/OrENEkD1cK0QasLi3h5LenUhuJoGvw3KRjGdFhD1qj1cMPxav4YvNi2selclKXffEZ0XsYrqFsZaGhSSEXZcquQRWNBELbXnGB/yj05Ht2eZ9dcjpEvt/pFS9a5gw0o320orYaH374If/6179YuHAhhhGb/d3vfm0mH87Nw9B1PC6DKdefRnaa7CgpWhcpvIVoI8KWxZbqajLj4/C5mrYonlO0lBt/fp2QHcGju+ib1IGn97kgZmehlVJ8ueVRFpVPR9M0RmdewJC0Y52OFRXBsEnENEmMc24reWUVoLZOAII7XnSPQE9/ZZf32eVXQ/Aj4Nd+2B60rLloekK0orYaSinGjBnDGRecwxHHH022PwUjhi44C4orOP72lwhF6r7XuqZxzOgB3HjqeIeTCdG0YudfnRCiWXkMg07JyU1edAO8se5bQnYEgLBtsrSygK2h2N0tb2XVbPIqZqCwsJXJt1ufY2uw9XdFmTLzJ/a/6n8cdN1T/ON/7xKxrN0f1Bz0bDCyUdtWOyp84J/4u7dpideBngVaPOCFpJuk6G4gTdM49o5LeSZlOad8/TAnfvUQZeFqp2NtFwxH0He6ELCVoiYQdjCREM1DCm8hRKMluf1o7JjdVkrhNzwOJvprJaGNmCq0/WNNMygPb3IwUfNbt7mUx6Z9i2nZmJbNvOX5vDX7F0eyaJqBlv46mm8iM76M54e807Hdx//+fUY7tMzP0NKmomV+iR53sgNp/5pSioWrN/HVojVUBUK7P8Ah1WaQdyJ5aB6DoB2hMFDGY8s/dTrWdl2z08htn4bX7QIU2CYnHhCbzycI0RjycKUQotHO7TiOr9/Pw7JsjKFuzht0EIluv9Ox/lBhVRX/mb2BMX113EbdjK9SNu18vRxO1ry2lFfjdumE6m5MEIqY5BeXO5ZH09N4+uXxvPVaPC5XmM5dn+e/T56JP27XCzZN84C7p0Mp/5pSiptf/IRZP69G1zV8Hhev3nAamcmxNytfGQ7scnFsKpvNAee+/79l6DrPXHUi73z9C8UVNbz++H18+aGbwVdc4XQ0IZqUFN5CiEaprQlx8/mv496s49XdpMxP5JhXY3cHybu++pK8Qj8huz/75K7Gsg3O7XsTSZ5sp6M1qz6dsnYpvHxuF2MG5jqWZ+3qIj545ydAxzQVGzcU895bP3LKGfs5lmlPrSks4YufV23fDTYYjvDyZz9x1fEHOJzs99r5k2nvTyG/tgRT2fgMNxM6DHY61i58HhenjhsKwBGDcthnn32YcNiB9OqZAXoWmhb7D2wLsTuy1EQI0WAr8rdyzT1vUVxcjaF70DAI1oSZPTPP6Wh/qrC6CkspVmzuwMvf7s9bP+5PotHH6VjNLjnexwvXnsSQ3HaESzdx25mHMLJvF8fyVJTXYrh2/AmKhC3KSmscy9MQwbCJvtMDxJatCIQjDib6c4am8/Q+F3Jkh2GMSO/BP/tN4sgOw5yO9ae6d+/Os0+cTwfvCdhbJ6C2jkWZ652OJUSjyYy3EKJBNhSVc/bkN7CKAsSz61W8ocdmNxOAE/oNIK+oiJBt4dF1eqalk+6PzWUxTS23fTpPX3USfv9ZjH35Lkez9O6bg8/nIRSMYFkKr9fF2PF/sAFQDOvVKZOOmcms31JGMBzB63Zx/JhBTsf6UymeOG4YcIzTMept0v6fUbf5QBDsMKriBrT0KU7HEqJRZMZbCNEgXy9eg2XbhJMMbLeG0sHtMUhJi+eAg2K3gDqp/0DGKZ20ikpOHbgXU449MWbbHjYHwzBo3749BQUFjubwx3n43/PnMmHSEMaO78fdD55CvwFN21u+ubkNgxeuOZl/HD2a/imKnqFV9O6U5XSsVkEp6zdb3Ntgb3YsjxBNRWa8hRANkpLgx9B10DUqevlJqIXjxg7mzJP3Iy4+NnecW1FSzD8+/pDVkQB9MzK5br8xzdJeMZYppejcsQ/zflhKly5d0R28O5GRmcjl1x7u2PhNwe91c+q4oQzrnsyR91/G1fNe4oiOwxiXPcDpaC2aphkoz0gI/wSEAT94W/bPihAAxm233Xab0yGEEC1Pt+x05q/Mp6SyBsMw2G/vHvzr3EPweGPzet5WiglT/o/8qkqUrlOBojwYZGxX5x4wNC2b979bwuxfVuN1u2iX2ry79CmluPuWd8lf62PhvC0smLeOcYcMwDDk5mdj2Mrm8iVTCHSIY0OwlK+LltHBn0b3xNb9wG6z8x66bdbbC3EnoCVcLLvMihYvNv9CCiFinsvQefyyY1m7uRRD1+mclRLTSzYqgkGqwjv6LIdtm58Kne3dffVT7/Pj8o2EwiYvzZjHA3+fxKh+zffA4/wf1zL325Wg6jqJrFxWyMxPF3HYkbHV3aKl2RKsYGNNMWx7WDRoR3i/YB6H5Egf6sbQ9Di0pJucjiFEk5JLRyFEg2maRm77dLq0S43pohsg2ecj0bNjCYzXMBjaPsexPKWVtcxduoFg2EQBwYjJizN+bNYxKysCu3yfTNOiqjLQrGO2BYkuP7ZS2z82NJ10b/PevRBCtExSeAsh2gRd05hy7An0TEsnwePhoG7duX70/k12/kA4wpSZ83n0va9ZtrFot+93u3TUTsWaBvg9zXsTcvCwrhiGzq+1t8ttMHK/lrdxUGEgjxdW/43HV0zis8L7sZXlaJ4Et4+r+h6JR3cRZ3jI8Cbyj16HOZpJCBGbNLXzb34hhBB7zLJtzrj3NdYUlhCKWHjcBmcetzdHDO5L5+SUPz3u0Q8+Zt7mj7BMxaZ13Xn6stPp0SGj0XlMO0RexQzCdg3dE0eT6tnRLaSwoIw3XvmWcMTi2BNH0KNXy1qHHLYDPLvqJCJ2LQAuzcve6acyIuM0h5NBSaiK8nANneIz8OiyklMI8XtSeAshRCOtLCjmrMmvEwjt2DzFTtGIdNJ4ZuIx7Nup8++OqTFLeWXteQTCVdgKkrwZnJH7HB4jrsE5bGVTFq7m44J/UhHZgKVMDM1FurcrhuZlZMbpdIof0uDzx4KS0HreWHcpEbVjiUzX+BEc1eluB1MJIUT9yFITIYRoJJ/HhW3vmMNQKMLYBEyTO+bM+sNjVlR+ScQOoBkKw6UI29Wsr5nX4AwFtaUcNXsyE7+8jydXJbI56EJhYdohtgSXsynwC+/n30RxcE2Dx4gFSe6sXdapuzQvOf6BDiYSQoj6k8JbCCEaqVNmChNH9sPncaF0hTIglFFXiIetP15/bGgu6lZ2//a1hrntlzcpClZiKpuw7WJOUU+g7iLgV0rZbKz9ucFjxAK37ueYTveR4u5AqEaRXDOAYeknOh1LCCHqRQpvIYRoAtefMo5nrjyB/cZ0J9LbQPdo+FwuLttn1B++v3fSQSS4MnDrftyanzRvF7ok7N3g8QuD5bsU2UHLjYF3l9lhXTNIdLf8nRWz/X04tdtThNdlUBRazpwtT2Daod0fKIQQDpM13kII0YSUUny6ehVrykoZntOBER3+fBv0iB1gfc1P6JqLLvHDMLSG76J5X977fJD/EyE7glsz6JOcxr/6DWNDzXzyKj4GNPokj2d89tUx3/qxPqbn/5tVld+CbmFoHnIT9uXwDtLzWQgR26TwFkKIGKKUYtrb8/j840W0a5/MRZcfQkbm7ntCm7bFkys/44eSVfROyuGKPkcQ76rrWx62alHYeI2EJs9bGwyzYPUm4n1u9srNiVpR//iKiUTsHQ9YevR4Luo1LSpjCyFEQ0m/IyGEiCHTpy3guce/IBiMsGpFIcuXbuKlNy7BcP31ykCXbnBp7z/uHd2YTil/payqllPvmUJ1IIxtK0YP7MZ/zj08KsV3giuTsvCGbR9pJLozm31MIYRoLFnjLYQQMWTOF3kEg3VtCS1LUV5WS1FRhcOp/thrsxawtaqG6mCIQDjC14vWsHTD7jcPagqHd7gZv5GCrrmJM1KYkHNzVMYVQojGkBlvIYSIITkd01i8cCORSF03FKUUycnNM2PdGLWRCFMKFlPawwIFcZsUcWGdYDiy+4ObQIa3G+f3mErQrsKnJ6JpMo8khIh98ptKCCFiyLl/P5DOXTOwlYXbbXDdzUcRF+91OtbvPPL9dxRbtXUdEXWozYH0tDgGdI3eTpiapuM3kltc0a2UorSylkCULlKEELFDZryFECKGJCb5eeLF82if3Zn5C34kJyc2t3RfVVpCxLa3f+wxDO44fwIet/xZ+SuBUISLHn6bpRvrluT866QDOWa0bAAkRFvRsqYJhBDCQWsKS/h03nLWFJY06ziaplFWXkRaWkqzjtMYh3bvgd9VV2Trmkay30fvzIyoja+UjV31CHbxkdhlF6Os6Kwtb6znPv6eZRuLiJgWEdPi3qmz2FpR7XQsIUSUyNSEEELUw4yflnPbSzMwDA3LUtx6xiEcOrx3s4wVCoWwbRuvN/aWmPzq+H4DqIlEeDNvMe3iE/j32IPwuqL3J0XVPAk1zwJBMFejSldBxqcx36N8Y3EFYXPHbqZuw6C4oobM5KZv9SiEiD0y4y2EEPUweeqXBCMmNcEIwYjJ5KlfNss4IdPkyR/mknnicXybv2H3BzhE0zTOGjyU6aeewfNHHUun5OToBgh+BgS3fWCBVQCqLLoZGuDgoT3xebZdoNg2Po+LbtnpzoYSQkSNFN5CCFEPpmX/5mPrT97ZcEopzvvgXZ5YOB/fPntz/gfv8enqlU0+Tqvg6g7stNOn5gEtybE49TV+aC+uP/kgBnXLJrh5FTcdM3xHIS6EaPWk8BZCiHo457AReAwdlI3f4+LsQ/du8jFKAwF+KMgnvO2hxaBp8tyCn5p8nNZAS7oRXD2wbY1gyEBLeRxNaxkF7MRR/XjxulM4ICuDh277gFuue4ON65v3uQEhRGyQwlsIIerh9PHDOLS7j3aRzdx3wUTOPKTpC2/fb9ZI65pGcgyv83aSpqeiZ0xj0ebnGTnRQPOOcjrSHlkwby3rV8ZRU+li7jcrueyCF6iqDDgdSwjRzKTwFkKIegoUrmb/Hmns179rs5w/3uPhmlGj8blcJHo8JHq8XD/6gGYZq7Xo3H0QZb4O/O/d2WwqqXQ6Tr19+9UKIuFfN0kC21asXLHZ4VRCiObWMu7LCSHajMXrNrO5tJJBuTlkpcROp4fCgjKW/LKJU04b3qzjnD9sbw7K7c6W6mr6Z2WR5PU163gtWW0wzBn3vUHmkIN54bP5vPHVYl6/8XRy0mN/rXf7nBQ8XhfhkAmAZVpkZCQ6nEoI0dyk8BZCOG7Vis18+O5PLN9UzC+RcnSvC6UUz1x1An07t3M6HjM++oVHJn9EIJDL68+vYfiwAvr069Bs4+WmppGbmtZs528tfly+kYqaIOgGtoJgyGTGvOWc1Qzr75vakccMY+43K1m8cCNKKU4/Z386d41eH3QhhDOk8BZCOGrt6iKu/PtLBIMRFOBzQXmfOJSh8ci7X/PE5cc5mk8pxcOTPyIcMjF0D6GQySOTP+bxF85zNFdTUErx+SeLWL1iC4OGdGbQkC4Yho4/zuN0tHrxuF2onT7WDQ2P23Asz57weFzc+/BplJfV4vW6iIuXtfxCtAVSeAshHDV7Zh6hUAQADVA2uGosIkkuQhHT2XDUrb01I7u2DqypCTmUpmn978FP+WT6QkLBCO+++QNKKXRD54RTRnLuReOcjrdbI/p0on+XduSt3wJopCX6mTiqv9Ox6k3TNFLT4p2OIYSIIim8hRCOSkzy43a7CIfrimwNwKXjc7s4d8I+jmYDMAydgw4byJwvlhIKRvD63Bx/8kinYzWJ6e8v2H5RYdt1c8eWafPemz8ycnRP+g/s5GS83TJ0nScuP455K/IJR0yG9+6E3+Pe/YFCCOEQKbyFEI46/KghzJi+kMJN5djKptuA9gw6rDej+nVlQNdsp+MBcPX1R9J/QEfWrd3KkOHd2HdML6cjNQmPx/jdbD6ApmsUba6k/0AHQu0hQ9fZp09np2MIIUS9aEoptfu3CSFE8zFNi9UrtuD1uenSLQNN05yO1CZ88dkSHrz7AzRdIxiIbH/d7/fw7KsXktUuytvACyFEKyeFtxBCtGGFBWXkbyylqrKWD96dj8fj4tyLxtGrT3unowkhRKsjhbcQQgghhBBRIDtXCiGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBVJ4CyGEEEIIEQVSeAshhBBCCBEFUngLIYQQQggRBf8P4ynjLB+k7/QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {} } ], "source": [ "plt.figure(figsize=(10, 10))\n", "colors = papers[\"subject\"].tolist()\n", "cora_graph = nx.from_pandas_edgelist(citations.sample(n=1500))\n", "subjects = list(papers[papers[\"paper_id\"].isin(list(cora_graph.nodes))][\"subject\"])\n", "nx.draw_spring(cora_graph, node_size=15, node_color=subjects)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "IZxdR7Tbuw5n" }, "source": [ "### Split the dataset into stratified train and test sets" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "HD_AyFYzuw5o", "outputId": "a267fd1c-9505-463b-de5a-13241a2f0f23", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Train data shape: (1359, 1435)\n", "Test data shape: (1349, 1435)\n" ] } ], "source": [ "train_data, test_data = [], []\n", "\n", "for _, group_data in papers.groupby(\"subject\"):\n", " # Select around 50% of the dataset for training.\n", " random_selection = np.random.rand(len(group_data.index)) <= 0.5\n", " train_data.append(group_data[random_selection])\n", " test_data.append(group_data[~random_selection])\n", "\n", "train_data = pd.concat(train_data).sample(frac=1)\n", "test_data = pd.concat(test_data).sample(frac=1)\n", "\n", "print(\"Train data shape:\", train_data.shape)\n", "print(\"Test data shape:\", test_data.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "aereCbwYuw5o" }, "source": [ "## Implement Train and Evaluate Experiment" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "uhQTdD7Luw5o" }, "outputs": [], "source": [ "hidden_units = [32, 32]\n", "learning_rate = 0.01\n", "dropout_rate = 0.5\n", "num_epochs = 300\n", "batch_size = 256" ] }, { "cell_type": "markdown", "metadata": { "id": "oT3JReaYuw5o" }, "source": [ "This function compiles and trains an input model using the given training data." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "WzI6Jb3Cuw5o" }, "outputs": [], "source": [ "\n", "def run_experiment(model, x_train, y_train):\n", " # Compile the model.\n", " model.compile(\n", " optimizer=keras.optimizers.Adam(learning_rate),\n", " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=[keras.metrics.SparseCategoricalAccuracy(name=\"acc\")],\n", " )\n", " # Create an early stopping callback.\n", " early_stopping = keras.callbacks.EarlyStopping(\n", " monitor=\"val_acc\", patience=50, restore_best_weights=True\n", " )\n", " # Fit the model.\n", " history = model.fit(\n", " x=x_train,\n", " y=y_train,\n", " epochs=num_epochs,\n", " batch_size=batch_size,\n", " validation_split=0.15,\n", " callbacks=[early_stopping],\n", " )\n", "\n", " return history\n" ] }, { "cell_type": "markdown", "metadata": { "id": "TFDbTi9Uuw5o" }, "source": [ "This function displays the loss and accuracy curves of the model during training." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "L9705vXWuw5o" }, "outputs": [], "source": [ "\n", "def display_learning_curves(history):\n", " fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))\n", "\n", " ax1.plot(history.history[\"loss\"])\n", " ax1.plot(history.history[\"val_loss\"])\n", " ax1.legend([\"train\", \"test\"], loc=\"upper right\")\n", " ax1.set_xlabel(\"Epochs\")\n", " ax1.set_ylabel(\"Loss\")\n", "\n", " ax2.plot(history.history[\"acc\"])\n", " ax2.plot(history.history[\"val_acc\"])\n", " ax2.legend([\"train\", \"test\"], loc=\"upper right\")\n", " ax2.set_xlabel(\"Epochs\")\n", " ax2.set_ylabel(\"Accuracy\")\n", " plt.show()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "82uuRh8zuw5o" }, "source": [ "## Implement Feedforward Network (FFN) Module\n", "\n", "We will use this module in the baseline and the GNN models." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "jacIqmBJuw5o" }, "outputs": [], "source": [ "\n", "def create_ffn(hidden_units, dropout_rate, name=None):\n", " fnn_layers = []\n", "\n", " for units in hidden_units:\n", " fnn_layers.append(layers.BatchNormalization())\n", " fnn_layers.append(layers.Dropout(dropout_rate))\n", " fnn_layers.append(layers.Dense(units, activation=tf.nn.gelu))\n", "\n", " return keras.Sequential(fnn_layers, name=name)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "PAa3nn_Muw5o" }, "source": [ "## Build a Baseline Neural Network Model\n", "\n", "### Prepare the data for the baseline model" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "qCc-sdrYuw5o" }, "outputs": [], "source": [ "feature_names = set(papers.columns) - {\"paper_id\", \"subject\"}\n", "num_features = len(feature_names)\n", "num_classes = len(class_idx)\n", "\n", "# Create train and test features as a numpy array.\n", "x_train = train_data[feature_names].to_numpy()\n", "x_test = test_data[feature_names].to_numpy()\n", "# Create train and test targets as a numpy array.\n", "y_train = train_data[\"subject\"]\n", "y_test = test_data[\"subject\"]" ] }, { "cell_type": "markdown", "metadata": { "id": "wBVZZuVFuw5o" }, "source": [ "### Implement a baseline classifier\n", "\n", "We add five FFN blocks with skip connections, so that we generate a baseline model with\n", "roughly the same number of parameters as the GNN models to be built later." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "Ehrjcq88uw5o", "outputId": "4178aac5-0141-4299-aa33-54f67158ea75", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model: \"baseline\"\n", "__________________________________________________________________________________________________\n", " Layer (type) Output Shape Param # Connected to \n", "==================================================================================================\n", " input_features (InputLayer) [(None, 1433)] 0 [] \n", " \n", " ffn_block1 (Sequential) (None, 32) 52804 ['input_features[0][0]'] \n", " \n", " ffn_block2 (Sequential) (None, 32) 2368 ['ffn_block1[0][0]'] \n", " \n", " skip_connection2 (Add) (None, 32) 0 ['ffn_block1[0][0]', \n", " 'ffn_block2[0][0]'] \n", " \n", " ffn_block3 (Sequential) (None, 32) 2368 ['skip_connection2[0][0]'] \n", " \n", " skip_connection3 (Add) (None, 32) 0 ['skip_connection2[0][0]', \n", " 'ffn_block3[0][0]'] \n", " \n", " ffn_block4 (Sequential) (None, 32) 2368 ['skip_connection3[0][0]'] \n", " \n", " skip_connection4 (Add) (None, 32) 0 ['skip_connection3[0][0]', \n", " 'ffn_block4[0][0]'] \n", " \n", " ffn_block5 (Sequential) (None, 32) 2368 ['skip_connection4[0][0]'] \n", " \n", " skip_connection5 (Add) (None, 32) 0 ['skip_connection4[0][0]', \n", " 'ffn_block5[0][0]'] \n", " \n", " logits (Dense) (None, 7) 231 ['skip_connection5[0][0]'] \n", " \n", "==================================================================================================\n", "Total params: 62,507\n", "Trainable params: 59,065\n", "Non-trainable params: 3,442\n", "__________________________________________________________________________________________________\n" ] } ], "source": [ "\n", "def create_baseline_model(hidden_units, num_classes, dropout_rate=0.2):\n", " inputs = layers.Input(shape=(num_features,), name=\"input_features\")\n", " x = create_ffn(hidden_units, dropout_rate, name=f\"ffn_block1\")(inputs)\n", " for block_idx in range(4):\n", " # Create an FFN block.\n", " x1 = create_ffn(hidden_units, dropout_rate, name=f\"ffn_block{block_idx + 2}\")(x)\n", " # Add skip connection.\n", " x = layers.Add(name=f\"skip_connection{block_idx + 2}\")([x, x1])\n", " # Compute logits.\n", " logits = layers.Dense(num_classes, name=\"logits\")(x)\n", " # Create the model.\n", " return keras.Model(inputs=inputs, outputs=logits, name=\"baseline\")\n", "\n", "\n", "baseline_model = create_baseline_model(hidden_units, num_classes, dropout_rate)\n", "baseline_model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "THq7QbZuuw5p" }, "source": [ "### Train the baseline classifier" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "id": "i8xhdXhLuw5p", "outputId": "81ecc86c-553f-4066-9d96-7f8315f156d6", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/300\n", "5/5 [==============================] - 9s 241ms/step - loss: 3.9877 - acc: 0.1628 - val_loss: 1.9331 - val_acc: 0.3039\n", "Epoch 2/300\n", "5/5 [==============================] - 0s 43ms/step - loss: 2.7708 - acc: 0.2797 - val_loss: 1.9075 - val_acc: 0.3039\n", "Epoch 3/300\n", "5/5 [==============================] - 0s 47ms/step - loss: 2.3218 - acc: 0.2805 - val_loss: 1.8959 - val_acc: 0.3039\n", "Epoch 4/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 2.0632 - acc: 0.2589 - val_loss: 1.8854 - val_acc: 0.3039\n", "Epoch 5/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 2.0229 - acc: 0.2693 - val_loss: 1.8705 - val_acc: 0.3186\n", "Epoch 6/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 1.8422 - acc: 0.3498 - val_loss: 1.8317 - val_acc: 0.3186\n", "Epoch 7/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 1.8224 - acc: 0.3446 - val_loss: 1.7924 - val_acc: 0.3137\n", "Epoch 8/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 1.7301 - acc: 0.3818 - val_loss: 1.7686 - val_acc: 0.3186\n", "Epoch 9/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 1.6839 - acc: 0.3905 - val_loss: 1.7474 - val_acc: 0.3824\n", "Epoch 10/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 1.5933 - acc: 0.4182 - val_loss: 1.7325 - val_acc: 0.5000\n", "Epoch 11/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 1.5208 - acc: 0.4416 - val_loss: 1.6904 - val_acc: 0.5637\n", "Epoch 12/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 1.4094 - acc: 0.4779 - val_loss: 1.6166 - val_acc: 0.5882\n", "Epoch 13/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 1.3891 - acc: 0.5056 - val_loss: 1.5268 - val_acc: 0.6176\n", "Epoch 14/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 1.2614 - acc: 0.5385 - val_loss: 1.4427 - val_acc: 0.5931\n", "Epoch 15/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 1.2329 - acc: 0.5541 - val_loss: 1.3582 - val_acc: 0.6029\n", "Epoch 16/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 1.1548 - acc: 0.5879 - val_loss: 1.3007 - val_acc: 0.5980\n", "Epoch 17/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 1.0747 - acc: 0.6156 - val_loss: 1.2364 - val_acc: 0.6078\n", "Epoch 18/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 1.0347 - acc: 0.6338 - val_loss: 1.1821 - val_acc: 0.6029\n", "Epoch 19/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.9909 - acc: 0.6476 - val_loss: 1.1422 - val_acc: 0.6127\n", "Epoch 20/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.9321 - acc: 0.6727 - val_loss: 1.1380 - val_acc: 0.5980\n", "Epoch 21/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.8806 - acc: 0.6952 - val_loss: 1.1562 - val_acc: 0.5882\n", "Epoch 22/300\n", "5/5 [==============================] - 0s 31ms/step - loss: 0.9009 - acc: 0.6866 - val_loss: 1.1645 - val_acc: 0.5588\n", "Epoch 23/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.8441 - acc: 0.7134 - val_loss: 1.1378 - val_acc: 0.5784\n", "Epoch 24/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.8512 - acc: 0.6987 - val_loss: 1.1286 - val_acc: 0.5588\n", "Epoch 25/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.8056 - acc: 0.7126 - val_loss: 1.1090 - val_acc: 0.5882\n", "Epoch 26/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.7451 - acc: 0.7481 - val_loss: 1.1056 - val_acc: 0.5931\n", "Epoch 27/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.7152 - acc: 0.7489 - val_loss: 1.0772 - val_acc: 0.5980\n", "Epoch 28/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.7040 - acc: 0.7645 - val_loss: 1.0367 - val_acc: 0.6127\n", "Epoch 29/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.6505 - acc: 0.7732 - val_loss: 1.0280 - val_acc: 0.5980\n", "Epoch 30/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.7039 - acc: 0.7472 - val_loss: 1.0092 - val_acc: 0.6127\n", "Epoch 31/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.6493 - acc: 0.7688 - val_loss: 1.0089 - val_acc: 0.6520\n", "Epoch 32/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.5978 - acc: 0.7939 - val_loss: 1.0317 - val_acc: 0.6520\n", "Epoch 33/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.6692 - acc: 0.7740 - val_loss: 1.0171 - val_acc: 0.6471\n", "Epoch 34/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.5893 - acc: 0.7931 - val_loss: 0.9704 - val_acc: 0.6716\n", "Epoch 35/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.5925 - acc: 0.7965 - val_loss: 0.9673 - val_acc: 0.6814\n", "Epoch 36/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.6425 - acc: 0.7766 - val_loss: 0.9685 - val_acc: 0.6667\n", "Epoch 37/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.5378 - acc: 0.8052 - val_loss: 0.9789 - val_acc: 0.6569\n", "Epoch 38/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.5122 - acc: 0.8208 - val_loss: 0.9915 - val_acc: 0.6569\n", "Epoch 39/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.5312 - acc: 0.8216 - val_loss: 0.9867 - val_acc: 0.6667\n", "Epoch 40/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.5929 - acc: 0.7983 - val_loss: 0.9863 - val_acc: 0.6471\n", "Epoch 41/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.5716 - acc: 0.8061 - val_loss: 0.9802 - val_acc: 0.6667\n", "Epoch 42/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.5572 - acc: 0.8000 - val_loss: 0.9275 - val_acc: 0.7059\n", "Epoch 43/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.5157 - acc: 0.8260 - val_loss: 0.8715 - val_acc: 0.7108\n", "Epoch 44/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.5296 - acc: 0.8173 - val_loss: 0.8744 - val_acc: 0.7157\n", "Epoch 45/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.5115 - acc: 0.8190 - val_loss: 0.8999 - val_acc: 0.7059\n", "Epoch 46/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 0.4989 - acc: 0.8139 - val_loss: 0.9466 - val_acc: 0.6961\n", "Epoch 47/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.5062 - acc: 0.8087 - val_loss: 0.9473 - val_acc: 0.7059\n", "Epoch 48/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.5483 - acc: 0.8113 - val_loss: 0.9249 - val_acc: 0.7157\n", "Epoch 49/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 0.4602 - acc: 0.8416 - val_loss: 0.8981 - val_acc: 0.7010\n", "Epoch 50/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.5005 - acc: 0.8286 - val_loss: 0.9008 - val_acc: 0.7059\n", "Epoch 51/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4849 - acc: 0.8234 - val_loss: 0.8900 - val_acc: 0.7108\n", "Epoch 52/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4877 - acc: 0.8320 - val_loss: 0.8740 - val_acc: 0.7157\n", "Epoch 53/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4701 - acc: 0.8294 - val_loss: 0.8712 - val_acc: 0.7059\n", "Epoch 54/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4987 - acc: 0.8225 - val_loss: 0.9121 - val_acc: 0.7206\n", "Epoch 55/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4873 - acc: 0.8225 - val_loss: 0.9796 - val_acc: 0.7206\n", "Epoch 56/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4970 - acc: 0.8225 - val_loss: 0.9184 - val_acc: 0.7157\n", "Epoch 57/300\n", "5/5 [==============================] - 0s 30ms/step - loss: 0.4482 - acc: 0.8364 - val_loss: 0.9048 - val_acc: 0.7451\n", "Epoch 58/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4801 - acc: 0.8416 - val_loss: 0.8882 - val_acc: 0.7402\n", "Epoch 59/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4519 - acc: 0.8381 - val_loss: 0.8901 - val_acc: 0.7255\n", "Epoch 60/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4533 - acc: 0.8450 - val_loss: 0.8929 - val_acc: 0.7255\n", "Epoch 61/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 0.4414 - acc: 0.8494 - val_loss: 0.8688 - val_acc: 0.7304\n", "Epoch 62/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.4441 - acc: 0.8537 - val_loss: 0.8807 - val_acc: 0.7206\n", "Epoch 63/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.3964 - acc: 0.8701 - val_loss: 0.9090 - val_acc: 0.7157\n", "Epoch 64/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4273 - acc: 0.8476 - val_loss: 0.9209 - val_acc: 0.7304\n", "Epoch 65/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.4113 - acc: 0.8589 - val_loss: 0.9030 - val_acc: 0.7108\n", "Epoch 66/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4236 - acc: 0.8459 - val_loss: 0.9009 - val_acc: 0.7108\n", "Epoch 67/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4252 - acc: 0.8390 - val_loss: 0.9072 - val_acc: 0.7206\n", "Epoch 68/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4591 - acc: 0.8442 - val_loss: 0.9339 - val_acc: 0.7255\n", "Epoch 69/300\n", "5/5 [==============================] - 0s 25ms/step - loss: 0.4085 - acc: 0.8563 - val_loss: 0.9259 - val_acc: 0.7304\n", "Epoch 70/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4276 - acc: 0.8459 - val_loss: 0.9365 - val_acc: 0.7353\n", "Epoch 71/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4383 - acc: 0.8416 - val_loss: 0.9305 - val_acc: 0.7353\n", "Epoch 72/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4472 - acc: 0.8450 - val_loss: 0.9177 - val_acc: 0.7255\n", "Epoch 73/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.3996 - acc: 0.8589 - val_loss: 0.9518 - val_acc: 0.7451\n", "Epoch 74/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3663 - acc: 0.8675 - val_loss: 1.0182 - val_acc: 0.7353\n", "Epoch 75/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3893 - acc: 0.8701 - val_loss: 0.9830 - val_acc: 0.7402\n", "Epoch 76/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3564 - acc: 0.8736 - val_loss: 0.9914 - val_acc: 0.7353\n", "Epoch 77/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4075 - acc: 0.8511 - val_loss: 0.9825 - val_acc: 0.7206\n", "Epoch 78/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.4139 - acc: 0.8519 - val_loss: 0.9822 - val_acc: 0.7304\n", "Epoch 79/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4360 - acc: 0.8450 - val_loss: 0.9813 - val_acc: 0.7304\n", "Epoch 80/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4511 - acc: 0.8511 - val_loss: 0.9526 - val_acc: 0.7206\n", "Epoch 81/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4030 - acc: 0.8632 - val_loss: 0.9370 - val_acc: 0.7402\n", "Epoch 82/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4122 - acc: 0.8528 - val_loss: 0.9534 - val_acc: 0.7353\n", "Epoch 83/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.3929 - acc: 0.8597 - val_loss: 0.9705 - val_acc: 0.7255\n", "Epoch 84/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3953 - acc: 0.8710 - val_loss: 0.9966 - val_acc: 0.7353\n", "Epoch 85/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4159 - acc: 0.8502 - val_loss: 1.0189 - val_acc: 0.7304\n", "Epoch 86/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4225 - acc: 0.8545 - val_loss: 1.0229 - val_acc: 0.7304\n", "Epoch 87/300\n", "5/5 [==============================] - 0s 33ms/step - loss: 0.4057 - acc: 0.8571 - val_loss: 1.0382 - val_acc: 0.7353\n", "Epoch 88/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4380 - acc: 0.8545 - val_loss: 1.0426 - val_acc: 0.7206\n", "Epoch 89/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3935 - acc: 0.8606 - val_loss: 1.0753 - val_acc: 0.7157\n", "Epoch 90/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.3776 - acc: 0.8623 - val_loss: 1.0774 - val_acc: 0.7059\n", "Epoch 91/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.3830 - acc: 0.8615 - val_loss: 1.0802 - val_acc: 0.7059\n", "Epoch 92/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4191 - acc: 0.8615 - val_loss: 1.0667 - val_acc: 0.7059\n", "Epoch 93/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4109 - acc: 0.8537 - val_loss: 1.0678 - val_acc: 0.7108\n", "Epoch 94/300\n", "5/5 [==============================] - 0s 30ms/step - loss: 0.4164 - acc: 0.8580 - val_loss: 1.0763 - val_acc: 0.7206\n", "Epoch 95/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4070 - acc: 0.8580 - val_loss: 1.1029 - val_acc: 0.7010\n", "Epoch 96/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3965 - acc: 0.8658 - val_loss: 1.1319 - val_acc: 0.6912\n", "Epoch 97/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.4132 - acc: 0.8554 - val_loss: 1.1491 - val_acc: 0.6863\n", "Epoch 98/300\n", "5/5 [==============================] - 0s 28ms/step - loss: 0.3837 - acc: 0.8623 - val_loss: 1.1517 - val_acc: 0.6765\n", "Epoch 99/300\n", "5/5 [==============================] - 0s 30ms/step - loss: 0.3812 - acc: 0.8649 - val_loss: 1.1698 - val_acc: 0.6961\n", "Epoch 100/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3780 - acc: 0.8823 - val_loss: 1.1919 - val_acc: 0.7059\n", "Epoch 101/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.4065 - acc: 0.8545 - val_loss: 1.2029 - val_acc: 0.6912\n", "Epoch 102/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3743 - acc: 0.8684 - val_loss: 1.1801 - val_acc: 0.6912\n", "Epoch 103/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.3633 - acc: 0.8710 - val_loss: 1.1532 - val_acc: 0.7059\n", "Epoch 104/300\n", "5/5 [==============================] - 0s 29ms/step - loss: 0.3726 - acc: 0.8615 - val_loss: 1.1352 - val_acc: 0.6961\n", "Epoch 105/300\n", "5/5 [==============================] - 0s 27ms/step - loss: 0.3667 - acc: 0.8710 - val_loss: 1.1716 - val_acc: 0.7108\n", "Epoch 106/300\n", "5/5 [==============================] - 0s 26ms/step - loss: 0.4083 - acc: 0.8589 - val_loss: 1.1892 - val_acc: 0.6961\n", "Epoch 107/300\n", "5/5 [==============================] - 0s 30ms/step - loss: 0.4161 - acc: 0.8615 - val_loss: 1.1795 - val_acc: 0.7059\n" ] } ], "source": [ "history = run_experiment(baseline_model, x_train, y_train)" ] }, { "cell_type": "markdown", "metadata": { "id": "ATOZhB0nuw5p" }, "source": [ "Let's plot the learning curves." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "mQROvewLuw5p", "outputId": "ebfd7fd6-e5d1-430f-a754-80fe3d26b586", "colab": { "base_uri": "https://localhost:8080/", "height": 334 } }, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAE9CAYAAABZZMC4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yUVfb48c+dySSTRkIKhBBK6C30KkWUlSYioCioWFZFXXvX70/d1RXXtva2qNhAkWIBREUFpIP0EnpPaCmkkD6Z+/vjJiENSCCTSZjzfr3ycvI893nmDMvy5OTee47SWiOEEEIIIYQQovazuDsAIYQQQgghhBBVQxI8IYQQQgghhLhISIInhBBCCCGEEBcJSfCEEEIIIYQQ4iIhCZ4QQgghhBBCXCQkwRNCCCGEEEKIi4SXuwOorLCwMN20aVN3hyGEEKIarFu3LlFrHe7uOGoLeUYKIYRnONvzsdYleE2bNmXt2rXuDkMIIUQ1UEoddHcMtYk8I4UQwjOc7fkoSzSFEEKIaqaUGqqU2qmU2qOUeqqc802UUn8opTYrpRYrpaLcEacQQojaRxI8IYQQohoppazA+8AwoB0wXinVrtSw14EvtdYdgReA/1RvlEIIIWorSfCEEEKI6tUT2KO13qe1zgWmA1eXGtMOWFjwelE554UQQohy1bo9eEII4Sny8vKIi4sjOzvb3aG4nN1uJyoqCpvN5u5QqkND4HCx7+OAXqXGbALGAG8Do4FApVSo1jqpekIUQoiazVOekefzfJQETwghaqi4uDgCAwNp2rQpSil3h+MyWmuSkpKIi4sjOjra3eHUFI8B7ymlbgWWAPFAfnkDlVITgYkAjRs3rq74hBDCrTzhGXm+z0dZoimEEDVUdnY2oaGhF+2Dq5BSitDQ0Iv+t7DFxAONin0fVXCsiNb6iNZ6jNa6C/D/Co6llHczrfVkrXV3rXX38HDpKCGE8Aye8Iw83+ejyxM8pZRVKbVBKTWvnHM+SqlvC6qIrVZKNXV1PEIIUZtczA+u4jzlcxb4C2iplIpWSnkD44A5xQcopcKUUoXP6KeBKdUcoxBC1Hie8Ow4n89YHTN4DwLbz3DuduCk1roF8CbwSjXEI4QQogJSUlL44IMPKn3d8OHDSUkpd7JJAFprB3Af8Cvm+ThDa71NKfWCUmpkwbCBwE6l1C6gPjDJLcEKIYQoV01+Rro0wSvo23Ml8MkZhlwNfFHwehYwSHlCKi6EELXAmR5eDofjrNfNnz+f4OBgV4V1UdBaz9dat9JaN9daTyo49pzWek7B61la65YFY+7QWue4N2IhhBDF1eRnpKtn8N4CngCcZzhfVEms4DeaqUCoKwM6lprN16sPcSLNY/Z6CCHEeXnqqafYu3cvnTt3pkePHvTv35+RI0fSrp1p2TZq1Ci6detG+/btmTx5ctF1TZs2JTExkQMHDtC2bVvuvPNO2rdvz+DBg8nKynLXxxFCCCEqJMeRT1ZuuXWtitTkZ6TLEjyl1AjghNZ6XRXca6JSaq1Sam1CQsIF3Wtf4in+7/st7E3IuNCwhBDiovbyyy/TvHlzNm7cyGuvvcb69et5++232bVrFwBTpkxh3bp1rF27lnfeeYekpLIV/Hfv3s29997Ltm3bCA4OZvbs2dX9MYQQQogKc2rNgcQMDiRloLU+47ia/Ix0ZZuEvsBIpdRwwA7UUUpN1VrfVGxMYSWxOKWUFxAElPn0WuvJwGSA7t27n/lPugJ8bVYAsvPOnpULIURN8vzcbcQeSavSe7aLrMM/r2pf4fE9e/YsUab5nXfe4fvvvwfg8OHD7N69m9DQkoswoqOj6dy5MwDdunXjwIEDFx64EEIIUUxVPiPz8p3kOpxEh/vzn9ExBNgr1n+uJj0jXTaDp7V+WmsdpbVuiqkQtrBUcgematgtBa+vLRhzQQncufh6mwQvSxI8IYSoFH9//6LXixcv5vfff2flypVs2rSJLl26lFvG2cfHp+i11Wo9594EIYQQVSM9O4/5W46SeEq28FZGXr7GalEoFClZeRW+riY9I6u90blS6gVgbcFG8k+Br5RSe4BkTCLoUoUzeOdaVyuEEDVJZWbaqkpgYCDp6enlnktNTaVu3br4+fmxY8cOVq1aVc3RCSGEezidmviULBqF+Lk7lDKy8/JZuTeJ7zbEs2DbMXIcTkZ2iuSd8V1c+r6/bD1K8/AAWtYPdOn7nElVPSOPpWZzIj2bFvUCSEzPJS0rD2ewxlKqBqTWGi8fX1LT0sjKLZuUJZ08iX9gEHZfX7c8I6slwdNaLwYWF7x+rtjxbGBsdcRQSGbwhBCiYkJDQ+nbty8dOnTA19eX+vXrF50bOnQoH330EW3btqV169b07t3bjZEKIUT1eeO3XXz4514WPDyA5uEB7g6Hkxm5zF4fx5Ldiazel0SOw0mwn42x3aM4mZHHz1uPciK9LfUC7S55/9nr4nh05ibaNqjD/Af61dredHkOJ4mncgj288bP24sgP01KVi4ZOQ4CC5Zp5js1R1OySMt24HD6ENO1Jx07dqROgB8NIiKK7tOqaz8yst+ndZu2tG/bptqfkdU+g+dusgdPCCEq7uuvvy73uI+PDz///HO55wr3EISFhbF169ai44899liVxyeEENXpUFImk5fuI9+p+WrlQf41svpXVxR3ODmTCZ+u5kBSJs3D/RnfszEDWoXRt0UYPl5W9iWc4qctR5m+5jAPDGpZ5e+/Zn8yT323mfBAH7YfTWPZnkT6twyv8vc5X1prTqTnoIDwQJ8zJp+5jnyOpmajgYg6ZtlkoN0Lq0WRkplXlOAdS80iOTOXYD9vAn28mD3jWw4lZ5KX7yQ6zJ88h5N9iaeweHkzbdaPpGbl0TjEj2A/76L3qo5npMcleHZZoimEEEIIIc7DS/O3Y1WK/i3DmL0ujseGtCbAxz0/TsceSeOWz9aQ63Ay6+4+dG8aUmZMs/AABrQKZ9rqg9wzsDk2a+XKb7z9+27iUzKZNDqmzLUHkzK466u1NKrrx/S7enPlO8uYvGTfeSd4mbkOdhxLZ8fRdA4lZxLkayMswJuwQB98ir1364hAQgN8znInw+F0cjg5i/Rss49OA/XrnJ7FdOQ7OZGeQ3q2gxyHyQvqBdrx9jK5gkUp6thtZpmm1mTkOEjKyCU8wIcGwb5F92kW7s++hAz2J2bgZVXk52uahvnj620lLyGDuJNZ2G1W7DYrWmuy85yAxtfbdX9vPC7Bs1kt2KxKlmgKIYQQQogKW7EnkV+2HeOxwa24pEUYYz5Ywfcb4pnQu0nRmNgjaYQH+hAeeO4E5EKs3pfEHV+sJcDuxdd39znr3rdb+jTh9i/W8lvscYbHNKjwe3y/IY43fzcl//PyNf8d2wmLxcyAxadkcfsXa3Fq+PTWHtQLtHNb36a8+stOth1JpX1kUIXf53haNs/P3cbPW49RWGrRy6JwOMuvuxji782HN3alTqnj+U5d1NYgL19zKDmTXIeThsG+ZObmczwtGy+LIjTAh1PZeRw6mUW+UxPo40VogDcBPl74eJVMYoP9bJzMzCUlM4/jadnYvawlkkQwuUVhkufId9I0zB//gqS/Sagfu0+c4mBSBn7eXqTnOHDkO6ljt9E0TBK8KmW3WcmUGTwhhBBCCFEBjnwnL8yLpWGwL3f0b4aPl4WYhkF8ueIAN/VqjFKKVfuSmPDpapqE+jPnvr74VXCGZsXeROr6edO2QemUpXzH07KZ+NU6wuv48NXtvWhYbDapPANb16NRiC9frDhQ4QQv9kgaT3+3hV7RIfRpHspbv+8mxN+bZ65syy9bj/Hk7M3kOzWf3NKD6DBTPfLGXk14f+EePl6yj7fGnS7qku/UbI5LYenuRNYePEmzMH/6twyjV7NQ5mw8wn9+3k6uw8nE/s3o1qQubRvUIaquL1l5+SSm55JwKgdHvhMwNTRemBfLjZ+sZvp1jdBak5GbT2J6DmnZJSteellM4uXv40VdrXEUFMfJyMknJSsXHy8r0eH+RfU5yuPv44WXxUJ8ShZoaFLPryjJLc5mtdCiXgBOrUvMdNqsFpqE+LEvMYP8bAcBPl4E2L0IdPGsr0cmeL42q+zBE0IIIYQQ55Sdl8+7C3ez41g6H9zYtWi7z819mvD4rM2s3JdEZJAvd09dR3iAD3sTTvH8nFheubbjOe+9Zn8yN3+6BrvNyvSJvenQ8OwzX1prnpy9mRxHPh/f3P2cyR2A1aKY0LsJL83fwY5jabSJOHsimZqZx91T1xHka+O9G7oSFuBNSmYeny7bz+a4FP46cJKOUUG8O74LTUJPtwYI8rUxrmdjPl9xgMeHtgFgyrL9zFoXR2pWHkpBy3oBrNmfxOcrDqAUaA19moXy0piYokSxkJ+3F41DvWgcWrJaaZfGdXngmw2czMxj5/F0ch1OvCwWwgN9SiRXdew2vAtm5CxKFSVaKVm5hPh50yDYF2s5yVpxFqUI8vUiKSOX+nXsZ03arRaFlbL38/fxom1EoGm9UE0FaDwzwfO2yhJNIYQQQghxRiczcvlq1UG+WHGApIxcBrerz7AOEUXnr+oUyUvzt/Ph4r3Ep2ShgG8m9mbm2jjeW7SHvi3DGNkp8oz3P5GWzb1fryeqri95+Zpbpqxh1j2XlEl0ivtmzWEW70zgX1e1q1QFz+u6N+K/C3Zx55drsXtZSTyVg6/NyqQxMVzWul7RuKRTOTw4fSNHU7OYPrFP0VLT50a042RmLj9uPMJdA5rx6ODWRclTcX/vF83nKw4w4ZPVHEzOBGBYhwiGtI+gb4swQvy9yc7LZ/3Bkyzfm0iLegGM6tywUolPkK+NKbf24K+NW7AoRcNgX+r6eZc7s1acxaKIDvMnx5Ff4dlVgLBAH7yslgtadutVyb2PF8ozEzybVYqsCCGEEEKIMg4lZfLpsn3MWBtHVl4+l7UOZ+KA5vRuFlIiEbHbrFzfozEf/bkXm1Ux9fZeNAn156G/tWTlviT+77stdI4KLjMDBZDrcPKPaes5le1g6u298LIqxn60kgmfrmb2PZeU2edVGNeLP8XSt0UoN/dpWqnPFOznzcNXtOL32OOEBfjQq1kIaw+c5LbP/uKOftE8PrQ1P20+yr/nxXIqx8GkUTF0a1K36HqLRfHmdZ15Ymibs84aNgz2ZWy3KOZuOsJtlzTltn7RZcbbbVYuaRHGJS3CKvUZirNaFEG+NlpVsu+e1aIqldwB+HhZqV/nzMs4a6LqTSdrCLtNZvCEEOJcUlJS+OCDD87r2rfeeovMzMwqjkgIIVznWKqZURv4+iK+XnOIKzs24NeHBvDZbT3p0zy03FmmCX2a0CzMn1ev7UivZqGAma15e1xnLAru/HItBxIzSlyjtWbST7GsPXiSV6/tSOuIQJqHB/D5bT04mZHL2I9WMuOvw0WVHbXWrDt4kvunb8BqUbx2badzzlaV5+5LmzPrnkv4aEI3XhwVww/39uXmPk34ZNl+er/0B4/M2ETTMH9+eqA/1/VoVOZ6i0VVaEnopNExbHhuMM+MaFeh8bVVTX5GemSCJ3vwhBDi3Gryw0sIcXH4PfZ4meIYrrbh0EkW7zxBXkHhjsI4hr29hIXbTzBxQHOWPnE5r4/tROuIs88QNQz2ZeFjAxndJarE8ai6frx/Y1eOpWVz5TtL+X5DHGCqX456fzlfrDzI7f2iuarYEs6OUcF8dltP/H28eGL2Zvq9sohnftjCZa8v5poPV7DzWBovj+lIZBUlTXablReu7sD/JnQjIsiX50e2Z9bdl1R6Vqw0q0WVu3zzYlOTn5GeuUTT28qJ9Or9x0QIIWqbp556ir1799K5c2euuOIK6tWrx4wZM8jJyWH06NE8//zzZGRkcN111xEXF0d+fj7PPvssx48f58iRI1x22WWEhYWxaNEid38UIUQNFHskjTu+XMtlrcP59JYe5zUrVRm7j6fzyi87+H37CQBC/b25qlMkDqeTqasO0a5BHd69oUul9radTf+W4cx/sD8PTd/Aw99u4qPF+9h5PJ0GQXZeH9uJMV0alrmmZ3QI8x/ox7I9iUxeso9pqw/ROzqUey9rwdAOEUUNt6vSkPZmj5yonJr8jPTMBE/24AkhxDm9/PLLbN26lY0bN7JgwQJmzZrFmjVr0FozcuRIlixZQkJCApGRkfz0008ApKamEhQUxBtvvMGiRYsICzv/PRZCiIvbr9uOAbBoZwJTlu/njv7NXPI+WmuenxvLlysP4O/txRNDW9MiPIAfNsbz9ZpD5Dqc3Na3KU8Na4OPV9XutWoY7Ms3d/bm3YV7+Pavwzw5tA239W1aVImzPEop+rcMp3/LcBz5zmov0CEqpiY/Iz0zwfO2FnSRF0KIWuLnp+DYlqq9Z0QMDHu5QkMXLFjAggUL6NLF9DY6deoUu3fvpn///jz66KM8+eSTjBgxgv79+1dtjEKIi9aC2ON0b1KXEH9vXvllB72iQ4mJKr9NQGpWHnXsXudVZn7qqoN8vuIA43s25vEhrQnx9wZgcPsIUrPyOJmRS9OzVK68UF5WCw9f0YqHr2h1XteKCpBnZAmemeBJkRUhhKgUrTVPP/00d911V5lz69evZ/78+TzzzDMMGjSI5557zg0RCiFqk8PJmWw/msb/G96Wsd2jGPb2Uu7/Zj3zHuhPQLEm0E6nZtL87Xy6bD8Rdez0bxlG/1bhDG5X/6yzYIX2J2Ywaf52BrQK56XRHcokiEG+NoJ8q37Zo/AsNe0Z6ZkJnrcs0RRC1DIV/C1iVQoMDCQ9PR2AIUOG8Oyzz3LjjTcSEBBAfHw8NpsNh8NBSEgIN910E8HBwXzyySclrpUlmkJcXJxOjVJccMPmBbHHARjcvj7Bft68Pa4L4yav5OZPV/PPq9rTqVEweflOnpi1me83xDOqcyR5+ZoFsceZuS6OVvUDeHd817MWQXHkO3l0xka8rRZevaZjtTWZFm4gz8gSPDLBK2yToLWW/7MLIcQZhIaG0rdvXzp06MCwYcO44YYb6NOnDwABAQFMnTqVPXv28Pjjj2OxWLDZbHz44YcATJw4kaFDhxIZGSlFVoS4iDw3Zysr9yYx5dYeNAk9/2WNv247RpuIwKJ79IwO4Y3rOvPvebFc/f5yRnRsQHq2gz93JfD4kNb8Y2BzlFLkOzWLdpzgqe82M/K9ZTw7oh039mpc7s9z/1uyj/WHUnh7XGcigsr2lRPiQtTkZ6TSWlf5TV2pe/fueu3atRd0jw8X7+WVX3aw499DKzS9L4QQ7rB9+3batm3r7jCqTXmfVym1Tmvd3U0h1TpV8YwUF7c9J06xJT6FxPRcEk/l0LVJ3QpXUEzLzqPHi7+T43ASFuDDF3/vQfvI8vfMnU3SqRx6TPqd+y5rwSODW5c4dyrHweQ/9/Lx0v3kOPJ5aXQM43o2LnOPhPQcHpmxkaW7E6kX6IOtnL1qx9KyGdo+gvdu6CK/0L8IedIzsrLPR4+cwfO1mX8EMnPzJcETQgghhEfYcyKdYW8vJS//9C/369i9GNAyHF/vc/889POWo+Q4nLw+thNvLNjJuP+t4rWxnQDN9qPpHErOZFiHCK5oV/+sCdUfO07g1KbISWkBPl48Mrg1N/VpQmJ6Lu0i65R7j/BAH764rSfT1hxi0+GUcscE+dq4//IWktwJj+OZCV7BP2JSaEUIIYQQnkBrzTM/bMXP24uv7+xFoxA/Yo+kMW7yKuZuPsJ13Rud8x6z18fTLMyfa7o2pG+LUCZ8uoa7p64DwKIg0G7j+w3x9GwawtPD29Clcd1y77Ng2zEaBvvS/gzJG0C9QDv1As++rNJiUUzo3YQJvZucM3YhPIlHJniFs3ZSaEUIIYQQnuDHjUdYtS+ZSaM7FC2r7BUdQot6AUxbfeicCd7h5EzW7E/m0StaoZSiQZAvs++5hKW7E2hU149W9QOxWRXfrj3Mm7/tZvQHKxgeE8HjQ9oQXawFQUaOgyW7E7mhZ/n75oQQF84jEzzfggQvW2bwhBA1nKcUg6pt+8GFqE1Ss/J48aftdGoUzLgep/ezKaW4sVdjnp8by9b4VDo0PPN+uh82xAMwqkvDomNBvjZGdIwsMe7GXk0Y1bkhk5fs4+Ol+1iw7Tg39mrMoLb1WbkviUU7TpDrcDK4ff0q/pTCE3nCM/J8no8e2T1RlmgKIWoDu91OUlLSRZ/8aK1JSkrCbvesKndKqaFKqZ1KqT1KqafKOd9YKbVIKbVBKbVZKTXcHXGK2u+NBTtJzsjhxas7YLWU/GF4TJco7DYL01YfKnF8f2IGTqf5t0drzfcb4ukVHUKjEL9zvp+/jxcPX9GKxY8P5PoejZi6+hA3T1nDx0v2Ucdu459XtaNPs9Cq+4DCI3nCM/J8n48ePYMnSzSFEDVZVFQUcXFxJCQkuDsUl7Pb7URFRbk7jGqjlLIC7wNXAHHAX0qpOVrr2GLDngFmaK0/VEq1A+YDTas9WFGr7TmRzlerDjKhdxNiosrO0AX52biqYyQ/bozn/4a3wW6z8q8525i2+hA9mtblP2NiSM92sC8xg7subVap964XaGfS6Bju6N+MA0kZdG9Sl0C7NBUXVcNTnpHn83z0zARPZvCEELWAzWYjOjra3WEI1+gJ7NFa7wNQSk0HrgaKJ3gaKKxCEQQcqdYIxUXhhw3mr839g1qeccyNvZswc10cny0/wIq9iazal8zITpH8uSuB4W8vo1m4Pz5eFobFNDivGKLD/EvswxOiKsgz8sw8M8GTPXhCCCHcqyFwuNj3cUCvUmP+BSxQSt0P+AN/q57QxMVCa838LUfp0zyUsACfM47rFBVE+8g6vPHbLry9LLx5fSdGd4kiIT2HF+bFMnfTEUZ2iqSOzL4JUSt4ZoLnLUs0hRBC1Hjjgc+11v9VSvUBvlJKddBaO4sPUkpNBCYCNG5ctiG0qN201mhtWgKUJz4lix82xDN30xG6NanLpNExRed2HEtnX2IGt/c/+yyHUooHBrXkzd928fI1HencKBgwvebeHd+FO/tH07gCe++EEDWDy4qsKKXsSqk1SqlNSqltSqnnyxlzq1IqQSm1seDrDlfFU1zRHjyZwRNCCOEe8UDxuvRRBceKux2YAaC1XgnYgbDSN9JaT9Zad9dadw8PD3dRuMJd3v5jNwNfX1xm1VFevpOJX66l3ysLee3XnaRk5vH1mkPsOXGqaMz8LUexKBhSTkPx0oa0j+CXhwYUJXfFdYwKJtjP+8I/jBCiWriyimYOcLnWuhPQGRiqlOpdzrhvtdadC74+cWE8ReyS4AkhhHCvv4CWSqlopZQ3MA6YU2rMIWAQgFKqLSbBu7irCYgS8vKdTF11kEPJmcxcF1fi3Hfr41gQe5w7+zdjyeOX8dMD/fDxsvDh4r2Amfn7afNRejc7+/JMIcTFx2UJnjYKf41kK/iqEXVMfbwsKAXZskRTCCGEG2itHcB9wK/Adky1zG1KqReUUiMLhj0K3KmU2gR8A9yqL+Z64KKMxTsTSDyVS5Cvjf/9uZe8fLM6Ny/fybsL99AxKoinh7WhcagfoQE+jO/ZmB82xnM4ObNoeebw8yyMIoSovVzaB08pZVVKbQROAL9prVeXM+yagv4+s5RSjco574q48LVZyZQETwghhJtoredrrVtprZtrrScVHHtOaz2n4HWs1rqv1rpTwSqXBe6NWFS3mWsPExbgzSvXxBB3Mou5m0xFzO/XxxN3MouH/tayRJPnO/s3w6Lg46X7ipZnDu1w7uWZQoiLi0sTPK11vta6M2ZvQU+lVIdSQ+YCTbXWHYHfgC/Ku49SaqJSaq1Sam1V9brwtVlliaYQQgghaqTEUzks3HGC0V0aMrhdBG0iAvlw8V5yHU7eXbSbjlFBXNa6XolrIoN9GdMliul/Hea79fGyPFMID+XSBK+Q1joFWAQMLXU8SWudU/DtJ0C3M1xf5RvI7ZLgCSGEEKKG+nHjERxOzdjujbBYFPcMbM7uE6e4/5v1HE7O4sFBJWfvCt09sDmOfCfxKVmyPFMID+XKKprhSqnggte+wBXAjlJjiv/LMxKzD6Fa+HpbpQ+eEEIIIWocrTUz1x6mU1QQreoHAnBlTAOahPrx67bjxDQM4vI29cq9NjrMn+ExDbBaVIWqZwohLj6unMFrACxSSm3GVAv7TWs9r9QG8gcKWihsAh4AbnVhPCX42qzSB08IIYQQbjFj7WGufm8ZiadyypzbdiSNHcfSubb76dIEXlYL/xjYHICHryh/9q7QpFExzLirN+GBsjxTCE/kskbnWuvNQJdyjj9X7PXTwNOuiuFsZA+eEEIIIaqb1poP/9zLq7/sBOCHDfHc0b9ZiTEz1x7G28vCyI6RJY5f170RnRvVpXVE4FnfI8jPRrcmIVUbuBCi1qiWPXg1ka+3law8p7vDEEIIIYSHcDo1/563nVd/2cnITpHENAxi9vqS/e0zchx8tyGeIe0jCPKzlTinlDpncieEEJ6b4Nms0gdPCCGEENXm5V92MGX5fm7r25S3ru/Mtd2i2H40je1H04rGzFoXR3q2g9v6NnVfoEKIWs1zEzxvWaIphBBCiOqxNT6VT5buY3zPRjw3oh0Wi+KqTpF4WRTfbzCzeE6n5rPl++ncKJiujeu6OWIhRG3lsQmetEkQQgghRHVwOjXP/LCVEH9vnhratqhASoi/NwNb1+P7DfE48p0s2nmCA0mZ/L1ftJsjFkLUZh6b4MkSTSGEEEJUh2/XHmbj4RT+b3jbMvvqrunakIT0HJbvTWLK8v00CLIzrIO0NxBCnD/PTfC8LTKDJ4QQQgiXSjqVw8s/76BndAijuzQsc/7ytvWoY/fijQU7Wb4niZv7NMVm9dgfz4QQVcBlbRJqOl+bFYdTk5fvlH9IhRBCCFFlVu1LYn9iBonpOSzbk0hGjoMXR3Uot3edj5eVEZ0i+Xr1Iew2C+N7NirnjkIIUXEem+DZbVYAMnPzCfKVBE8IIYQQF27nsXTGTV5V9H2Qr42nhrWhVf0ztze4pmtDvl59iGu6RhHs510dYXqexD3gHwq+F0nxmvRjYPEC/zB3RyJqII9N8Hy9TYKXnZdPkK/tHKOFEEIIIc5tya4EALNB8gUAACAASURBVH56oB8t6gXg42U95zVdG9fljes6cVnreq4OzzNlnYSP+oLVG/rcB73vAXsdd0d1/vLz4NPBkJcFt82HsJbujkjUMB47deVbMIOXJYVWhBBCCFFFlu5JpEW9ANpHBlUouQPTwHxM1yjq+svsnUvs/AUc2RDRERa/BG93hI3fuDuq87d5BqQchNxT8MVVkLzv9LkjG+CPf8PRTVXzXnsXwop3ISe9au4nqoUkeFJoRQghhBBVIDsvnzX7k+jXQpbN1Sjb50CdhnDrPLhzEYS1hjn3w/Ft7o6s8pz5sPS/EBEDt/9mEtcvRsKeP2D6jTB5ICx9Hf43AL6dACe2n/975WXBdxNhwTPwVkdY/g7kZlbZRxGu47EJnt1bEjwhhBBCVJ31h06SneeUBK8myTllkp+2V4FS0LArjPvaLNGcc79JmGqKE9thxs3wStPTX293gkOrT4/Z9j0k74UBj0NEB5jwPWSnwdQxsH8JDHwaHt4Glz4JexfBB31g7ZTzi2f9l5CRAMNeg8gu8Nuz8F53SNhVclxmMnw+Ar65AY5tKf9eedmw6iN4ryfs/Pn84hEV5rF78PwKZvCkF54QQgghqsKy3YlYLYrezUPdHYootHsB5OdA25Gnj/mHwrBXYfbtsPoj6HNv+dcm74eA+uDtd/b3SDsCgQ1MAnk+kvbC4pdhy0zwDoD2o8Dmezr+adfCzT9Cg85m9i6sNbS5ypyP7AK3zjVJbLdbwS/EHL/s/6DnXTD77/Dr/4Pml0PdpqffMz8P4teD02G+9/Yz9y/8DI4cWP42NL4Eek00XweWw8xbzbLQ2+ZDaHPIToWp18DxreDlCx/1g/ajoevNYPUx90rYDkvfgLR48/nm3A/3rjkdq6hyHpvg+coMnhBCCCGq0PI9iXRpFEyAj8f+eFXzbJ8D/uHQuHfJ4x2uMXvZFr4IrYdDSPTpcwk7YdFLEPuDSaBu/hHsQeXff9cC+HosDH8det5ZudhSDsGfr8LGr00BmL4PQN+HSiY+qQ/CZ8Phq9EmET0RC2M+BkuxRXgNOpmv0vxD4er34f3eMPdBmPCDSeDysuGb62Hf4pLje9xhPodSsOkbk5CNfOf0+aZ94ZY58PmV8OXVcONMc99jm+H6qebPeMV7sOpDM9NYXFQPGPWh+WyTB5pln6M+qNyfl6gwj/0XSPbgCSGEEKKqpGTmsjk+lQcHSUXDGiMv2yRgHceCpVTBG6VgxBsm+ZlxMzTtZ46nHTFJoc0Put4CG6fB1GthwnfgU6rVRXYazHvYvF76hpm18vI5d1xpR81M3LrPTRw974R+j0Bg/bJjg6LglrkmyVs0CepGQ/sxFf8zCIqCK/4FPz1qEsmYsTBjgknuBk8ye/kAds43s5lWH7jiBVj2pklumw8qeb96bU2i+MUI+PASQMHYz6D1MHN+0LPQ+x9mRq+QT6C5V+HsYN8HzefvcA20KHV/USU8NsGzSxVNIYQQQlSRlXuT0BrZf1eT7F0IeRkll2cWFxRlkryfn4QNU80xq83MlPV92MyAtfibWZb49TgzY1V8ueYfz5tZrsuegUUvmgSq+21njicj0SROf31ilkZ2mQADHjNxnE3dJmbmbNbfzXhrJX987/Z32DIbfn0aYn80yz5HvFUy1ugBoDWseh+OboSTB2DIS+UvO23Q0ez9++EfZi9gu6tLnvcPhWaXnjmeAU9A7ByY9xDcsxJ8Air3ecQ5eWyCV7wPnhBCCCHEhVi6J5EAHy86NQp2dyie5ZenYfu8098H1DMzRG2vgu1zwR5skpcz6Xid+TqTdiNhzGT47k4zazX4RWhyCRxcYRK1XveYpGvXz7DsDehyk0kSS9vxk6lImZcJHcfBpU+UXBZ6LqHN4a4/Kz6+OIvFLLX8sC/s/tXsPyydiCoFw14x+xXXfQ712kOrYWe+Z8NucO/qM58/G5sdRr4Lnw01s6dDXoJ6bc7vXoUOrjDLba9+D0KaXdi9LgKem+DJEk0hhBBCVJHlexLp3SwEm9WDCpTnO0yVxToNKn6N1qbqon8lCtFobZZOBjUseTz2R1j1gSkgEhBhjsX9ZZYgNugEyQegzZXlJ1yVEXOtWeL585Pw2TDzficPQnBjuPwZkxwNeMLsa9syCzqPL3n9rgUw4xYz8zXqQwhvfWHxnI+wlnDtlIIE8wwJrVJw5ZsQ2tIsWbW48O9ykz4m0fzjBfigt4lp4FPnl5wd/gumjTV9Af98DUZ/WPXx1jIe9K9QSaeXaDrdHIkQQgghaoM1+5M5mppV5vjh5EwOJmXS11OWZzqdsHW2+cH8zXYmqakIrc2etddbmJL+FRm/+zeYfKl5n5XFinJkJsNPj5lE7oaZ5of60R/CP1bBqI8gKwVyUk1FyqrQfjQ8sNHM4B3dZFoVjHjr9PLCVkOgfozZW1a89cLeRfDtTVC/Hdz0nXuSu0JtR5x9thJMUnfJfRDZ2fXx9LoLHtxsisvEzoGP+ptkrTKObDBVPP3DIeY62PytWV7q4Tw2wbNaFN5eFjLzHO4ORQghhBA1XGpWHjd9upo7vliLI7/kL4e/Wx8PQP+WF3mCpzXsmA//62/2g1m8ILKrWXoYO+fc1/7yFKz7zJTTn/PA2Ztm718CU4aYFgFZJ6Fpf7OH7K9PzPkFz0JmEox8r+SeNKuXmUG7fx3cuRBaDr7wz13I2w8uuR8e3AR3LSlZIEQps1Qzabf5bAsnwe//gm/Gm9mzCT+AryzfLcM/1BR1ue8vk6RNvQaObKzYtQeWm+qi9iBTiOaK581M67K3XBtzRWQmw8Zv3NZn0WMTPDDLNKUPnhBCiOqmlBqqlNqplNqjlHqqnPNvKqU2FnztUkqluCNOcdovW4+S63Cy7UgaHy/dX3Q89kga7y3azfCYCFrUCzzLHWoxrU2ftY8vh+njzTK/MZ/APcvh5h/MfqxZf4edv5z5+t+eM1Uae98LN3wLJ/fD4v+UHXt4jemz9sVVkHIYRrwJ960zs1+thplqkPMegY1TzV67Bh3Lf0+rzcR1vr3pzsYnsPy2BG1HmnYAG6fBktdMohHe2iR30vPt7IIbmSTNHgRfjYLj2848Nn69SQQ/Hw7egaYATXAjqBNp9kBunAap8dUXe2lam15/P9xt/s6Xlp9nxriQx+7BA5PgyR48IYQQ1UkpZQXeB64A4oC/lFJztNaxhWO01g8XG38/0KXaAxUl/LDhCNFh/rSuH8ibv+9iSPv6NKzryyMzNhLs582Lo2LcHaLrzLzV9IQLamRmzDqNPz1r5hMIN80yfdFmTIDx08uWvl/8H1jxDnS/HYZMMklX11tg5Xtm6WPDrmbWZtEkU+HRPxyGvgzdbjMFOQpd94WZEVv7KYS2gEufrLY/ggqxWOCO390dRe0V3Mgka58Nh0+HmO9LczogcRf4hpiZvx53lqxs2vchWPcFrHgXhr18fnFobRrP554yS3LP9EsCp9NUAg1vA33+cfp47I+wY575e7zwRbMPtLDJvCMXvr3RJP6DXzy/+CrAsxM8bytZebIHTwghRLXqCezRWu8DUEpNB64GYs8wfjzwz2qKTZTjWGo2q/Yn8eCgltzQszEr3kjkqe+20KVxMDuOpTPl1u6E+Hu7O0zXSD9mkrvut8PQ/5Tf580eZGbYvhgJ02807QSi+5tzS/8Lf75iZlYKm2iD+eF89wL48V6TrG2fYypeDvqn2Zvl7V/2fbx8YNw0kzDGjC2Z/ImLQ0g03DrP/J3JO8MS3o7XQc+7wF6n7Lm6TaDTOFMJtP8jpqpqZWgNvz1rEkQwM7Jn2se5bgqs/8K8duaZGeXMZJj/ODToDNd9aSqXFjaZdzpg1m3m733r4ZWLq5I8O8GzWaUPnhBCiOrWEDhc7Ps4oFd5A5VSTYBoYGE1xCXOYO6mI2gNV3duSL06dp65sh1PzN7Mmv3JjOvRiMvblNOg+mJxcIX5b5ebzt7E2y/ELNf8/Er4+nrTJy1+ramSGHMdXPVOyaqMvsFw5X9h+g1mKealT5lZEHvQ2eOx+ZrkUFy8Qpub1hTnq/+jsOkbmPuQmfWtTBXVRS+Z5K777RC/DuY/ZtpslF5imxoHv/0Tmg0Ev1CzBNnLbgrwZCbBTbNNslnYZH79l6a5/I555bepqGKeneB5W6UPnhBCiJpsHDBLa33Gh5VSaiIwEaBx48bVFddFS2tNeo6DOvbTPxT+sDGeTlFBRIeZWaWx3aOYv/Uoh5IyeWZEO3eFWj0OrgDvAIg4w1634vzD4OYfzRK7L68GRxa0G2VaA1isZce3uRJu+9kscZM9aqKqhDY3S3x/fgK+vwvGfFz+37/Slr4BS141DeiHvw4ntsHkgbDgGRhVrIKr1mYfqHbCVW9DnYbgyDHvBybBLNwbWthkfu4D5vsr/m1mqF3MZUVWlFJ2pdQapdQmpdQ2pdTz5YzxUUp9W7DJfLVSqqmr4imP7METQgjhBvFA8c0lUQXHyjMO+OZsN9NaT9Zad9dadw8PD6+iED3Xx0v30e3fv/HjRvM/yZ4T6Ww7ksbVnU/3YFNK8ektPZj/YH8CfC7y35UfXAGNepasVHk2gRGmWEZwI2h3NVzzydmvbXKJJHei6vW6C/72vGnn8eN9Zr/c2STugYX/hvZjTNJmsUBEjFl2uXGaKTJUaMss0zD+8mfN3jqrDa79DNpeZYrvDHji9FiLxTR1D6hvxvd9wCUftzRX/quUA1yutT6llLIBy5RSP2utVxUbcztwUmvdQik1DngFuN6FMZVgt1lJzsitrrcTQgghAP4CWiqlojGJ3TjghtKDlFJtgLrAyuoNz3Pl5TuZsuwATg0PTt9IckYuyRm5WBSM6FSymbfVorBWZFagNstMNrMYHUZX7rqghvCP1a5tlC3EufR7yMysLX6poGDKv08XOylt2Ztg9YFhr5Sc7RvwhGkBMvt20wAe4MR2aNi95EyclzdcP9XM7pUuyhLWAh7d6ZqKrmfgsv/naeNUwbe2gq/SNUGvBgp2JzILGKRU9X16WaIphBCiummtHcB9wK/AdmCG1nqbUuoFpdTIYkPHAdO1dnE9bVFkwbbjHEvL5t3xXRjcrj7Pz43l46X76NsijHqBHljQ41DB7+Sb9K38tZLciZrg0idg0HOw61d4txvMe7hsC4WTB2HzdOh2a9miLDY7XPspNOplCv94+0OzS2H0/8pf9nmmNKYakztw8R68glLQ64AWwPta69WlhhRtNNdaO5RSqUAokOjKuAr52iyyRFMIIUS101rPB+aXOvZcqe//VZ0xCfhi5QEahfgypH0Eg9vV55kftjL9r8OM6drwnNdelA4uN7MakV3dHYkQ50cpsyeu03hY8ropdrJ5Jkz4ziw9Blj+NiiLaWJfngadTO/GWsSlv17RWudrrTtj9hf0VEp1OJ/7KKUmKqXWKqXWJiQkVFl8sgdPCCGEEADbj6axZn8yE3o3wWpReFkt/GdMDPMf6M+ozrUgwTu+DRJ3V+09Dy6HqO7SjkDUfnUiYcQbcN8aCAg3jdKPbIC0o7DhK+h8o1lafJGolvlzrXUKsAgYWupU0UZzpZQXEAQklXO9SzaQ272lTYIQQggh4MuVB/HxsnBd99P1b5RStIusQzXuHjk/+xbDx5eb6pWZyVVzz5x0U/K9ySVVcz8haoKQZqYIkG8wfDXatEFw5pv9ehcRV1bRDFdKBRe89gWuAHaUGjYHuKXg9bXAwurca+Brs5LjcOJ0yvYGIYQQwlOlZubxw4Z4RnVuSLBfLWtYfnAFfDPelGrPTDIl3avC4dWmDLwkeOJiExRlkjybn+lL1/H6MxdfqaVcOYPXAFiklNqMqRj2m9Z6XqlN5J8CoUqpPcAjwFMujKcMX5vZHCnLNIUQQgjPNXPdYbLy8pnQp4m7Q6mcw3/BtLEmufv7L6YE+8ZpsHfhhd/74ApQVojqeeH3EqKmqdsUbp4DHa6BgdWaflQLlxVZ0VpvBrqUc/y5Yq+zgbGuiuFcfL1PJ3j+F3sfGyGEEEKUobXm6zWH6No4mA4Ng9wdTsVlp8G0a8E/HG6ZY6r/XfokbJ8Lcx+Ee1aCT8D53//gCojsfGH3EKImC2sB105xdxQu4dE1bO2FM3iyD08IIYTwSOsPpbAvIYPrezQ69+CaZOtsyE6BMR+bAhIANl+46h1IOQQLXzz3PVIOQfL+ssfzsiB+nSzPFKKW8ugEz69gBk964QkhhBCeada6w/jarFzZMdLdoVTO+i+hXjtT5bK4pn2hxx2w+kNY+9mZrz+6CT7qB59faZpBF7fzZ8jPhaYDqj5uIYTLeXSCJ3vwhBBCCM+VlZvP3E1HGRYTQUBt2qpxfBscWQ9dJpTfQHnIS9BysGnqvPHrcq6PhS9HAQrS4kuO0RqW/hdCW0KLQS77CEII15EED1miKYQQQniiX7cd41SOg7HdatnyzPVfgcVmqv+Vx8sHrvsKml0KP94LW2adPpewC74cacZMXAQNu8GyNyA/z5zf9Qsc32qaQ1usrv8sQogq59EJnt1bZvCEEEIITzVz3WEahfjSKzrE3aFUnCMHNk+HNleCf+iZx9nsMO5raNwHZt8O/wo2X+/3AJQpEx/SDAY8bvbibZllZu+WvAbBTSDm2mr7SEKIqlWL1iNUvcIZPNmDJ4QQQniWuJOZrNibxEODWmGx1LBG5sn74MT209/XiYTIgsLkO36CrJPQ9eZz38fbH274FtZOgZxT5pjFCjFjIbS5+b7VUKgfY5Zl+oeb4ioj3gKrrWo/kxCi2kiCh8zgCSGEEJ5m9rp4tIYxXRu6O5Sypl4LyXtLHmt+OVz2jCmuEtQIml1WsXv5BELfB898XikY8CjMvBW+uxMCI6HzDecduhDC/Tw7wStcopnrdHMkQgghhKguOY58Zq47zCXNQ2kU4ufucEpKjTfJXd+HoMMYc2z/UrNP7pPLzfeXPgWWKtxl03YkhLWCxF0w9BWzP08IUWt5dIJnlxk8IYQQwuO89ftu4k5m8e9RHdwdSlmHVpr/th8NDTqZ1w06QbdbYPX/YNev5nVVslhh8Iuw8r2KLf0UQtRoHp3gyR48IYQQwrOsPZDM//7cy7gejbisdT13h1PWweXgHQgRMSWP+wTCgMfMlyu0GmK+hBC1nkdX0bRZFT5eFlIyc90dihBCCCFcLCPHwaMzNxEZ7MszI9q5O5zyHVwBjXtLiwIhxHnz6ARPKUVEkJ1jaTnuDkUIIYQQLvafn7dzKDmT18d2qpmNzTMSIWEHNLnE3ZEIIWoxj07wACLq2Dmemu3uMIQQQgjhQmv2JzN11SHu6BdN72Zn6R/nToX775r0dW8cQohaTRK8IDtH07LcHYYQQgghXERrzWu/7qBeoA+PXNHa3eGc2cEV4GU/3fNOCCHOgyR4dewcT8tBa+3uUIQQQgjhAot3JfDXgZPcP6hlUYukGungcojqAV7e7o5ECFGLSYIXZCfX4eRkZp67QxFCCCFEFXM6Na//upNGIb5c372Ru8M5s+xUOLZFlmcKIS6YJHh17AAcTZVlmkIIIcTF5pdtx9h2JI2H/9YKb68a/GPP4TWgnVJgRQhxwWrwv3TVo36QSfCOp0mhFSGEEKLGStwD236o1CWOfCf/XbCTlvUCuLpzQxcFVkUOLgeLl1miKYQQF8DjE7wGBQnesVRplSCEEELUWL89BzNvhZTDFb5kzqYj7E3I4NHBrbBalOtiqwoHV0BkV/D2c3ckQohazuMTvPAAHywKjskSTSGEEKJmyjkFe/8ANGz8usKXzVh7mGZh/gxpH1HyRGYyTL8Rtn1ftXGey7rPYc794HSWPJ51EuLXy/JMIUSV8PgEz8tqISzAh2OyRFMIIUQ1UUoNVUrtVErtUUo9dYYx1ymlYpVS25RSFc9qLkZ7fgNHNgTUhw1TyyZI5TiRls2a/Ylc284fpYrN3mWnwtQxsGMezHkA0o64MPDiAW2Hnx6D9V/Cuiklzy14xuy/ixlbPbEIIS5qHp/ggVmmeSxNlmgKIYRwPaWUFXgfGAa0A8YrpdqVGtMSeBroq7VuDzxU7YHWJLFzwC8MBr8IqYdg/+JzXjJ/0yE+8nqTe/4aYhK5lMOQkw5TrzXVKoe9Cvl58NOj4OpWSc58M3PnEwiNL4Hf/gWp8ebc3kUmae37AER0cG0cQgiPIAkeUL+OXZZoCiGEqC49gT1a631a61xgOnB1qTF3Au9rrU8CaK1PVHOMNUdeNuxeAG2uhLYjwR4M6786fV5r2DwTjm87fSzfQatlDzPYug7Vaghs+gbe7QqTB0L8Orh2CvS6Cy77P9g53/VLNddMhri/YNgrMOoD0Pkw72HIzYC5D0JIc7j0SdfGIITwGJLgYXrhHUuVJZpCCCGqRUOgeKWQuIJjxbUCWimlliulVimlhlZbdDXNvkWQewrajQSbHTpeb5ZXZiab5G7BM/DdHfBhX5h1OyTsJHPGHVySs4xlzR+B8d/A/euh03hIPw6j/wftCvLp3v+ABp1h/uPmfq5w8iD88QK0uMIswQyJhsufgd2/whdXQcpBGPku2Hxd8/5CCI8jCR4mwUvLdpCZ63B3KEIIIQSAF9ASGAiMBz5WSgWXN1ApNVEptVYptTYhIaEaQ6wmsXPAHgRNB5jvu06A/FzYPAMWTYKV70H3v0O/h81s3Ps98dv5Pa/mXU/j4Y+ba4Ibwch34OnD0LHYPjerF1z9HmSnwLyHKrS3r1KObYFZt4GywIg3oXAvYK+7oWE3M5vY/e/QVJqbCyGqjssSPKVUI6XUomIbxB8sZ8xApVSqUmpjwddzrornbAqbncssnhBCiGoQDzQq9n1UwbHi4oA5Wus8rfV+YBcm4StDaz1Za91da909PDzcJQG7TX6eSdpaDQMvb3MsIgYiu8DCf8OS16DrzTD8v/C3f8KDm6Dvg0z2u5PlkbfQOLRUywFVTquEiBi4/FmI/dEkeVWxHy9hp2np8FE/079v5LsmySxkscKYj6HnXfC3f134+wkhRDFeLry3A3hUa71eKRUIrFNK/aa1ji01bqnWeoQL4ziniMJeeGnZNAsPcGcoQgghLn5/AS2VUtGYxG4ccEOpMT9gZu4+U0qFYZZs7qvWKGuCA0vN7Fq7kSWPd73Z7GHrOA5GvAWWgt9XB9RjX+cneOmPP3mmT4OKv0/fB011zWVvgJfd7JUrLxk8l+R9sPgV2DIDbH4w4HHocy/41i07NrQ5DH+18u8hhBDn4LIET2t9FDha8DpdKbUds8egdILndjKDJ4QQorporR1KqfuAXwErMEVrvU0p9QKwVms9p+DcYKVULJAPPK61TnJf1G4SOwds/tD88pLHu94CdaOhaX8zG1bMvM1HAbiyYyUSPKVg0HPgyIFV75u9fle8UPHrc9LNXsANU8HiZfb29XsY/MMqfg8hhKgirpzBK6KUagp0AVaXc7qPUmoTcAR4TGu9rZwxLlV8Bk8IIYRwNa31fGB+qWPPFXutgUcKvjyTI8csm2w1pGwBEosVml9W7mU/bz1G9yZ1aRBUyaIlSsGQSZCbDsvfNklkaPOKXbvyA1j3BfS8E/o9AnUqkVwKIUQVc3mRFaVUADAbeEhrnVbq9Hqgida6E/AuZklKefdw6QZyP28v6ti9OC4zeEIIIUTNsHM+ZCVDlxsrfMnxtGy2H01jUNv65/eeSplllQDb51T8utgfoXEfGP6aJHdCCLdzaYKnlLJhkrtpWuvvSp/XWqdprU8VvJ4P2Ar2GpQe5/IN5BFBdo5KgieEEKISlFJXKaWkIrUrrP8K6kRBs/Jn6sqzZJf5JfClrS7gZ4XgxqaIy/a5Zc9pXbYIS9JeOLEN2l51/u8phBBVyJVVNBXwKbBda/3GGcZEFIxDKdWzIB637DGoX8fOcVmiKYQQonKuB3YrpV5VSrVxdzAXjZTDsHehmb0rtcfubP7clUB4oA9tGwRe2Pu3HWlaGKTGnT7myIF3u5medsUVzvRJgieEqCFc+VvHvsAE4PJibRCGK6XuVkrdXTDmWmBrwR68d4BxBfsOql2DILvswRNCCFEpWuubMHvM9wKfK6VWFmwruMAMw8NtnGb+27niyzPznZqluxO5tFU46nwqYBbXtqBqZ/FZvI3TIHkvrPoQThXbLhI7ByK7lmyDIIQQbuSyBE9rvUxrrbTWHbXWnQu+5mutP9Jaf1Qw5j2tdXutdSetdW+t9QpXxXMuEXXsJKTn4Miv4ianQgghLmoF+8tnAdOBBsBoYL1S6n63BlZbOZ2wYRo0uxTqNqnwZZviUkjNyruw5ZmFwlpAvXanE7z8PFj2JoS2gPyCSptgZhqPrC/bxkEIIdxI9g0UqB9kx6kh4VSOu0MRQghRSyilRiqlvgcWAzagp9Z6GNAJeNSdsdVa+xdD6iHoMqFSl/25MwGLgn4tqqg1QduRcHAFnDoBW2ZCyiEYPAnaj4Y1H0Nm8ukEsK0keEKImkMSvAINgqQXnhBCiEq7BnhTax2jtX5Na30CQGudCdzu3tBqqfVfmcbgbUZU6rI/dyXQqVEwdf29qyaOdiMBbSpkLv0v1I8xLRv6Pwq5p2DNZLP/rl77irdTEEKIaiAJXoH60uxcCCFE5f0LWFP4jVLKt6D3K1rrP9wTUi2Wkw475kHMdabZeAWdzMhlU1xK1SzPLFSvHYQ0g4UvQtIeGPCYaaNQv71JPle+D4dWyfJMIUSNIwlegYg60uxcCCFEpc0Eim/ezi84Js5H4i7Iz4XoAZW6bOmeRLS+wPYIpSllll5mp0BY65LLMPs/CjlpgJbqmUKIGkcSvAIh/t54Wy2S4AkhhKgML611buE3Ba+raI2gB0raa/4b2qJSl/25M4FgPxsdo4KrNp4O14CywKVPgKXYj0wNu0KroWZ5Zr12VfueQghxgbzcHUBNoZSifpCPLNEUQghRGQlKqZFa6zkASqmrgUQ3OZ3gSgAAIABJREFUx1R7Je0BFIREV/gSR76TJbsT6N8yHKvlAtsjlNagIzy6CwLKmRkc+7mprnmhLRmEEKKKSYJXTIM6vhxNkQRPCCFEhd0NTFNKvQco4DBws3tDqsWS9kBwY/DyqfAlX648SEJ6Dld3inRNTOUldwA2X/MlhBA1jCR4xTSv58/PW4+htb7wJqlCCCEuelrrvUBvpVRAwfen3BxS7Za0B8JaVnj48bRs3vhtFwNbhzOobT0XBiaEELVHhRI8pZQ/kKW1diqlWgFtgJ/1/2fvvuOjqtI/jn9OJr2TBEJCCBAIHaSEKiqIBRHLWlBQV1ZddG2rW9xdd9XVdfe3uq6uva2uHVRs2LAgiNKk9xY6CZDee3J+f9xQAgECZDKZ8H2/XvMKc++dmWeuMXeeOc95jrWVbo2uifWMC2fKTzvZnV9GfKS+lRMRkWMzxlwI9AIC9305aK19yKNBeSNrnTl4icMa/JC/fbaWyuoaHry4l76YFRGp1dAmK3NwLlztgK+B64DX3BWUp/SICwdg3e4CD0ciIiLewBjzAnAVcAdOieaVQAePBuWtivY668s1sMHKD5sy+Wzlbm4b1YUO0SFuDk5ExHs0NMEztYu2XgY8Z629Eufbyhale22CtzZdCZ6IiDTIcGvtz4Fca+2DwDCgq4dj8k5Zm5yfDVg0vLyqmvs/WUOnmBAmn5nk5sBERLxLgxM8Y8ww4Brg89ptLveE5DmhAb50iA5m3R4leCIi0iD7OnOVGGPigUogzoPxeK/sVOdnA0bwvly1h61Zxdw/rieBfi3u44iIyElpaJOVu4A/AR9Za9cYY5KAWe4Ly3N6xoVrBE9ERBrqU2NMJPAvYClggZc9G5KXyk4FVwCEJxzz0FkbMogO8W/chc1FRFqIBiV41trvge8BjDE+QJa19k53BuYpPeLCmbFmD0XlVYQGqMmoiIjUr/Z6ONNamwd8YIz5DAi01uZ7ODTvlL3ZKc/0OXpxUXWN5fuNmZzdvQ0+jb3unYhIC9CgEk1jzDvGmPDabpqrgbXGmN+7NzTP6BkXjrWwQWWaIiJyFNbaGuDZg+6XK7k7CdmpDSrPXL4zj7ySSkZ107IIIiL1aegcvJ7W2gLgUuBLoBNOJ80Wp0d8baOV3YUejkRERLzATGPM5UY9+k9OdRXkbm1Qgjd7QwY+Bs5MVnmmiEh9Gprg+Rlj/HASvOm1699Z94XlOfERgYQH+mqpBBERaYibgfeBcmNMgTGm0BijC8jxytsONVUNSvBmbchgYIdWRAT7NUFgIiLep6EJ3ovANiAEmGOM6QC0yAuYMYae8Wq0IiIix2atDbPW+lhr/a214bX3wz0dl9dpYAfNjIIyVqcVMFLlmSIiR9TQJitPAU8dtGm7MWaUe0LyvB5x4Uz9aSfVNRaXJnCLiMgRGGPOrG+7tXZOU8fi1RqY4M3emAmg+XciIkfRoATPGBMBPADsu5B9DzwEtMjJ5D3jwimtrGZbdjGdW4d6OhwREWm+Dm44FggMBpYAZ3smHC+VnQqBkRAcddTDZm/IIDY8gB5xYU0UmIiI92loiearQCEwvvZWAPzPXUF5Wo84p7pG8/BERORorLUXHXQ7F+gN5Ho6Lq+TnQoxyXCUXjWV1TX8sDGLkV3boJ42IiJH1tAEr7O19gFr7Zba24NAkjsD86Tk2FB8fYzm4YmIyPHaBfQ41kHGmDHGmA3GmFRjzB/r2T/JGJNpjFlee7vJLdE2F9mbj1meuWR7LoXlVYzqru6ZIiJH09CVvEuNMSOstT8CGGNOB0rdF5ZnBfi66NImVCN4IiJyVMaYpznQVdoH6AcsPcZjXDjr552LkxAuMsZMt9auPeTQd621tzdyyM1PRTEUpDmLnB/Fd+sz8PUxnN4lpokCExHxTg1N8G4B3qidiwdO+cn17gmpeegZF86PqVlYa1UKIiIiR7L4oH9XAVOstXOP8ZjBQKq1dguAMWYqcAlwaIJ3asje7Pw8ygietZbPV+5mRHIMYYFaHkFE5GgaVKJprV1hrT0N6Av0tdb2p4VPIB+aFE1GYTl3vbucsspqT4cjIiLN0zTgLWvt69bat4EFxpjgYzymHbDzoPu7arcd6nJjzEpjzDRjTPtGirf5ydni/Iw68gje0h15pOWVclHf+CYKSkTEezV0Dh4A1toCa+2+usXfHO1YY0x7Y8wsY8xaY8waY8yv6znGGGOeqp2DsNIYM+B44nGnK1MSuGdMNz5Zns7VLy0go7DM0yGJiEjzMxMIOuh+EPBtIzzvp0BHa21f4Bvg9SMdaIyZbIxZbIxZnJmZ2Qgv3cSKMpyfYW2PeMhnK9Px9/Xh3F6xTRSUiIj3Oq4E7xDHqlusAn5rre0JDAVuM8b0POSYC4Dk2ttk4PmTiKdRGWO4dWQXXrh2IBv2FHLpM3PZW6AkT0RE6gi01hbtu1P772ON4KUBB4/IJdRu289am22tLa+9+19g4JGezFr7krU2xVqb0rq1FzYgKcl2fgbVv0RCdY1Tnjmya2vCVZ4pInJMJ5Pg2aPutHa3tXZp7b8LgXUcXoJyCfCGdSwAIo0xcScRU6Mb07st7/xyCOn5ZXy2crenwxERkeal+ODqE2PMQI7dhGwRkGyM6WSM8QeuBqYffMAh18KLca6hLVNJFgS1Alf9bQF+2ppDRmE5F52m8kwRkYY4apMVY0wh9SdyhrolKUdljOkI9AcWHrLrSPMQmlUm1T+xFUkxIcxNzeLGEZ08HY6IiDQfdwHvG2PSca6NbYGrjvYAa22VMeZ24CvABbxqrV1jjHkIWGytnQ7caYy5GKcaJgeY5Mb34FnFWRAcfcTdn65MJ8jPxegebZowKBER73XUBM9aG3ayL2CMCQU+AO46aP7e8T7HZJwSThITE082pBNyepcYPli6i8rqGvxcJzPwKSIiLYW1dpExpjvQrXbTBmttZQMe9wXwxSHb7j/o338C/tSYsTZbJdkQXP/SB5XVNcxYvYdzesYS7N/Qxt8iIqc2t2Yqxhg/nOTubWvth/Uccsx5CNA85hec3iWGkopqlu/M88jri4hI82OMuQ0IsdauttauBkKNMbd6Oi6vUpINIfUnePM2Z5NTXMFFfZvV7A0RkWbNbQmecRaPewVYZ619/AiHTQd+XttNcyiQb61tVuWZ+wxLisbHwI+bsjwdioiINB+/tNbu/+bPWpsL/NKD8Xifo5RofroinbBAX87q5oXNY0REPMSdI3inA9cBZxtjltfexhpjbjHG3FJ7zBfAFiAVeBlw/7eeJTkw7QbYe3zryUYE+9EnIZK5qUrwRERkP1ftF5oAGGNcgL8H4/Eu1taWaB6e4NXUWGau28s5PWIJ8HV5IDgREe/ktoJ2a+2PHGMpBWutBW5zVwz12rMKNn0Lqz+E0ybAqD9BZMPm9Y3oEs0L32+hsKySMLVqFhERmAG8a4x5sfb+zcCXHozHu5Tlga2ut0Rz3Z4CcksqGdGl/vJNERGp36nXLSTpLPj1chh+O6z+AJ4eCFMmwLynIW0JVFcd8aGnd4mhusby09acJgxYRESasT8A3wG31N5WcRxdpk95xbVr4NXTZGX+Zmff8C5H7rApIiKHOzVbUgVHwXkPw5Bb4Mf/wObvYENtMzO/YIjvDwkp0H6okxD6hwAwILEVgX4+/JiaxegesR58AyIi0hxYa2uMMQuBzsB4IAanuZg0xL5Fzusp0ZybmkVSTAhxEcqXRUSOx6mZ4O0TkQAXPub8u3APbJ8LOxfBrkUw/zmY+yT4BkLSKOgxjsA+4xnUMUrz8ERETnHGmK7AhNpbFvAugLV2lCfj8joltdfTkLoJXmV1DT9tzeFnA9p5ICgREe92aid4BwtrC70vd24AlWWwcwGs/8IZ3dv4JSx7m9GJD/HXmUVkFJTRJjzQszGLiIinrAd+AMZZa1MBjDF3ezYkL1Rcm+AdUqK5YmcexRXVnN5Z8+9ERI7XqTcHr6H8AiFpJIx9FO5aBZe9DOlLmbj85/QyW/l67V5PRygiIp5zGbAbmGWMedkYM5pjNBaTehyhRHNuajbGwLDOmn8nInK8lOA1hDHQdzzc8BV+Lh8+CHiQhdNf4vLn5/HxsjTKq6o9HaGIiDQha+3H1tqrge7ALOAuoI0x5nljzHmejc6LlGQ7c9/9g+tsnrs5i17x4UQGa8UJEZHjpQTveMT3w0yejW/CAJ72f4bLcl7h7neXMuGlBdTUWE9HJyIiTcxaW2ytfcdaexGQACzD6awpDVGcdVh5ZklFFct25Ko8U0TkBCnBO16hrfGd9CkMnMQ1ldP4PuElNu5I58vVezwdmYiIeJC1Ntda+5K1drSnY/EaJdlOZ+uDLNqWS2W1VXmmiMgJUoJ3Inz9Ydx/YOxjtM+ey8ygP7Hh86eoqijzdGQiIiLeoyTrsEXO56Vm4ecyDO4UdYQHiYjI0SjBO1HGwOBfYiZ9RkBkHL8pf47yJ/rBov9CZamnoxMREWn+irMPK9Gctzmb/u1bEeyvRt8iIidCCd7J6jCciDu+54GwB9laFgaf/xYe7wnfPeysrSciIiL1K8muM4KXWVjO6vR8hndReaaIyIlSgtcIjI8Po8ZNZFzpA3w16BVIHAZzHoMnesNbV8DiV5XsiYiIHKyyFCqL68zBe3/JTqyFcX3jPRiYiIh3U4LXSM7q2ppBHaP4y/JIMi58Fe5YAkN/Bdmp8Nnd8O9u8MntUFXh6VBFREQ875BFzmtqLO8s3MHQpCi6tAn1YGAiIt5NCV4jMcZw/7heFJdXcdVLC0h3xcN5f4M7l8GtC2DorbDsTXjnSigr8HS4IiIinrVvkfPaEs05mzLZlVvKNUM6eDAoERHvpwSvEfVJiODNGweTVVjO+BfnszOnxGnG0qYHjPk/uPR52PYj/O8CyE/zdLgiIiKeU7JvBM+Zb/f2wh1Eh/hzfq+2HgxKRMT7KcFrZAM7RPH2L4dQWFbFlS/MJy3voI6a/SbCNe9D7nZ4fRxUFHsuUBEREU8qrh3BC45hd34pM9ftZfyg9vj76qOJiMjJ0F9RN+ibEMnUyUPJK63g0Rnr6+7sfDZMmAI5W2DWPzwToIiIiKftL9GMZupPO7HAhEGJHg1JRKQlUILnJj3iwrnh9E58sjydtemHzLnrdAak3AgLnoNdiz0ToIiIiCeVZIFxUeUXxtRFOzgzuTWJ0cGejkpExOspwXOjm8/sTHigL499veHwnef8FcLiajtrljd1aCIiIp5VnAXB0czamM3egnImDtHonYhIY1CC50YRwX78amQXvlufwaJtOXV3BobDuCcgcx388LhnAhQREfGU2kXOp69IJyrEn7O7t/F0RCIiLYISPDebNLwjbcICeOTL9Vhr6+7sej70GQ8/PAZZqZ4JUERExBNKsqkOjOLbtXu5oHdb/Fz6SCIi0hj019TNgvxd3Dk6mcXbc/lufcbhB5z/d3AFwHd/a/rgRETEY4wxY4wxG4wxqcaYPx7luMuNMdYYk9KU8bldcRZ7q0MprazmotPiPR2NiEiLoQSvCVw1qD2dYkJ48NO1lFRU1d0Z2gaG3w5rP4a0pZ4JUEREmpQxxgU8C1wA9AQmGGN61nNcGPBrYGHTRtgESrLZUOhPm7AABnWM8nQ0IiIthhK8JuDn8uGfl/VhR04J//qqnoYrw253Fnqd+WDTByciIp4wGEi11m6x1lYAU4FL6jnub8AjQFlTBud2NdXY0lzW5PlxYd84XD7G0xGJiLQYSvCayJCkaK4f1oHX5m2rv+HKGb+DLbNh8yyPxCciIk2qHbDzoPu7arftZ4wZALS31n7elIE1iZIcDJaM6lCVZ4qINDK3JXjGmFeNMRnGmNVH2D/SGJNvjFlee7vfXbE0F/eM6U5CqyDumbaS0orqujsH3QgRifDtX6GmxiPxiYhI82CM8QEeB37bgGMnG2MWG2MWZ2Zmuj+4xrBvkfPgGPq3j/RsLCIiLYw7R/BeA8Yc45gfrLX9am8PuTGWZiEkwJdHLuvL1qxiHv/mkFJN3wAYdS/sXg5rP/JMgCIi0lTSgPYH3U+o3bZPGNAbmG2M2QYMBabX12jFWvuStTbFWpvSunVrN4bceApydgPQo3MSxqg8U0SkMbktwbPWzgFyjnngKWZ4lxiuSmnPa/O2kVF4yJSKvuMhtg9881eoLPVIfCIi0iQWAcnGmE7GGH/gamD6vp3W2nxrbYy1tqO1tiOwALjYWrvYM+E2rmXrnaWBBvXq4uFIRERaHk/PwRtmjFlhjPnSGNPLw7E0mZvPSqKy2jJl4c66O3xcMOYfkL8D5j/rmeBERMTtrLVVwO3AV8A64D1r7RpjzEPGmIs9G517fbd+L98tXQdA5w4dPByNiEjL48kEbynQwVp7GvA08PGRDvTK+QVHkdQ6lJHdWvPWwu1UVB0y367TmdB9HPzwOBTu8UyAIiLidtbaL6y1Xa21na21f6/ddr+1dno9x45sCaN305bs4pdvLCE5pBwAExLj4YhERFoejyV41toCa21R7b+/APyMMfX+pffG+QXHMml4RzILy/ly9e7Dd573N6iugJla/FxERFqG1+Zu5Xfvr2BYUjTjewZBQAS4/DwdlohIi+OxBM8Y09bUzqw2xgyujSXbU/E0tTOTW5MUE8L/5m47fGdUEgy9BZa/DenLmjw2ERGRxlRZXcOjX23gzK6teWVSCv5F6RAe5+mwRERaJHcukzAFmA90M8bsMsbcaIy5xRhzS+0hVwCrjTErgKeAq6211l3xNDc+Pobrh3dk+c48lu3IPfyAM3/vLH4+4144dU6LiIi0QCt35VFSUc2EQe0J8HVBdipEq8GKiIg7uLOL5gRrbZy11s9am2CtfcVa+4K19oXa/c9Ya3tZa0+z1g611s5zVyzN1eUDEwgN8OX1edsO3xkYAWf/GXbMg3WHTccQERHxGvM3OwU6Q5KioaYacrYowRMRcRNPd9E8pYUG+HJlSgKfrdzNw5+tZXt2cd0D+v8c2vSEr++DqnLPBCkiInKS5m/JpnvbMKJC/CFvB9RUKsETEXETJXgedsfZyYzp3ZbX5m1j5GOz+cX/fmJvQe36eC5fOP/vkLcdFjzv2UBFREROQHlVNYu35TK8c20ftezNzs+YZM8FJSLSginB87CoEH+emTiAuX88mzvPTmZuajbPz9584IDOZ0PXMTDnMSjy/iUiRETk1LJsRx7lVTUM6xztbMh2FjnXCJ6IiHsowWsmYsMDufvcrpzXK5aPl6dRXlV9YOd5D0NVKcx62HMBioiInID5m7PxMTC4U5SzIXuTM888ONqzgYmItFBK8JqZKwYmkFdSyaz1GQc2xiTDkFtgyWuw+gOPxSYiInK85m/Opne7CCKCate829dB01kpSUREGpkSvGbmjOTWxIYHMG3Jrro7Rt8PicPg41shbYlnghMRETkOpRXVLNuZy7Ckg0brsjerPFNExI2U4DUzLh/Dz/onMGtDJhmFZQd2+AbAVW9BaBuYMhEK0j0XpIiISAMs2Z5LZbVl6L75d5WlkL9TCZ6IiBspwWuGrhiYQHWN5ZNlhyRxITEw4V2oKIIpV0NFiWcCFBERqUd+SSWvz9tGbnEFAPM2Z+HrYxjUsXb+Xc4W52d0Zw9FKCLS8inBa4a6tAmlf2Ik05bswlpbd2dsT7j8Fdi9Amb80TMBioiI1OODpbt4YPoazvzXLJ6fvZkfU7PomxBBaICvc0DWJudntJZIEBFxFyV4zdQVAxPYsLeQ1WkFh+/sNgZG/AaWvg6rpjV9cCIiIvVIyyslwNeHwR2jeGTGelbuyj+wPAIcWCIhKskzAYqInAKU4DVT4/rG4+/rwz++WEd6XunhB4z6M7QfCp/+GrJSmz5AERGRQ6TnlZLQKohXJg1iyi+HctFp8Vw5sP2BA7I3Q1g8BIR6LkgRkRZOCV4zFRHkx33jerJ0Ry6j//09z85Krbs2nssXrngFXH7w/iSoLDvic4mIiDSF9LxS2rUKBmBY52ientCfjjEhBw7ITtX8OxERN1OC14xdN7QD3/7mLM7sGsO/vtrA5c/Pq5vkRSTAz16Evatg+h1w6Hw9ERGRJpSWV0q7yMAjH7BvDTwREXEbJXjNXPuoYF68LoUnr+7H6rQCXp6zpe4BXc+Hs++DVe/BzIc8E6SIiJzyyiqrySqqID4iqP4DSnKgNEcJnoiIm/l6OgBpmEv6teOrNXt4+rtULj6tHYnRwQd2nvFbyN8FPz4OEe1g0E2eC1REvEfGetgxD3b+BOnLoG0fGHE3xPbydGTihXbnO1MF4iOPkODta7ASow6aIiLupATPi9w/rhffb8jkgemreXXSIIwxzg5jYOxjULgbvvg9hLSBnhd7NlgRaZ5qamDTVzD3Sdgx39kW0hriToP1X8Cq96HrBXDW76HdwGM/X1EmrJ4GK6ZA4V6I6wvx/Z1bpzPBP+TYzyEtwr6GYMdM8DSCJyLiVkrwvEjbiEDuPrcrD3++jq/W7GFM77gDO12+cMWr8PrF8P71cN7fYeivnOTvaMoLIXOD8wGvVQf3vgER8ZySHGdZlUX/hawNEJEI5/+fU+YdleT8rSjJgZ9egoUvwMtnQ+/LYfQD9f9tKMmBz38Laz8BW+0kdEkjYc9KSP0WbA3cvUYJ3ikkrTbBS2h1lATPxxciE5swKhGRU48SPC8zaXhHPliaxl+nr2VEcusDi8eC80Hq+unw4WT46k+QuQ7G/ht8/Q8cU10Jm76Gle9B+lLI2+FsNy5IuQFG/hFCYpr2TYlI47EW9q6BgnQoL4CyfNj6PWz4EqorIK4fXP4K9LzU+WLoYMFRzt+AYbc5I3zznoF1n8HgX8KgGw+sXbZzkdO9tzjDObbfNdCm+4HnqSiGPashvF2TvW3xvLTcUoyB2PAjNFnJToVWHZ3uzyIi4jbGelnnxZSUFLt48WJPh+FRS3fkctlz87j5zCT+NLbH4QfU1MCsv8MPj0FMN+eDV0gbwDrfthdnOvc7nQFtekDr7rB5Fix5zUkSh/4KOpzulFoFtWrqtyciJyJnC6x8H1a+Czmb6+4Ljoa+V0G/ic48u4bKT4Pv/gYrpgIWEoc7I3U/vegkb+Nfd+67kTFmibU2xa0v0oJ45Bq58CVY/Ap7CsooqagiKaEdDLnF+RLBp7aX285F8N51TinwxHebNj4RkRboaNdHJXhe6p5pK/hwaRoz7jqDLm3C6j9o9Qew6FXnW/biTKgogeRzof+10OWcw79FzdwA39wPG2cc2BbZAfpcAQOuVwmnSHNUlAnf/hWWvwUY6DgC+lzpNEoJCIOAcKcE+9DRuuORnwYrp8Lyd5xRmG4XwqXPNskXQErwjk+TXyPTl8HLo6FtbxbmhVNdYxkelgFZGyG2t5Porf/Mua4Ex8DlL0Pns5suPhGRFkoJXguUXVTOqMdm0ychgrduHHKg4crRWHvsOXkAxVmwe4Uzl2b7vNr5NBaSz4PEIc6HuqBW0LavFqwV8ZSaaljyP2d5lIpiGHorDLnZWR/TXayFwj0Q1rZhf0sagRK849Ok18jqSnhplPMF4m0LGfXscnrGh/Ps1afB6g9h9j+ckeXACDj91zD4ZggIbZrYRERauKNdHzUHz0tFhwbwu/O7cf8na/h81W7G9Y0/9oMa+oEsJAa6jHZuI+6GvJ2w9A1Y9qbTfW//87lg8GRnzk5Q5Im9ERE5fptnwdf3wd5VTqfKsY9B627uf11jIDzu2MfJqWHeU87v4FVvYQMjSMsr5byeseDjgr5XQq+fOZ1a2/bRNUJEpAkpwfNi1wzpwLuLdvLwZ+sY1a0NIQFu+s8Z2R7O/rNzqyyF0jwoyYJFrzjd9lZPg3MfgtMmNNm3+iJeKXODs5xJRbFzKy+sbYRS4Mx/7TwK4vofmLd0sLICZ1T9x/9A6jdO+fQV/3M+ROv/O69kjBkDPAm4gP9aa/95yP5bgNuAaqAImGytXdvkgdYnaxPMfgR6XAw9LiKrsJyKqpq6SyS4fJ253iIi0qSU4Hkxl4/hoUt6c/nz87j5zSU8O3EAEcFu7k7mF+TcwuPgov/AwOudtfc+/hXsXOiMJKhDmkhdZQVOZ9tlb9W/37icZQW++5vTECVxmDMKUl3pfKmSvRnyazveBkbAeQ87o+e+AU33HqRRGWNcwLPAucAuYJExZvohCdw71toXao+/GHgcGOPWwGb8yVn4/lgK0sAv0PmbTwPWwBMRkSajBM/LDezQikev6MufP1rFz56byyuTBtEppgnXnYrvDzd87Xww/fFxyNnqdNZT900Rx5bv4ZPbnA/Ep9/lzGX1D3Fu+5qg+AU568pt/s6Z85q2BIwPuPydZU7aD4KUSdCm14F5sOLtBgOp1totAMaYqcAlwP4Ez1pbcNDxIYD7J837hzhfIhxLUCsYeguExQIHJ3hHWCJBRESajNsSPGPMq8A4IMNa27ue/QanNGUsUAJMstYudVc8Ldn4lPZ0iArmlreWcOmzc3n+2gEM79yEa9n5+MA5D0BMMky/E/57LgycBG17O13UjrWunrWQsRYi2kNgeJOELNLoampg1yJYN91pUlScCUV7oTQXors4X4S0H3Tkx4dEO/OW+l7ZdDGLJ7UDdh50fxcw5NCDjDG3Ab8B/IF6208aYyYDkwESE09yEfGz/3JCD9u3yHk7jeCJiHicO0fwXgOeAd44wv4LgOTa2xDgeeq5uEnDDEmK5pPbRnDj64uY9OoinriqHxf2beJmCP0mOvOCPv4VfP3nA9vb9oUBP3datx880b6mBtZ/Cj88DruXg4+f0+K921jofbnzgVdkn7QlEJ3cPL4EqCiG9Z9D/i4oyXYSua0/QNEe5/c4vj/EdHV+n6OSYOAvwD/Y01GLF7LWPgs8a4yZCPwFuL6eY14CXgKni2bTRuhIzysjxN9FRJBK9EVEPM1tCZ61do4xpuNRDrkvweHqAAAgAElEQVQEeMM66zQsMMZEGmPirLW73RVTS5cYHcy0W4Zz4+uLuH3KUnJKenPd0CZeu67j6XDXSmephb2rIX2504Tli9/B13+BhEG1c/QM5G5zFmSOSoIxjzglbBu+hC9/D/Ofhus/09p74lj/OUydCK06whWvQruBnomjONtZ5Punl5yROQC/YGd9r/aDoeclzlqTDSlxk1NdGtD+oPsJtduOZCrOF6HNUlpeCfGRQQ1bskdERNzKk3Pw6itPaQcowTsJEcF+vHnjEG5/Zyn3fbya3OIK7hyd3PSBhMRA0kjnNuIuJ9Fb+obTBbCyFLAQ0c7pzNnzUqehBMB5f4MdC+Cd8fC/sXD99ONba69wjzPnKXcbhLaG0LYQ2sZJKo0P+PhCSBsIjlLnQW9RkO7MYWvdAyqK4JXzYPQDzqhw5gbIWANl+c78tLa9ISyu8f/blubBj0/AwhehqtQZZR5+B8T108icnKhFQLIxphNOYnc1MPHgA4wxydbaTbV3LwQ20Uyl55WpwYqISDPhFU1WGnV+wSkgyN/FC9cN5A8frOTxbzbSNjyQ8YPaH/uB7hTfz7k1ROJQZ/TujUvgtQvh2g+cD/eHto631ukuuGsRpC2GbT9C5vqGvYZfCEQmQu/L4Mzfe0+yV1kG3z4AfcZDgodGsZpSTTV8OBmqyuGqN50vDqbfAd/c59zqExDhdJc0PgeSepevUzrZbgCMvh/CG7BuJDivu+i/MOdfTpLX50o447fQpnvjvUc5JVlrq4wxtwNf4SyT8Kq1do0x5iFgsbV2OnC7MeYcoBLIpZ7yzOYiPa+U3u00ci0i0hx4MsFrcHlKc5hf4G38XD48enlfMgrK+cvHq+ncJpSBHbyo815cX5j0ObxxMTw/HDBOt8GAUKipcj54V5U5NwD/MKdErt9EZ9SwdXenTLRoj/OzpspJFmqqnPlSeTtgzyqY9XcnuTvz9x58s8fh27/Wrj34Idw8p+UvOj33P7DtB7j4GaeJD8D4N2H1B5C33Rm1a9PDKYnMWAt7VkP2Jmd5AVsDttr5715d6fyurP4Q1n0KZ/0Bhv6q/iU9rHWW/Fj5Hqz50CnF7Hw2nPOg83sp0kistV8AXxyy7f6D/v3rJg/qBJRVVpNdXEE7ddAUEWkWPJng7ft2cipOc5V8zb9rXL4uH56Z2J9Lnp3LzW8u4dM7TicuwotKaGJ7wk0znflXZflQlgflRc5ojMvfubXu5szri+l6oMxzn4h2zu1IamqchjDfPQwhrZ3On8ejcC+ses8ZVaupckaLelzkxO0Oqd/Cwued10idCe9f74x0+vq75/U8bdU0+O7vzkLe/a89sN0Y6HPF4cd3GO7cjiZni7PO1zf3weJXnefpcTG07eOUD6/+0Enq8naAbxB0H+uUgiaNbMx3JuIVcooreH/xTvYWlJNZVE5JeRV/vbgX7aPqliXvWyKhXSsvur6IiLRg7lwmYQowEogxxuwCHgD8AGoXbv0CZ4mEVJxlEn7hrlhOZZHB/rz88xR+9uxcJr+xhPduHkaQv+vYD2wuWnWAYbe657l9fOCSZ5wuiJ/d7Sww3eOihj02bye8fhHkbq27ffY/oOsYGHG3U2raWIqz4ONbnVLVy16GDV/AtBucbqVj/9V4r9NYaqph1ftOo52Ybs6IamhrZy7mrkVOMhUQ7nRdbdXBSbD2NeApK4Av74EVU5xt4/7TeCW0UUkw8V3YMAPmPwM//NspvwyIgPJ8p5wzaSSMvBd6jHPWqRM5Rb2/eCf/9+V6QvxdxIQFkJ5XynOzN/N/l/Wpc9y+JRLivekLRBGRFsydXTQnHGO/BW5z1+vLAV1jw/jP1f2Z/OZibn17CS/9PAU/l8+xH3gqcPk5C7O/fjFMuxEmfeaUeh5Nzlbn+LJ8Z22zdgPAuJwRxp9edkooXz0fOp0F5z188mV91jrrC5bmwrUfOoti974cdi2BBc86Cw73ver4mtE0VH4abJ/r3IwL+o6H9kOOnnBtngVf3wd7VzmPsdV197sCILaXMwKaOtNpWgLgHwodToesDc4I2ll/cEpn6yujPFndxji34ixY/5nT2Kf9EGc0T8tziACQWVhOkJ+LNQ+NAeCPH6zkw6W7uOf8brQKOVA5cGCRcyV4IiLNgVc0WZGTd27PWP5+aR/u/WgVv31vBU9c1Q+Xj/MhfXVaPkH+Ljq3DvVwlB7iHwIT34P/joYpE+CmbyGqU/3HZm6ENy+FyhK4/hNnvbN9gqNg5B9g+O2w5HWY8yi8eKYzLzDlBmcOWFmBMzcsvh9EJBw7tppq+Ope2PA5nP8Pp0vkPuc+6Mw3+/4R5xaVBMnnO41jEgad3KhX6kz45n5nBA6cEa6aSlj8ivM6PS52Rjz9g52ErXA35G6HzHXOenWRic5yBj0ucebKZa535j62Pc0ZrdtXVmotFGXArp9gy2zn5hsIv/iycUdAjyQkxinNPd7yXJFTQE5xBVEHJXI3jOjE1EU7eeenHdw2qsv+7Wl5ZRgDbSM0B09EpDlQgncKmTgkkfzSSh6ZsZ6wQF9SOrbi9XnbWb4zj/BAXz667fRTN8kLiYZrpjlJ3jvj4cZv6i7KXpTplPMtfsUp27v+UydRqY9/iFNW2m8CzHnMWTNt+duHHxcW74wWdh0D3S6o+3oA5YXOqOKmr2DobTDkV3X3u/zgmvedeWWpM2HTN868soXPQ0QidL/QSaQqS52EtLzQSTDLCyC6i9MNsnW3us+Zu91JKNd/Bq06OUllxxEQ29t5nnXTYfk7MPdJ4JB+R2FxTsnluX+DwZPBr/bDXnTnI48uGgNhsU5pbEPLY0WkSWQfkuB1jQ3jjOQY3pi/jV+ekYS/rw/WWlbtyiM2LFCVISIizYRxKiW9R0pKil28eLGnw/Bq//xyPS98vxmApJgQxg9qz8tzthAa6MvHt55ep/TmlLPtR3jjUqdcr9elThlm4W5YMdVJkvpfC2f98ejNWw6VtwN2r3QSw4AwZwQvbanTqXH7PChMdxrGdD4b4gdAYLhTrrjwRacz5NhHYdBNDXutsgKnKc3qac5omHE5o2y+Qc5r73vunT8576f35U6jkfRlsG2uE5PLz0n+ht1+IEk7VE218/iKYmdkMjTWKR0VaWTGmCXW2hRPx+EtGvMaedHTPxIV4s/rNxwoW5+1IYNf/G8RT17dj0v6teOJbzby5MxN/Hp0Mnef27VRXldERI7taNdHjeCdgv4wphsdo4OJjwxiRJcYfHwMgzq2YsLLC7n5rSW8deMQ/H1P0W9iO46Ai5+GT26F7T8623wDIfk8OPs+aH0CH2AiE53bwRJSYMhkp0QxbQms+QjWToeNMw4c4x8G17wHXc5p+GsFhjsjh/0mOM99pDLN4myY95QzZ3D1NKcDaNu+MPQWGHLLsctHfVwHElYRaZFyiitIblO3quOs5NYktQ7hlR+3kl9ayZMzNzE+JYG7zkn2UJQiInIojeDJfp8sT+PXU5czvHM0oQG+bM0qJrekkr9c2INL+x/HiFVLUJzlJEiB4c6i2U2lusopoSwvgMDIw8s2G1txljPPLr6/s5acSDOjEbzj05jXyB73zeCaIYn8ZVzdpV/eWrCdv3zszM89p0csL1w7AF+VZ4qINCmN4EmDXNKvHbtyS3l+9mbiIgLpFBNCcGE5d7+3nJKKaiYOSTz2k7QUITGeeV2Xr9OsJTiqaV4vJEZrvInIYUorqimtrCYq9PCS/csGtOOpmZvoGBPCMxP7K7kTEWlmlOBJHbeN6lKnO1pZZTW3vr2Uez9aRUlFFTedkeTB6EREpClkF5cDEBV8eIIX7O/Lt789ixB/3/3dmEVEpPnQ125yVIF+Ll64diAX9onj4c/X8d8ftng6JBERcbOc4gqAOl00DxYe6KfkTkSkmdIInhyTv68PT17djxpr+ccX6+jeNpwRyR4qYRQREbfbl+BF11OiKSIizZtG8KRBfF0+PHblaXRpE8odU5ayM6fE0yGJiIibHBjBa8ImUyIi0iiU4EmDhQT48uJ1KVTVWG55awllldWeDklERNzgWCWaIiLSfCnBk+PSKSaE/1zVjzXpBdwxZdn+DwEiItJyZBdX4OtjCA/UTA4REW+jBE+O2+gesdw/riez1mcw+t+zmbZkF962nqKIiBxZTlEFrUL8MUaNVEREvI2+mpMTcsOITpzeJYZ7P1rF795fwTsLt3NOz1gGdYyiT7sIAv1cng5RREROUE5JBdEqzxQR8UpK8OSEdWsbxvs3D+PdxTt55cetPDpjAwCBfk5DlnF94/cfa63lgelr2LS3iJevTyE0QL96IiLNVU5xhebfiYh4KX3KlpPi42OYMDiRCYMTySmuYMn2XF74fjN3v7ucqGB/hndxllP411cbeGP+dgBufXspr1yfgp9LFcIiIs1RTnEFveLDPR2GiIicAH3ClkYTFeLPuT1jeXXSIJJiQpn85hLWpOfz2tytPDd7MxOHJPJ/l/VhzsZM/vLR6iPO2/t0RTqLtuU0cfQiIrJPdlG5RvBERLyURvCk0UUE+fHaDYO47Ll5XPPfheSXVnJuz1j+dklvXD6G9LxSnv4ulXatgrhzdHKdx/60NYc7py4jMsiPWb8bSWSwPmCIiDSlyuoaCsqqlOCJiHgpjeCJW8RFBPHGDYOxFgYmtuLpCf1x+Tjd2H5zblcu69+Ox7/ZyJSfdux/TElFFb+ftoLYsEAKyqp47OsNR3z+3OIK7n53OSt25rn9vYiInEpya5e/UZMVERHvpBE8cZvk2DDm3DOKEH8XvgfNtzPG8M/L+5JTUsG9H60iLNCXcX3jeXTGBrZnl/Du5KHMWLOH1+Zt46qURPokRNR53oKySn7+6k+sSssnLbeU924Z1tRvTUSkxcop2bfIeYCHIxERkROhETxxq4ggvzrJ3T7+vj48f81AUjq04u53l/PENxt5bd42fnF6R4YkRXP3uV2JDgngvk9WU1NzYK5eSUUVN/xvEev3FDC2T1t+2pbD0h25TfmWRERatJyifQmeRvBERLyREjzxmCB/F/+9fhDJbcJ4cuYmOkYHc8/53QEID/Tj3rHdWb4zjxfnbGHBlmy+WrOHm15fzNIduTx5dX/+dcVpRAT58dL3Wxr8mnNTs9iaVeyutyQi4vWy95VohirBExHxRirRFI+KCPLj9RsG8/Dna7lxRCeC/A8skP6z/u2Y+tNOHpmxfv82HwOPXXkaY/vEAXDt0ESem72ZrVnFdIoJOeprfblqN796eynGwOjusdx0RieGdIrCGOOeNycicgTGmDHAk4AL+K+19p+H7P8NcBNQBWQCN1hrtzdFbDm1CV4rNbkSEfFKSvDE41qHBfDk1f0P226M4blrB7B4Wy7hgb6EB/kRGx5I67AD80KuH96Rl3/Yyss/bOEfP+tzxNdIzSjid++voF/7SM5MjuHNBdv5dt1eOrcO4ZwesYzuEcuAxMh6y0lFRBqTMcYFPAucC+wCFhljpltr1x502DIgxVpbYoz5FfAocFVTxJe9P8Hza4qXExGRRqYET5q1mNAAxvRue8T9bcICuXxAO6Yt2cVvzu1KTOjhTQGKy6u45a0lBPq5eP7aAcRFBHHrqC58vCyNz1bu5tW5W3lxzhbiIgJ56bqUw5q6nIjVafnERQQSXU88InLKGwykWmu3ABhjpgKXAPsTPGvtrIOOXwBc21TB5RZXEBlc//xpERFp/tz619sYM8YYs8EYk2qM+WM9+ycZYzKNMctrbze5Mx5pmW46I4nK6hoe+XI9pRXVdfbV1Fj+8MFKtmQW8fSE/sRFBAEQ6Ofi6sGJvHXTEJbedy7PThyAjzGMf3E+367dW+c5yiqr6zR6OZZXf9zKRc/8yOQ3lxxxMXcROaW1A3YedH9X7bYjuRH40q0RHSSnuEINVkREvJjbRvAaWIIC8K619nZ3xSEtX+fWofx8aAden7+dOZsy+fXorozs1pqPlqUxddEOduaUcs+YbgzvElPv48MC/biwbxyDOrXiptcXM/nNxfzu/G74GMOs9Rks2Z5LbHgglw9M4MqBCbSPCq73eWpqLA9/vo5X524lqXUIS7bn8vXavZzf68gjkCIiR2OMuRZIAc46yjGTgckAiYmJJ/2a2cXlWgNPRMSLubNE85glKCKN5cFLenNh33gembGeez9atX/7sKRo/jCmOxfWNmU5mjZhgUydPJQ7pyzn0RnOIus94sL5xekdWb+nkKe/28RTMzfRPzGSEV1iGN45hh5xYezKLWVzZhGfrtjNt+v2Mml4R+4d24MLnpzDozPWM7p7mzqlThVVNfj7qvRJ5BSWBrQ/6H5C7bY6jDHnAH8GzrLWlh/pyay1LwEvAaSkpJx02UBOcQUdo4/etEpERJovdyZ49ZWgDKnnuMuNMWcCG4G7rbU76zlG5JgGd4pi2i3DmLkugw17CxnbJ+6YnTUPFezvy4vXDeSnrTl0igmhbUTg/n3peaV8tCyNb9ft5bnZm3n6u9Q6j/VzGf5yYQ9uOiMJgD+M6c7kN5fw3uJdTBySSEVVDfd/spp3F++kb7sIxvSO47xesYT4+1JYVklheRWJUcF15hHml1byxDcb+Xh5GsltQhnUMYoBia3ILCpnVVo+a9LySekYxb1je+DyUTdQES+xCEg2xnTCSeyuBiYefIAxpj/wIjDGWpvRlMHlFFcwsEOrpnxJERFpRJ5usvIpMMVaW26MuRl4HTj70IMau/xEWi5jDOf0jOWcnrEn/BwuH8OwztGHbY+PDOK2UV24bVQXCsoqWbglhy2ZRbSPCiapdQgdo0MI9DuwzMO5PWNJ6dCKJ77dyFndWvObd5ezcGsOP+vfjs2ZRTwyY32dJSD2vfaZyTFcNiCBsspqHpmxnuziCsb0akt6fhkvztlCde18wLBAXzrFhPDKj1spLKvkn5f1xac2yVu0LYc35m9n4uDEet+LiHiOtbbKGHM78BXOMgmvWmvXGGMeAhZba6cD/wJCgfdrl3LZYa292N2x1dRYcksqNQdPRMSLuTPBO2YJirU2+6C7/8VpA32Yxi4/ETlZ4YF+nNszFjhyImmM4U9ju3P58/MZ/e/Z1Fj4z1X9uLS/00thV24JczZmAU6yFuzvYvH2XD5elsYdU5YB0D8xktd+MZje7ZzOniUVVaxJL6BNWACJUcEYY/j31xt4+rtUXD4+3DeuB//6agOvzduGAT5dkc6FfeP489gexEcGufWcHCqrqJzi8io6qNRL5DDW2i+ALw7Zdv9B/z6nyYMCCsoqqa6xRIWoA7CIiLdyZ4LXkBKUOGvt7tq7FwPr3BiPSJMb2CGKi0+LZ97mLF68LqVO2VNCq2AmDqk7Ij26Ryy/O68bC7ZkU1pRzdnd2+wflQOnhHRQx6g6j/nNuV2pqrE8P3szn61Mp7Csip8P68CvRyfz5oLtPD97MzPX7aV9q2DKq2qoqKohJsyfIZ2iGZoUTfe2YZRXVVNQVoUBTkuIrPOaJ+Kzlenc++EqKqstb944mJRDYj5UeVU1m/YWsXZ3ATGh/pzd/cRHYI+musY6zW/W7CGnuIIHL+lFWKDW+hLZZ98aeGqyIiLivdyW4DWwBOVOY8zFQBWQA0xyVzwinvL4+NOosTS4sYrLx3D6ETp+1scYwz3nd8PHwLdrM3jgup4M7+w8/q5zunLFwASenbWZ/NIK/F0++Pv6sDOnlDcXbOeVH7ce9nxXpbTn/y7rUyfJq6quobLaEuTvOuz4gxWWVfLA9DV8uDSN09pHUlhayS/+t4gpk4fuH4UE2JlTwqJtOSzZnsvSHXls3Fu4v/QU4I8XdOeWszo3+Bwcy86cEl75cSufrUwnq8g5D9XWsj2nhNd+McgtSV5NjeX1+dv4ctUe/nFZb7q0CWv01xBpbDm1CZ5KNEVEvJfxtnW6UlJS7OLFiz0dhojXK6usZsXOPLZkFRMS4EtYoC8LNmfz4pwtjE9J2D+n7/uNmdz74SoyC8s5s2sMF/aNo29CJMt25DFvcxZLt+dSWFZFWWU1pZXOOoS3j+rCHaOTySws58oX5lNaWc0bNwxmU0YhUxbu5KdtOQCEBvjSPzGSPu0i6BkfTve24Tw1cxPTV6Rzz5hu3Dqyywm/v/zSSjbuLeSN+dv5fGU6Lh/Deb3ackHvtpzVtTVzU7O4/Z1lnNY+sk6SV1xeRZCf66ijmKUV1Xy3PoPUjCK2ZxezM7eEDtEhXNIvnmFJ0aTnlfG7aSv4aWsO/i4fQgJcvH7DYPomRB4z7u3ZxUxbsou2EYF0iw2jc+tQSiqr2Z1XSnp+GaEBLnrHR9AmPPCIz5FTXEFEkJ9HGu9kF5WTmlHEpowiJgxOPOkYjDFLrLUpjRRei3ey18gZq/dwy1tL+OyOEXW+lBERkeblaNdHTzdZEREPCfRzMSQpmiFJB5qwjOrWhkA/F0/O3ERV7Yjah0vT6Nw6hIlDEvlqzR6+XXegoV9UiD+DO0YRHepPoJ+LQD8fzukRS/9EpxQ1PjKIt28awpUvzmfc0z8C0DE6mD+M6c6o7q1JbhN2WALw+PjTMAYenbGBmhrLbaO6UNtk4pjWphdw3yerSc0oIr+0EnCSyF+ekcQvTu9UpyvqmN5xPDMRbn9nGRNeXkB8RBBr0gtIyyulfVQQVw9K5MqUBNqEHXhMWl4pb87fztRFO8grcZ4/LiKQhFZBfLV6D9OW7CImNICSiipcxvDoFX0Z3DGKa19ZyISXFvDy9Sn7R1fr8+Wq3dwzbSWF5VXHfK+twwLoHR9O/8RW9E+MpF1kEN+tz2D6inRW7sqne9sw/v6zPg3qhrgrt4RnZ6XSr30k41PaN/h871NdY3n0q/W8v3jX/hEggBFdYuh4nJ1sxbNySzSCJyLi7TSCJyKH+c+3G/nPt5vw9TH8amRnbhvVhUA/FzU1lmU789iwp5ABHSLp2iasQfP1Nu0t5M0F2xnTqy1Dk6KP+ZjqGsvv3l/BR8vSuLBPHH//WW8ig50PnGWV1Xy6Ip2YsABGdWuz/zFbMou48oX5uHwM5/dqS2JUMO2jghnWOZqIoCOXYH65ajd/+mgVUSH+9IwLJ7lNGAu2ZDN/Sza+PqZ2BK2K4vJqcksqMMD5vdpy3bAODEhstb9zalllNbM3OAmWy8eHP13QfX9jmz35Zfz81YVsyyph/KAExvaJY3DHqP3rIxaUVfL41xt5bd42TmsfyTMT+jvnLaOQLZnOCGtcRCBxEUEUlFWyOi2f1WkFrNyVR2pmEQf/Ge/TLoKR3VozbckudueXcfWg9tx0RicigvwJDfAl0M9nfwJXVlnNS3O28NzsVMqrarAWzuzamkcu70NcRMOa8pRUVHHnlOV8u24vF/Ruy8AOrUiODaNLm1DiwgNPej6nRvCOz8leI5+dlcq/vtrA+r+NqdMVWEREmpejXR+V4IlIvWas3k2nmFC6tfXM3LHqGsuLczbzxDcbaRXsz8OX9mZrVjEv/7CVrCJnzedL+8Xz4MW9Kaqo4srn51FeVcN7twyjc+vQ43ota+1ho1ZbMouYumgnW7OKCQ3wJSTARWxYIJcNTKDdCXQkzSup4IHpa/h6zV5KK6uJDvEnOtSf3Xll+0fsbhzRiT+M6d7g+ZrgJIcrd+azNbuY0ztHk1T73ovLq/jPtxt5de62OvMbfX0M4UF+RAT5UVxeRUZhOWP7tOVPF/Tgu/UZ/PPL9fj6GG4Z2ZnhnaPpFR+Bv68PpRXVrNtTQGpGEa2C/UloFUSwv4s7pixjdVo+94/ryaTTOx33eTkWJXjH52SvkQ99upZ3F+1gzUNjGjEqERFpbErwRMRrrU7L5+53l7Mpowhwyv5uHdmZxdtzeWrmJmJCAwjw8yGnuIKpk4fSK755zxsqqahi9oZMZqzeQ2llNfERgcRFBtG/fWSdctnGkppRxKq0PIrKqigqr6awrJL8UudWWV3DdUM7MiL5QNno9uxi/vDBShZsceZJBvr5EB8RxLbsYmrquVwE+bl4akL/2mVDGp8SvONzstfIu6YuY8mOXH6457AlaUVEpBnRHDwR8Vq920Xw6R0j+GR5Gl1jw/bP7xveJYaR3Vrzm/dWkJZbyps3Dm72yR04S12M7RPH2D5xTfJ6XdqE0qVNw0c0O0SHMHXyMDIKyli8PZfF23JJyyth3Gnx9I4PJzk2jILSSnbllrI7v5QRyTF0bxvuxncgTSm7uIKoYM2/ExHxZhrBExGvVlFVQ2FZJdGhWpi5JdII3vE52WvkzpwSSiur6RqrZT1ERJozjeCJSIvl7+uj5E6kkbSPCvZ0CCIicpIaPpNfREREREREmjUleCIiIiIiIi2EEjwREREREZEWQgmeiIiIiIhIC6EET0REREREpIVQgiciIiIiItJCKMETERERERFpIZTgiYiIiIiItBBK8ERERERERFoIJXgiIiIiIiIthLHWejqG42KMyQS2n+TTxABZjRCOt9N50DkAnYN9dB6a5znoYK1t7ekgvIWukY1G58Ch86BzADoH0DzPwRGvj16X4DUGY8xia22Kp+PwNJ0HnQPQOdhH50HnQBz6PdA52EfnQecAdA7A+86BSjRFRERERERaCCV4IiIiIiIiLcSpmuC95OkAmgmdB50D0DnYR+dB50Ac+j3QOdhH50HnAHQOwMvOwSk5B09ERERERKQlOlVH8ERERERERFqcUy7BM8aMMcZsMMakGmP+6Ol4moIxpr0xZpYxZq0xZo0x5te126OMMd8YYzbV/mzl6VjdzRjjMsYsM8Z8Vnu/kzFmYe3vw7vGGH9Px+huxphIY8w0Y8x6Y8w6Y8ywU+13wRhzd+3/C6uNMVOMMYEt/XfBGPOqMSbDGLP6oG31/nc3jqdqz8VKY8wAz0UuTUnXSF0jT+VrpK6Pp+b1EVreNfKUSvCMMS7gWeACoCcwwRjT07NRNYkq4LfW2p7AUOC22tRMMxsAAAXxSURBVPf9R2CmtTYZmFl7v6X7NbDuoPuPAE9Ya7sAucCNHomqaT0JzLDWdgdOwzkfp8zvgjGmHXAnkGKt7Q24gKtp+b8LrwFjDtl2pP/uFwDJtbfJwPNNFKN4kK6Rukaia+T/t3d/oZpVdRjHv08zI4wKoykM5ijHaOgiKkcipCJk6iolg6IpjGSoi7zoz0WldRNB3USETEpQmkwkSZhNcyWFSgmVmWmadhPTlCNndCRmaipGs18Xe02+HD2Yp3PePWev7wdezt7r3eyz9rvWeR/W3mvvYz72mY8wsYzsaoAHvBn4Q1UdqKpngNuAK0eu05qrqsWq+k1b/hvDF9b5DMe+t222F3jPODWcjyTbgMuBm9p6gJ3A7W2THj6DLcDbgZsBquqZqjpKZ30B2AhsTrIROB1YZOJ9oap+BvxlSfFy7X4l8J0a/BI4K8l586mpRmRGmpHdZqT5+F/d5SNMLyN7G+CdDzw+s36olXUjyQKwA7gP2FpVi+2tw8DWkao1L9cDnwX+3dbPAY5W1b/aeg/94SLgCHBLm4ZzU5Iz6KgvVNUTwFeBPzME1zHgAfrrC7B8u3f/Xdmp7tvdjOw6I81H83GpdZuRvQ3wupbkTOAHwKeq6q+z79XwONXJPlI1yRXAU1X1wNh1GdlG4BLgG1W1A/g7S6abdNAXzmY4+3YR8CrgDF44LaM7U2936aWYkd1npPloPi5rvbV9bwO8J4ALZta3tbLJS7KJIbhurao7WvGTJy8pt59PjVW/OXgr8O4kBxmmHe1kmGt/VpuGAH30h0PAoaq6r63fzhBoPfWFdwJ/rKojVfUscAdD/+itL8Dy7d7td2Xnum13M9KMxHwE83GpdZuRvQ3w7ge2t6cBncZw4+j+keu05to8+puB31fV12be2g9c3ZavBn4077rNS1V9rqq2VdUCQ7vfXVVXAfcA72ubTfozAKiqw8DjSV7bit4BPEZHfYFh6smlSU5vfxsnP4Ou+kKzXLvvBz7cnhR2KXBsZpqKpsuMNCMX6DQjzUfAfFxq3WZkd//oPMm7GOaZbwC+XVVfHrlKay7J24B7gUd4fm795xnuMfg+cCHwJ+D9VbX0BtPJSXIZ8OmquiLJqxnOVr4SeBD4UFWdGLN+ay3JxQw30Z8GHAB2M5zs6aYvJPkisIvh6XkPAh9lmD8/2b6Q5HvAZcC5wJPAF4B9vEi7t2C/gWFqzj+A3VX16zHqrfkyI83InjPSfOwzH2F6GdndAE+SJEmSpqq3KZqSJEmSNFkO8CRJkiRpIhzgSZIkSdJEOMCTJEmSpIlwgCdJkiRJE+EAT5qDJM8leWjmdd0q7nshye9Wa3+SJM2L+Sitvo0vvYmkVfDPqrp47EpIknSKMR+lVeYVPGlESQ4m+UqSR5L8KslrWvlCkruTPJzkriQXtvKtSX6Y5Lft9Za2qw1JvpXk0SQ/TrK5bf+JJI+1/dw20mFKkvSymI/SyjnAk+Zj85IpKLtm3jtWVa8HbgCub2VfB/ZW1RuAW4E9rXwP8NOqeiNwCfBoK98O3FhVrwOOAu9t5dcBO9p+PrZWBydJ0gqZj9IqS1WNXQdp8pIcr6ozX6T8ILCzqg4k2QQcrqpzkjwNnFdVz7byxao6N8kRYFtVnZjZxwLwk6ra3tavBTZV1ZeS3AkcB/YB+6rq+BofqiRJ/zPzUVp9XsGTxlfLLL8cJ2aWn+P5+2svB25kOJt5fxLvu5UkrRfmo7QCDvCk8e2a+fmLtvxz4ANt+Srg3rZ8F3ANQJINSbYst9MkrwAuqKp7gGuBLcALzpJKknSKMh+lFfBshTQfm5M8NLN+Z1WdfBT02UkeZjjL+MFW9nHgliSfAY4Au1v5J4FvJvkIw5nIa4DFZX7nBuC7LeQC7Kmqo6t2RJIk/f/MR2mVeQ+eNKJ2j8GbqurpsesiSdKpwnyUVs4pmpIkSZI0EV7BkyRJkqSJ8AqeJEmSJE2EAzxJkiRJmggHeJIkSZI0EQ7wJEmSJGkiHOBJkiRJ0kQ4wJMkSZKkifgP1ezQefY5z8wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ], "source": [ "display_learning_curves(history)" ] }, { "cell_type": "markdown", "metadata": { "id": "ypUGNxPIuw5p" }, "source": [ "Now we evaluate the baseline model on the test data split." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "B3khn5bOuw5p", "outputId": "138da74c-f4ac-45eb-fddf-baa06131d071", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Test accuracy: 71.46%\n" ] } ], "source": [ "_, test_accuracy = baseline_model.evaluate(x=x_test, y=y_test, verbose=0)\n", "print(f\"Test accuracy: {round(test_accuracy * 100, 2)}%\")" ] }, { "cell_type": "markdown", "metadata": { "id": "QNGZph2Uuw5p" }, "source": [ "### Examine the baseline model predictions\n", "\n", "Let's create new data instances by randomly generating binary word vectors with respect to\n", "the word presence probabilities." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "m_oxrIoYuw5p" }, "outputs": [], "source": [ "\n", "def generate_random_instances(num_instances):\n", " token_probability = x_train.mean(axis=0)\n", " instances = []\n", " for _ in range(num_instances):\n", " probabilities = np.random.uniform(size=len(token_probability))\n", " instance = (probabilities <= token_probability).astype(int)\n", " instances.append(instance)\n", "\n", " return np.array(instances)\n", "\n", "\n", "def display_class_probabilities(probabilities):\n", " for instance_idx, probs in enumerate(probabilities):\n", " print(f\"Instance {instance_idx + 1}:\")\n", " for class_idx, prob in enumerate(probs):\n", " print(f\"- {class_values[class_idx]}: {round(prob * 100, 2)}%\")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "z4-HnpUOuw5p" }, "source": [ "Now we show the baseline model predictions given these randomly generated instances." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "ckfAsU7-uw5p", "outputId": "1b66bdb5-8680-4ae8-fa40-00eb05aa6e21", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Instance 1:\n", "- Case_Based: 38.59%\n", "- Genetic_Algorithms: 14.82%\n", "- Neural_Networks: 17.45%\n", "- Probabilistic_Methods: 12.43%\n", "- Reinforcement_Learning: 6.52%\n", "- Rule_Learning: 4.01%\n", "- Theory: 6.18%\n", "Instance 2:\n", "- Case_Based: 3.64%\n", "- Genetic_Algorithms: 3.5%\n", "- Neural_Networks: 82.19%\n", "- Probabilistic_Methods: 3.02%\n", "- Reinforcement_Learning: 0.7%\n", "- Rule_Learning: 0.4%\n", "- Theory: 6.55%\n", "Instance 3:\n", "- Case_Based: 0.64%\n", "- Genetic_Algorithms: 1.91%\n", "- Neural_Networks: 81.94%\n", "- Probabilistic_Methods: 9.91%\n", "- Reinforcement_Learning: 2.06%\n", "- Rule_Learning: 0.14%\n", "- Theory: 3.39%\n", "Instance 4:\n", "- Case_Based: 59.59%\n", "- Genetic_Algorithms: 17.17%\n", "- Neural_Networks: 8.78%\n", "- Probabilistic_Methods: 5.04%\n", "- Reinforcement_Learning: 1.82%\n", "- Rule_Learning: 2.23%\n", "- Theory: 5.37%\n", "Instance 5:\n", "- Case_Based: 5.11%\n", "- Genetic_Algorithms: 27.71%\n", "- Neural_Networks: 36.32%\n", "- Probabilistic_Methods: 4.32%\n", "- Reinforcement_Learning: 24.83%\n", "- Rule_Learning: 0.69%\n", "- Theory: 1.02%\n", "Instance 6:\n", "- Case_Based: 8.12%\n", "- Genetic_Algorithms: 10.27%\n", "- Neural_Networks: 66.62%\n", "- Probabilistic_Methods: 2.28%\n", "- Reinforcement_Learning: 7.94%\n", "- Rule_Learning: 0.64%\n", "- Theory: 4.14%\n", "Instance 7:\n", "- Case_Based: 0.52%\n", "- Genetic_Algorithms: 0.62%\n", "- Neural_Networks: 94.87%\n", "- Probabilistic_Methods: 2.35%\n", "- Reinforcement_Learning: 0.69%\n", "- Rule_Learning: 0.05%\n", "- Theory: 0.9%\n" ] } ], "source": [ "new_instances = generate_random_instances(num_classes)\n", "logits = baseline_model.predict(new_instances)\n", "probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()\n", "display_class_probabilities(probabilities)" ] }, { "cell_type": "markdown", "metadata": { "id": "lAl7NyNDuw5p" }, "source": [ "## Build a Graph Neural Network Model\n", "\n", "### Prepare the data for the graph model\n", "\n", "Preparing and loading the graphs data into the model for training is the most challenging\n", "part in GNN models, which is addressed in different ways by the specialised libraries.\n", "In this example, we show a simple approach for preparing and using graph data that is suitable\n", "if your dataset consists of a single graph that fits entirely in memory.\n", "\n", "The graph data is represented by the `graph_info` tuple, which consists of the following\n", "three elements:\n", "\n", "1. `node_features`: This is a `[num_nodes, num_features]` NumPy array that includes the\n", "node features. In this dataset, the nodes are the papers, and the `node_features` are the\n", "word-presence binary vectors of each paper.\n", "2. `edges`: This is `[num_edges, num_edges]` NumPy array representing a sparse\n", "[adjacency matrix](https://en.wikipedia.org/wiki/Adjacency_matrix#:~:text=In%20graph%20theory%20and%20computer,with%20zeros%20on%20its%20diagonal.)\n", "of the links between the nodes. In this example, the links are the citations between the papers.\n", "3. `edge_weights` (optional): This is a `[num_edges]` NumPy array that includes the edge weights, which *quantify*\n", "the relationships between nodes in the graph. In this example, there are no weights for the paper citations." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "RTvQbkepuw5p", "outputId": "63a79437-6175-48b5-9986-91af1ec93e25", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Edges shape: (2, 5429)\n", "Nodes shape: (2708, 1433)\n" ] } ], "source": [ "# Create an edges array (sparse adjacency matrix) of shape [2, num_edges].\n", "edges = citations[[\"source\", \"target\"]].to_numpy().T\n", "# Create an edge weights array of ones.\n", "edge_weights = tf.ones(shape=edges.shape[1])\n", "# Create a node features array of shape [num_nodes, num_features].\n", "node_features = tf.cast(\n", " papers.sort_values(\"paper_id\")[feature_names].to_numpy(), dtype=tf.dtypes.float32\n", ")\n", "# Create graph info tuple with node_features, edges, and edge_weights.\n", "graph_info = (node_features, edges, edge_weights)\n", "\n", "print(\"Edges shape:\", edges.shape)\n", "print(\"Nodes shape:\", node_features.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "4TLKlGhvuw5p" }, "source": [ "### Implement a graph convolution layer\n", "\n", "We implement a graph convolution module as a [Keras Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer?version=nightly).\n", "Our `GraphConvLayer` performs the following steps:\n", "\n", "1. **Prepare**: The input node representations are processed using a FFN to produce a *message*. You can simplify\n", "the processing by only applying linear transformation to the representations.\n", "2. **Aggregate**: The messages of the neighbours of each node are aggregated with\n", "respect to the `edge_weights` using a *permutation invariant* pooling operation, such as *sum*, *mean*, and *max*,\n", "to prepare a single aggregated message for each node. See, for example, [tf.math.unsorted_segment_sum](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum)\n", "APIs used to aggregate neighbour messages.\n", "3. **Update**: The `node_repesentations` and `aggregated_messages`—both of shape `[num_nodes, representation_dim]`—\n", "are combined and processed to produce the new state of the node representations (node embeddings).\n", "If `combination_type` is `gru`, the `node_repesentations` and `aggregated_messages` are stacked to create a sequence,\n", "then processed by a GRU layer. Otherwise, the `node_repesentations` and `aggregated_messages` are added\n", "or concatenated, then processed using a FFN.\n", "\n", "\n", "The technique implemented use ideas from [Graph Convolutional Networks](https://arxiv.org/abs/1609.02907),\n", "[GraphSage](https://arxiv.org/abs/1706.02216), [Graph Isomorphism Network](https://arxiv.org/abs/1810.00826),\n", "[Simple Graph Networks](https://arxiv.org/abs/1902.07153), and\n", "[Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493).\n", "Two other key techniques that are not covered are [Graph Attention Networks](https://arxiv.org/abs/1710.10903)\n", "and [Message Passing Neural Networks](https://arxiv.org/abs/1704.01212)." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "_3MIL-zRuw5q" }, "outputs": [], "source": [ "\n", "class GraphConvLayer(layers.Layer):\n", " def __init__(\n", " self,\n", " hidden_units,\n", " dropout_rate=0.2,\n", " aggregation_type=\"mean\",\n", " combination_type=\"concat\",\n", " normalize=False,\n", " *args,\n", " **kwargs,\n", " ):\n", " super(GraphConvLayer, self).__init__(*args, **kwargs)\n", "\n", " self.aggregation_type = aggregation_type\n", " self.combination_type = combination_type\n", " self.normalize = normalize\n", "\n", " self.ffn_prepare = create_ffn(hidden_units, dropout_rate)\n", " if self.combination_type == \"gated\":\n", " self.update_fn = layers.GRU(\n", " units=hidden_units,\n", " activation=\"tanh\",\n", " recurrent_activation=\"sigmoid\",\n", " dropout=dropout_rate,\n", " return_state=True,\n", " recurrent_dropout=dropout_rate,\n", " )\n", " else:\n", " self.update_fn = create_ffn(hidden_units, dropout_rate)\n", "\n", " def prepare(self, node_repesentations, weights=None):\n", " # node_repesentations shape is [num_edges, embedding_dim].\n", " messages = self.ffn_prepare(node_repesentations)\n", " if weights is not None:\n", " messages = messages * tf.expand_dims(weights, -1)\n", " return messages\n", "\n", " def aggregate(self, node_indices, neighbour_messages):\n", " # node_indices shape is [num_edges].\n", " # neighbour_messages shape: [num_edges, representation_dim].\n", " num_nodes = tf.math.reduce_max(node_indices) + 1\n", " if self.aggregation_type == \"sum\":\n", " aggregated_message = tf.math.unsorted_segment_sum(\n", " neighbour_messages, node_indices, num_segments=num_nodes\n", " )\n", " elif self.aggregation_type == \"mean\":\n", " aggregated_message = tf.math.unsorted_segment_mean(\n", " neighbour_messages, node_indices, num_segments=num_nodes\n", " )\n", " elif self.aggregation_type == \"max\":\n", " aggregated_message = tf.math.unsorted_segment_max(\n", " neighbour_messages, node_indices, num_segments=num_nodes\n", " )\n", " else:\n", " raise ValueError(f\"Invalid aggregation type: {self.aggregation_type}.\")\n", "\n", " return aggregated_message\n", "\n", " def update(self, node_repesentations, aggregated_messages):\n", " # node_repesentations shape is [num_nodes, representation_dim].\n", " # aggregated_messages shape is [num_nodes, representation_dim].\n", " if self.combination_type == \"gru\":\n", " # Create a sequence of two elements for the GRU layer.\n", " h = tf.stack([node_repesentations, aggregated_messages], axis=1)\n", " elif self.combination_type == \"concat\":\n", " # Concatenate the node_repesentations and aggregated_messages.\n", " h = tf.concat([node_repesentations, aggregated_messages], axis=1)\n", " elif self.combination_type == \"add\":\n", " # Add node_repesentations and aggregated_messages.\n", " h = node_repesentations + aggregated_messages\n", " else:\n", " raise ValueError(f\"Invalid combination type: {self.combination_type}.\")\n", "\n", " # Apply the processing function.\n", " node_embeddings = self.update_fn(h)\n", " if self.combination_type == \"gru\":\n", " node_embeddings = tf.unstack(node_embeddings, axis=1)[-1]\n", "\n", " if self.normalize:\n", " node_embeddings = tf.nn.l2_normalize(node_embeddings, axis=-1)\n", " return node_embeddings\n", "\n", " def call(self, inputs):\n", " \"\"\"Process the inputs to produce the node_embeddings.\n", "\n", " inputs: a tuple of three elements: node_repesentations, edges, edge_weights.\n", " Returns: node_embeddings of shape [num_nodes, representation_dim].\n", " \"\"\"\n", "\n", " node_repesentations, edges, edge_weights = inputs\n", " # Get node_indices (source) and neighbour_indices (target) from edges.\n", " node_indices, neighbour_indices = edges[0], edges[1]\n", " # neighbour_repesentations shape is [num_edges, representation_dim].\n", " neighbour_repesentations = tf.gather(node_repesentations, neighbour_indices)\n", "\n", " # Prepare the messages of the neighbours.\n", " neighbour_messages = self.prepare(neighbour_repesentations, edge_weights)\n", " # Aggregate the neighbour messages.\n", " aggregated_messages = self.aggregate(node_indices, neighbour_messages)\n", " # Update the node embedding with the neighbour messages.\n", " return self.update(node_repesentations, aggregated_messages)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "VR4RLN3Duw5q" }, "source": [ "### Implement a graph neural network node classifier\n", "\n", "The GNN classification model follows the [Design Space for Graph Neural Networks](https://arxiv.org/abs/2011.08843) approach,\n", "as follows:\n", "\n", "1. Apply preprocessing using FFN to the node features to generate initial node representations.\n", "2. Apply one or more graph convolutional layer, with skip connections, to the node representation\n", "to produce node embeddings.\n", "3. Apply post-processing using FFN to the node embeddings to generat the final node embeddings.\n", "4. Feed the node embeddings in a Softmax layer to predict the node class.\n", "\n", "Each graph convolutional layer added captures information from a further level of neighbours.\n", "However, adding many graph convolutional layer can cause oversmoothing, where the model\n", "produces similar embeddings for all the nodes.\n", "\n", "Note that the `graph_info` passed to the constructor of the Keras model, and used as a *property*\n", "of the Keras model object, rather than input data for training or prediction.\n", "The model will accept a **batch** of `node_indices`, which are used to lookup the\n", "node features and neighbours from the `graph_info`." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "2pKIeKFeuw5q" }, "outputs": [], "source": [ "\n", "class GNNNodeClassifier(tf.keras.Model):\n", " def __init__(\n", " self,\n", " graph_info,\n", " num_classes,\n", " hidden_units,\n", " aggregation_type=\"sum\",\n", " combination_type=\"concat\",\n", " dropout_rate=0.2,\n", " normalize=True,\n", " *args,\n", " **kwargs,\n", " ):\n", " super(GNNNodeClassifier, self).__init__(*args, **kwargs)\n", "\n", " # Unpack graph_info to three elements: node_features, edges, and edge_weight.\n", " node_features, edges, edge_weights = graph_info\n", " self.node_features = node_features\n", " self.edges = edges\n", " self.edge_weights = edge_weights\n", " # Set edge_weights to ones if not provided.\n", " if self.edge_weights is None:\n", " self.edge_weights = tf.ones(shape=edges.shape[1])\n", " # Scale edge_weights to sum to 1.\n", " self.edge_weights = self.edge_weights / tf.math.reduce_sum(self.edge_weights)\n", "\n", " # Create a process layer.\n", " self.preprocess = create_ffn(hidden_units, dropout_rate, name=\"preprocess\")\n", " # Create the first GraphConv layer.\n", " self.conv1 = GraphConvLayer(\n", " hidden_units,\n", " dropout_rate,\n", " aggregation_type,\n", " combination_type,\n", " normalize,\n", " name=\"graph_conv1\",\n", " )\n", " # Create the second GraphConv layer.\n", " self.conv2 = GraphConvLayer(\n", " hidden_units,\n", " dropout_rate,\n", " aggregation_type,\n", " combination_type,\n", " normalize,\n", " name=\"graph_conv2\",\n", " )\n", " # Create a postprocess layer.\n", " self.postprocess = create_ffn(hidden_units, dropout_rate, name=\"postprocess\")\n", " # Create a compute logits layer.\n", " self.compute_logits = layers.Dense(units=num_classes, name=\"logits\")\n", "\n", " def call(self, input_node_indices):\n", " # Preprocess the node_features to produce node representations.\n", " x = self.preprocess(self.node_features)\n", " # Apply the first graph conv layer.\n", " x1 = self.conv1((x, self.edges, self.edge_weights))\n", " # Skip connection.\n", " x = x1 + x\n", " # Apply the second graph conv layer.\n", " x2 = self.conv2((x, self.edges, self.edge_weights))\n", " # Skip connection.\n", " x = x2 + x\n", " # Postprocess node embedding.\n", " x = self.postprocess(x)\n", " # Fetch node embeddings for the input node_indices.\n", " node_embeddings = tf.gather(x, input_node_indices)\n", " # Compute logits\n", " return self.compute_logits(node_embeddings)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "uC9yk68xuw5q" }, "source": [ "Let's test instantiating and calling the GNN model.\n", "Notice that if you provide `N` node indices, the output will be a tensor of shape `[N, num_classes]`,\n", "regardless of the size of the graph." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "LzyN3Qosuw5q", "outputId": "af617ed4-5bd5-4b28-941b-648a92ccc071", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "GNN output shape: tf.Tensor(\n", "[[-0.13177337 -0.07248863 0.0012523 -0.04644531 -0.01136824 0.16705114\n", " -0.09815124]\n", " [-0.05193972 0.00513246 0.00021477 -0.10366923 -0.0017973 -0.01399267\n", " 0.07024869]\n", " [-0.10507286 -0.01733486 -0.03712284 -0.11573985 0.00332271 0.0986744\n", " 0.04108698]], shape=(3, 7), dtype=float32)\n", "Model: \"gnn_model\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " preprocess (Sequential) (2708, 32) 52804 \n", " \n", " graph_conv1 (GraphConvLayer multiple 5888 \n", " ) \n", " \n", " graph_conv2 (GraphConvLayer multiple 5888 \n", " ) \n", " \n", " postprocess (Sequential) (2708, 32) 2368 \n", " \n", " logits (Dense) multiple 231 \n", " \n", "=================================================================\n", "Total params: 67,179\n", "Trainable params: 63,481\n", "Non-trainable params: 3,698\n", "_________________________________________________________________\n" ] } ], "source": [ "gnn_model = GNNNodeClassifier(\n", " graph_info=graph_info,\n", " num_classes=num_classes,\n", " hidden_units=hidden_units,\n", " dropout_rate=dropout_rate,\n", " name=\"gnn_model\",\n", ")\n", "\n", "print(\"GNN output shape:\", gnn_model([1, 10, 100]))\n", "\n", "gnn_model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "UStm2R2Fuw5q" }, "source": [ "### Train the GNN model\n", "\n", "Note that we use the standard *supervised* cross-entropy loss to train the model.\n", "However, we can add another *self-supervised* loss term for the generated node embeddings\n", "that makes sure that neighbouring nodes in graph have similar representations, while faraway\n", "nodes have dissimilar representations." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "dq5uE_onuw5r", "outputId": "602a2e7d-a077-4fd2-db86-de12b53807c6", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/300\n", "5/5 [==============================] - 6s 361ms/step - loss: 2.4049 - acc: 0.1593 - val_loss: 1.8813 - val_acc: 0.2941\n", "Epoch 2/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 2.0346 - acc: 0.2260 - val_loss: 1.8516 - val_acc: 0.3039\n", "Epoch 3/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 1.9225 - acc: 0.2580 - val_loss: 1.8463 - val_acc: 0.3039\n", "Epoch 4/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 1.8829 - acc: 0.2788 - val_loss: 1.8417 - val_acc: 0.3039\n", "Epoch 5/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 1.8548 - acc: 0.2970 - val_loss: 1.8429 - val_acc: 0.3039\n", "Epoch 6/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 1.8370 - acc: 0.3091 - val_loss: 1.8442 - val_acc: 0.3039\n", "Epoch 7/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 1.8263 - acc: 0.3074 - val_loss: 1.8387 - val_acc: 0.3039\n", "Epoch 8/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 1.8049 - acc: 0.3126 - val_loss: 1.8304 - val_acc: 0.3039\n", "Epoch 9/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 1.8093 - acc: 0.3152 - val_loss: 1.8219 - val_acc: 0.3039\n", "Epoch 10/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 1.7837 - acc: 0.3108 - val_loss: 1.8095 - val_acc: 0.3039\n", "Epoch 11/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 1.7719 - acc: 0.3152 - val_loss: 1.7937 - val_acc: 0.3039\n", "Epoch 12/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 1.7441 - acc: 0.3368 - val_loss: 1.7652 - val_acc: 0.3088\n", "Epoch 13/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 1.7357 - acc: 0.3299 - val_loss: 1.7392 - val_acc: 0.3922\n", "Epoch 14/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 1.7007 - acc: 0.3481 - val_loss: 1.7002 - val_acc: 0.4314\n", "Epoch 15/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 1.6706 - acc: 0.3602 - val_loss: 1.6302 - val_acc: 0.4510\n", "Epoch 16/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 1.6245 - acc: 0.3931 - val_loss: 1.6004 - val_acc: 0.4069\n", "Epoch 17/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 1.5866 - acc: 0.3948 - val_loss: 1.5531 - val_acc: 0.4412\n", "Epoch 18/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 1.4979 - acc: 0.4338 - val_loss: 1.4856 - val_acc: 0.4510\n", "Epoch 19/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 1.4507 - acc: 0.4675 - val_loss: 1.4949 - val_acc: 0.4167\n", "Epoch 20/300\n", "5/5 [==============================] - 1s 257ms/step - loss: 1.4059 - acc: 0.4719 - val_loss: 1.5813 - val_acc: 0.3725\n", "Epoch 21/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 1.3321 - acc: 0.4952 - val_loss: 1.6631 - val_acc: 0.3627\n", "Epoch 22/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 1.3128 - acc: 0.5195 - val_loss: 1.7177 - val_acc: 0.3676\n", "Epoch 23/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 1.2667 - acc: 0.5524 - val_loss: 1.6987 - val_acc: 0.3775\n", "Epoch 24/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 1.2669 - acc: 0.5203 - val_loss: 1.6268 - val_acc: 0.3971\n", "Epoch 25/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 1.2485 - acc: 0.5403 - val_loss: 1.4838 - val_acc: 0.4510\n", "Epoch 26/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 1.1966 - acc: 0.5723 - val_loss: 1.5029 - val_acc: 0.4510\n", "Epoch 27/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 1.1022 - acc: 0.6043 - val_loss: 1.5276 - val_acc: 0.4608\n", "Epoch 28/300\n", "5/5 [==============================] - 1s 187ms/step - loss: 1.1065 - acc: 0.6173 - val_loss: 1.5731 - val_acc: 0.4461\n", "Epoch 29/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 1.0728 - acc: 0.6061 - val_loss: 1.5169 - val_acc: 0.4559\n", "Epoch 30/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 1.0876 - acc: 0.6225 - val_loss: 1.2813 - val_acc: 0.5392\n", "Epoch 31/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 1.0040 - acc: 0.6537 - val_loss: 1.2041 - val_acc: 0.5735\n", "Epoch 32/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.9992 - acc: 0.6450 - val_loss: 1.1049 - val_acc: 0.6078\n", "Epoch 33/300\n", "5/5 [==============================] - 1s 173ms/step - loss: 0.9860 - acc: 0.6537 - val_loss: 1.1961 - val_acc: 0.5686\n", "Epoch 34/300\n", "5/5 [==============================] - 1s 173ms/step - loss: 0.9848 - acc: 0.6563 - val_loss: 1.3086 - val_acc: 0.5245\n", "Epoch 35/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.9239 - acc: 0.6693 - val_loss: 1.2786 - val_acc: 0.5539\n", "Epoch 36/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.9072 - acc: 0.6935 - val_loss: 1.0850 - val_acc: 0.5931\n", "Epoch 37/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.8918 - acc: 0.6840 - val_loss: 1.0755 - val_acc: 0.5833\n", "Epoch 38/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.8703 - acc: 0.6970 - val_loss: 1.0355 - val_acc: 0.6029\n", "Epoch 39/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.8415 - acc: 0.7048 - val_loss: 0.9496 - val_acc: 0.6765\n", "Epoch 40/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.8296 - acc: 0.7056 - val_loss: 0.8793 - val_acc: 0.7010\n", "Epoch 41/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.8458 - acc: 0.7134 - val_loss: 0.9923 - val_acc: 0.6520\n", "Epoch 42/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.8110 - acc: 0.7229 - val_loss: 1.0891 - val_acc: 0.6275\n", "Epoch 43/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.8377 - acc: 0.7221 - val_loss: 0.9886 - val_acc: 0.6814\n", "Epoch 44/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.7936 - acc: 0.7437 - val_loss: 0.8972 - val_acc: 0.7255\n", "Epoch 45/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.7714 - acc: 0.7411 - val_loss: 0.8586 - val_acc: 0.7451\n", "Epoch 46/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.7547 - acc: 0.7498 - val_loss: 0.9186 - val_acc: 0.7108\n", "Epoch 47/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.7364 - acc: 0.7515 - val_loss: 0.9711 - val_acc: 0.6961\n", "Epoch 48/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.7423 - acc: 0.7532 - val_loss: 0.9558 - val_acc: 0.7059\n", "Epoch 49/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.7506 - acc: 0.7377 - val_loss: 0.9389 - val_acc: 0.7059\n", "Epoch 50/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.6888 - acc: 0.7714 - val_loss: 0.9840 - val_acc: 0.6912\n", "Epoch 51/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.6659 - acc: 0.7775 - val_loss: 1.0961 - val_acc: 0.6618\n", "Epoch 52/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.6713 - acc: 0.7524 - val_loss: 0.9963 - val_acc: 0.7059\n", "Epoch 53/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.7235 - acc: 0.7619 - val_loss: 0.9678 - val_acc: 0.7353\n", "Epoch 54/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.6868 - acc: 0.7723 - val_loss: 1.0091 - val_acc: 0.7157\n", "Epoch 55/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.7015 - acc: 0.7636 - val_loss: 1.0444 - val_acc: 0.7108\n", "Epoch 56/300\n", "5/5 [==============================] - 1s 174ms/step - loss: 0.6922 - acc: 0.7861 - val_loss: 0.9894 - val_acc: 0.7353\n", "Epoch 57/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.6551 - acc: 0.7922 - val_loss: 0.8535 - val_acc: 0.7500\n", "Epoch 58/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.6433 - acc: 0.7887 - val_loss: 0.8266 - val_acc: 0.7206\n", "Epoch 59/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.6735 - acc: 0.7628 - val_loss: 0.8012 - val_acc: 0.7108\n", "Epoch 60/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.6792 - acc: 0.7662 - val_loss: 0.8651 - val_acc: 0.7402\n", "Epoch 61/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.6242 - acc: 0.7887 - val_loss: 1.0126 - val_acc: 0.6961\n", "Epoch 62/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.6317 - acc: 0.7905 - val_loss: 1.0114 - val_acc: 0.6912\n", "Epoch 63/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.5999 - acc: 0.7974 - val_loss: 0.8870 - val_acc: 0.7500\n", "Epoch 64/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.5994 - acc: 0.7905 - val_loss: 0.8599 - val_acc: 0.7549\n", "Epoch 65/300\n", "5/5 [==============================] - 1s 187ms/step - loss: 0.6105 - acc: 0.7965 - val_loss: 0.8065 - val_acc: 0.7794\n", "Epoch 66/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.6287 - acc: 0.7965 - val_loss: 0.7526 - val_acc: 0.7794\n", "Epoch 67/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.6064 - acc: 0.7905 - val_loss: 0.7649 - val_acc: 0.7696\n", "Epoch 68/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.6080 - acc: 0.8130 - val_loss: 0.7816 - val_acc: 0.7745\n", "Epoch 69/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.6386 - acc: 0.7965 - val_loss: 0.7804 - val_acc: 0.7696\n", "Epoch 70/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.5274 - acc: 0.8225 - val_loss: 0.8096 - val_acc: 0.7696\n", "Epoch 71/300\n", "5/5 [==============================] - 2s 346ms/step - loss: 0.5985 - acc: 0.8121 - val_loss: 0.8077 - val_acc: 0.7647\n", "Epoch 72/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.5420 - acc: 0.8268 - val_loss: 0.8192 - val_acc: 0.7794\n", "Epoch 73/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.5899 - acc: 0.8069 - val_loss: 0.7991 - val_acc: 0.7892\n", "Epoch 74/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.5833 - acc: 0.8156 - val_loss: 0.7684 - val_acc: 0.8088\n", "Epoch 75/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.5624 - acc: 0.8165 - val_loss: 0.7718 - val_acc: 0.7990\n", "Epoch 76/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.5903 - acc: 0.8087 - val_loss: 0.7688 - val_acc: 0.7794\n", "Epoch 77/300\n", "5/5 [==============================] - 1s 174ms/step - loss: 0.5405 - acc: 0.8242 - val_loss: 0.7883 - val_acc: 0.7598\n", "Epoch 78/300\n", "5/5 [==============================] - 1s 172ms/step - loss: 0.5398 - acc: 0.8338 - val_loss: 0.8015 - val_acc: 0.7598\n", "Epoch 79/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.5143 - acc: 0.8372 - val_loss: 0.8468 - val_acc: 0.7598\n", "Epoch 80/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.5629 - acc: 0.8286 - val_loss: 0.8751 - val_acc: 0.7745\n", "Epoch 81/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.5439 - acc: 0.8242 - val_loss: 0.7621 - val_acc: 0.7843\n", "Epoch 82/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4988 - acc: 0.8320 - val_loss: 0.7245 - val_acc: 0.7990\n", "Epoch 83/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.5240 - acc: 0.8268 - val_loss: 0.8250 - val_acc: 0.7745\n", "Epoch 84/300\n", "5/5 [==============================] - 1s 174ms/step - loss: 0.5938 - acc: 0.8208 - val_loss: 0.9195 - val_acc: 0.7598\n", "Epoch 85/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.5021 - acc: 0.8476 - val_loss: 0.7720 - val_acc: 0.7794\n", "Epoch 86/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.5197 - acc: 0.8234 - val_loss: 0.7107 - val_acc: 0.7892\n", "Epoch 87/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.5217 - acc: 0.8260 - val_loss: 0.7232 - val_acc: 0.7892\n", "Epoch 88/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.4999 - acc: 0.8381 - val_loss: 0.7817 - val_acc: 0.7941\n", "Epoch 89/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.5809 - acc: 0.8156 - val_loss: 0.8480 - val_acc: 0.7745\n", "Epoch 90/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4845 - acc: 0.8459 - val_loss: 0.8378 - val_acc: 0.7451\n", "Epoch 91/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.4934 - acc: 0.8381 - val_loss: 0.7080 - val_acc: 0.7990\n", "Epoch 92/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.5112 - acc: 0.8260 - val_loss: 0.7277 - val_acc: 0.7990\n", "Epoch 93/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4868 - acc: 0.8372 - val_loss: 0.7614 - val_acc: 0.7843\n", "Epoch 94/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4688 - acc: 0.8372 - val_loss: 0.8042 - val_acc: 0.7696\n", "Epoch 95/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.4915 - acc: 0.8433 - val_loss: 0.7409 - val_acc: 0.7794\n", "Epoch 96/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.5070 - acc: 0.8407 - val_loss: 0.6990 - val_acc: 0.8137\n", "Epoch 97/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.5326 - acc: 0.8433 - val_loss: 0.6828 - val_acc: 0.8039\n", "Epoch 98/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4777 - acc: 0.8580 - val_loss: 0.7448 - val_acc: 0.7794\n", "Epoch 99/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.4801 - acc: 0.8450 - val_loss: 0.7936 - val_acc: 0.7647\n", "Epoch 100/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.4554 - acc: 0.8494 - val_loss: 0.7298 - val_acc: 0.7794\n", "Epoch 101/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4668 - acc: 0.8511 - val_loss: 0.7212 - val_acc: 0.8088\n", "Epoch 102/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4965 - acc: 0.8476 - val_loss: 0.6985 - val_acc: 0.8137\n", "Epoch 103/300\n", "5/5 [==============================] - 1s 185ms/step - loss: 0.4310 - acc: 0.8623 - val_loss: 0.7274 - val_acc: 0.7990\n", "Epoch 104/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4866 - acc: 0.8442 - val_loss: 0.7516 - val_acc: 0.7892\n", "Epoch 105/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.5240 - acc: 0.8416 - val_loss: 0.7333 - val_acc: 0.7892\n", "Epoch 106/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4402 - acc: 0.8641 - val_loss: 0.7121 - val_acc: 0.8088\n", "Epoch 107/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4543 - acc: 0.8511 - val_loss: 0.7209 - val_acc: 0.8137\n", "Epoch 108/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.4249 - acc: 0.8675 - val_loss: 0.7102 - val_acc: 0.8235\n", "Epoch 109/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.4437 - acc: 0.8623 - val_loss: 0.6899 - val_acc: 0.8088\n", "Epoch 110/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.4610 - acc: 0.8545 - val_loss: 0.6650 - val_acc: 0.8088\n", "Epoch 111/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4177 - acc: 0.8623 - val_loss: 0.6573 - val_acc: 0.8186\n", "Epoch 112/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.5059 - acc: 0.8459 - val_loss: 0.6861 - val_acc: 0.8039\n", "Epoch 113/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4425 - acc: 0.8554 - val_loss: 0.7153 - val_acc: 0.7941\n", "Epoch 114/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.4507 - acc: 0.8649 - val_loss: 0.6896 - val_acc: 0.7892\n", "Epoch 115/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4438 - acc: 0.8459 - val_loss: 0.6756 - val_acc: 0.7941\n", "Epoch 116/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4410 - acc: 0.8606 - val_loss: 0.7190 - val_acc: 0.7990\n", "Epoch 117/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4759 - acc: 0.8623 - val_loss: 0.7020 - val_acc: 0.7794\n", "Epoch 118/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4689 - acc: 0.8554 - val_loss: 0.6666 - val_acc: 0.7941\n", "Epoch 119/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4192 - acc: 0.8753 - val_loss: 0.6846 - val_acc: 0.8137\n", "Epoch 120/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4292 - acc: 0.8719 - val_loss: 0.7038 - val_acc: 0.8186\n", "Epoch 121/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4110 - acc: 0.8684 - val_loss: 0.7041 - val_acc: 0.7990\n", "Epoch 122/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.4522 - acc: 0.8589 - val_loss: 0.7177 - val_acc: 0.7843\n", "Epoch 123/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.3910 - acc: 0.8736 - val_loss: 0.6952 - val_acc: 0.8039\n", "Epoch 124/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.3967 - acc: 0.8874 - val_loss: 0.6713 - val_acc: 0.8137\n", "Epoch 125/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.3636 - acc: 0.8797 - val_loss: 0.6928 - val_acc: 0.8039\n", "Epoch 126/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4428 - acc: 0.8632 - val_loss: 0.6785 - val_acc: 0.8039\n", "Epoch 127/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4599 - acc: 0.8563 - val_loss: 0.6620 - val_acc: 0.8088\n", "Epoch 128/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4261 - acc: 0.8693 - val_loss: 0.6475 - val_acc: 0.8235\n", "Epoch 129/300\n", "5/5 [==============================] - 1s 174ms/step - loss: 0.4307 - acc: 0.8615 - val_loss: 0.6481 - val_acc: 0.8137\n", "Epoch 130/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.4500 - acc: 0.8615 - val_loss: 0.6422 - val_acc: 0.8088\n", "Epoch 131/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4484 - acc: 0.8511 - val_loss: 0.6391 - val_acc: 0.8137\n", "Epoch 132/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4360 - acc: 0.8684 - val_loss: 0.6310 - val_acc: 0.8284\n", "Epoch 133/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4087 - acc: 0.8753 - val_loss: 0.6484 - val_acc: 0.8137\n", "Epoch 134/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4862 - acc: 0.8476 - val_loss: 0.6482 - val_acc: 0.7990\n", "Epoch 135/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4409 - acc: 0.8563 - val_loss: 0.6615 - val_acc: 0.7696\n", "Epoch 136/300\n", "5/5 [==============================] - 1s 186ms/step - loss: 0.4310 - acc: 0.8511 - val_loss: 0.6790 - val_acc: 0.7941\n", "Epoch 137/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4593 - acc: 0.8528 - val_loss: 0.7133 - val_acc: 0.7892\n", "Epoch 138/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.3991 - acc: 0.8727 - val_loss: 0.6844 - val_acc: 0.7941\n", "Epoch 139/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4003 - acc: 0.8675 - val_loss: 0.6996 - val_acc: 0.7745\n", "Epoch 140/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.3938 - acc: 0.8771 - val_loss: 0.6966 - val_acc: 0.7941\n", "Epoch 141/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4248 - acc: 0.8684 - val_loss: 0.7128 - val_acc: 0.7892\n", "Epoch 142/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.3955 - acc: 0.8736 - val_loss: 0.7160 - val_acc: 0.7598\n", "Epoch 143/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.4109 - acc: 0.8736 - val_loss: 0.7118 - val_acc: 0.7892\n", "Epoch 144/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.4185 - acc: 0.8771 - val_loss: 0.6567 - val_acc: 0.8137\n", "Epoch 145/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4493 - acc: 0.8615 - val_loss: 0.6244 - val_acc: 0.8137\n", "Epoch 146/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.4044 - acc: 0.8701 - val_loss: 0.6244 - val_acc: 0.8088\n", "Epoch 147/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4137 - acc: 0.8788 - val_loss: 0.6642 - val_acc: 0.7843\n", "Epoch 148/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4050 - acc: 0.8667 - val_loss: 0.6638 - val_acc: 0.7941\n", "Epoch 149/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.3542 - acc: 0.8970 - val_loss: 0.6557 - val_acc: 0.7990\n", "Epoch 150/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.3614 - acc: 0.8762 - val_loss: 0.6541 - val_acc: 0.7990\n", "Epoch 151/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.3905 - acc: 0.8771 - val_loss: 0.6550 - val_acc: 0.8039\n", "Epoch 152/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.3629 - acc: 0.8727 - val_loss: 0.6687 - val_acc: 0.7941\n", "Epoch 153/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.3993 - acc: 0.8814 - val_loss: 0.6799 - val_acc: 0.7794\n", "Epoch 154/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.3621 - acc: 0.8840 - val_loss: 0.6749 - val_acc: 0.7892\n", "Epoch 155/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3906 - acc: 0.8805 - val_loss: 0.6742 - val_acc: 0.7843\n", "Epoch 156/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.3714 - acc: 0.8788 - val_loss: 0.6614 - val_acc: 0.7990\n", "Epoch 157/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3995 - acc: 0.8814 - val_loss: 0.6657 - val_acc: 0.8039\n", "Epoch 158/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.3422 - acc: 0.8840 - val_loss: 0.6847 - val_acc: 0.7941\n", "Epoch 159/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.4034 - acc: 0.8667 - val_loss: 0.6824 - val_acc: 0.7892\n", "Epoch 160/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.3856 - acc: 0.8805 - val_loss: 0.6882 - val_acc: 0.7843\n", "Epoch 161/300\n", "5/5 [==============================] - 1s 175ms/step - loss: 0.4233 - acc: 0.8719 - val_loss: 0.7202 - val_acc: 0.7696\n", "Epoch 162/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.4090 - acc: 0.8779 - val_loss: 0.7033 - val_acc: 0.7745\n", "Epoch 163/300\n", "5/5 [==============================] - 1s 177ms/step - loss: 0.3960 - acc: 0.8727 - val_loss: 0.6586 - val_acc: 0.7892\n", "Epoch 164/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.4250 - acc: 0.8675 - val_loss: 0.6743 - val_acc: 0.8039\n", "Epoch 165/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.4160 - acc: 0.8719 - val_loss: 0.6857 - val_acc: 0.7941\n", "Epoch 166/300\n", "5/5 [==============================] - 1s 176ms/step - loss: 0.3734 - acc: 0.8771 - val_loss: 0.7236 - val_acc: 0.7745\n", "Epoch 167/300\n", "5/5 [==============================] - 1s 180ms/step - loss: 0.3969 - acc: 0.8649 - val_loss: 0.7200 - val_acc: 0.7794\n", "Epoch 168/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.3847 - acc: 0.8727 - val_loss: 0.7000 - val_acc: 0.7990\n", "Epoch 169/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.3836 - acc: 0.8823 - val_loss: 0.6865 - val_acc: 0.8088\n", "Epoch 170/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.3666 - acc: 0.9004 - val_loss: 0.6808 - val_acc: 0.8039\n", "Epoch 171/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.3533 - acc: 0.8996 - val_loss: 0.7376 - val_acc: 0.7843\n", "Epoch 172/300\n", "5/5 [==============================] - 1s 184ms/step - loss: 0.3558 - acc: 0.8944 - val_loss: 0.7428 - val_acc: 0.7843\n", "Epoch 173/300\n", "5/5 [==============================] - 1s 185ms/step - loss: 0.3856 - acc: 0.8857 - val_loss: 0.7325 - val_acc: 0.7892\n", "Epoch 174/300\n", "5/5 [==============================] - 1s 183ms/step - loss: 0.3539 - acc: 0.8848 - val_loss: 0.7974 - val_acc: 0.7794\n", "Epoch 175/300\n", "5/5 [==============================] - 1s 179ms/step - loss: 0.4276 - acc: 0.8753 - val_loss: 0.7713 - val_acc: 0.7892\n", "Epoch 176/300\n", "5/5 [==============================] - 1s 174ms/step - loss: 0.4007 - acc: 0.8753 - val_loss: 0.7243 - val_acc: 0.7843\n", "Epoch 177/300\n", "5/5 [==============================] - 1s 182ms/step - loss: 0.3777 - acc: 0.8866 - val_loss: 0.7694 - val_acc: 0.7794\n", "Epoch 178/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3998 - acc: 0.8745 - val_loss: 0.7392 - val_acc: 0.7745\n", "Epoch 179/300\n", "5/5 [==============================] - 1s 178ms/step - loss: 0.4062 - acc: 0.8753 - val_loss: 0.6859 - val_acc: 0.8039\n", "Epoch 180/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3371 - acc: 0.8952 - val_loss: 0.6828 - val_acc: 0.8088\n", "Epoch 181/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3429 - acc: 0.8935 - val_loss: 0.6903 - val_acc: 0.7941\n", "Epoch 182/300\n", "5/5 [==============================] - 1s 181ms/step - loss: 0.3259 - acc: 0.8944 - val_loss: 0.7370 - val_acc: 0.7745\n" ] } ], "source": [ "x_train = train_data.paper_id.to_numpy()\n", "history = run_experiment(gnn_model, x_train, y_train)" ] }, { "cell_type": "markdown", "metadata": { "id": "ByHboNqLuw5r" }, "source": [ "Let's plot the learning curves" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "ZI-J0tnVuw5r", "outputId": "ad5918c7-9d74-4010-b3e2-577f4327f74c", "colab": { "base_uri": "https://localhost:8080/", "height": 337 } }, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFACAYAAADu2N6nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUZfbA8e87k5n0XkgnECD0UEIXFUGKBXvB7qq46q66dteuW9zyW11dy7qKXbFgL4AIiCi9hF4SIIUU0nudub8/3pkUMgkJJATI+TxPnsncuffOO5PAnZNz3vMqwzAQQgghhBBCCHHyM3X3AIQQQgghhBBCdA4J8IQQQgghhBDiFCEBnhBCCCGEEEKcIiTAE0IIIYQQQohThAR4QgghhBBCCHGKkABPCCGEEEIIIU4RXRbgKaVilFLLlFI7lFLblVJ3udjnTKVUiVJqs+Pr8a4ajxBCCCGEEEKc6ty68Nz1wL2GYWxUSvkCG5RSPxiGseOw/X42DOO8LhyHEEIIIYQQQvQIXZbBMwwj2zCMjY7vy4CdQFRXPZ8QQgghhBBC9HRdmcFroJSKA0YCa1w8PEEplQxkAfcZhrG9rXOFhIQYcXFxnT1EIYQQJ6ANGzbkG4YR2t3jOFnINVIIIXqGtq6PXR7gKaV8gAXA3YZhlB728Eagt2EY5Uqpc4AvgP4uzjEXmAsQGxvL+vXru3jUQgghTgRKqbTuHsPJJC4uTq6RQgjRA7R1fezSLppKKQs6uHvfMIzPDn/cMIxSwzDKHd9/B1iUUiEu9nvNMIwkwzCSQkPlD7lCCCGEEEII4UpXdtFUwBvATsMw/tXKPuGO/VBKjXWMp6CrxiSEEEIIIYQQp7KuLNGcBFwLbFVKbXZs+yMQC2AYxqvApcBtSql6oAq40jAMowvHJIQQQgghhBCnrC4L8AzDWAmoI+zzH+A/XTUGIYQ4mdXV1ZGZmUl1dXV3D6XLeXh4EB0djcVi6e6hCCGEOAn0lGvk0Vwfj0sXTSGEEB2XmZmJr68vcXFxOKrZT0mGYVBQUEBmZiZ9+vTp7uEIIYQ4CfSEa+TRXh+7tMmKEEKIo1ddXU1wcPApe+FyUkoRHBx8yv8VVgghROfpCdfIo70+SoAnhBAnsFP5wtVUT3mdQgghOk9PuHYczWuUAE8IIYRLxcXFvPzyyx0+7pxzzqG4uLgLRnTqUErNVErtVkqlKKUecvF4b6XUj0qpLUqp5Uqp6O4YpxBCCNdO5GukBHhCCCFcau3iVV9f3+Zx3333HQEBAV01rJOeUsoMvATMAgYDc5RSgw/b7Z/AO4ZhDAeeBv56fEcphBCiLSfyNbLHBXg5JdV8sCadQ2Uy10MIIdry0EMPkZqayogRIxgzZgyTJ09m9uzZDB6sY5ELL7yQ0aNHM2TIEF577bWG4+Li4sjPz+fAgQMMGjSIW265hSFDhjB9+nSqqqq66+WcSMYCKYZh7DMMoxaYD1xw2D6DgaWO75e5eFwIIUQXqa6zUVJZS1WdjdZWcDuRr5E9LsDbl1/OHz/fSuqhiu4eihBCnNCeffZZ4uPj2bx5M//4xz/YuHEj//73v9mzZw8A8+bNY8OGDaxfv54XXniBgoKCFufYu3cvd9xxB9u3bycgIIAFCxYc75dxIooCMprcz3RsayoZuNjx/UWAr1Iq2NXJlFJzlVLrlVLr8/LyOn2wQgjR2Q6VVVNZ23amq7sYhkFaQQVphZXszS0jNa+Cepu9xX4n8jWyxy2T4GXVL7mq7sT8pRJCCFee+no7O7JKO/WcgyP9eOL8Ie3ef+zYsc3aNL/wwgt8/vnnAGRkZLB3716Cg5vHIH369GHEiBEAjB49mgMHDhz7wHuG+4D/KKVuAFYABwGbqx0Nw3gNeA0gKSnJ9Z+ahRDiBGEYBhe99CtnJITyl4uGdco5O/MaaTcMqmptDIn05/6ZCWSXVJOaV0GfEG+sbq3nxlq7RtoNg/T0DDZv28mkiROwG1BeXQd03TWyx2XwvKxmACprXV4nhRBCtMLb27vh++XLl7NkyRJWrVpFcnIyI0eOdNnG2d3dveF7s9l8xLkJPcRBIKbJ/WjHtgaGYWQZhnGxYRgjgUcc26RzjRDipJdbWsPB4ip+3Jnbavljd7LZ9Zg8rCZCfNzpE+JNvc1OemFlm+Nt7Rq54IdfSBgyjAOHitmTW4bNbqewohboumtkj8vgeVocAV6NBHhCiJNHRzJtncXX15eysjKXj5WUlBAYGIiXlxe7du1i9erVx3l0J7V1QH+lVB90YHclcFXTHZRSIUChYRh24GFg3nEfpRDihOUMNE7GZQK2Z5UAOtDbnVvGwHC/Yz5nZ14j9+aWoZSiX5gPAD7ubkQGeJJRVEl+eS2hvjooa8810s3qwc6d69m6aT3hfh7EBnnhZjYRFehFVWXXTRfrcQFeYwZP/ooshBBtCQ4OZtKkSQwdOhRPT0969erV8NjMmTN59dVXGTRoEAkJCYwfP74bR3pyMQyjXin1O2ARYAbmGYaxXSn1NLDeMIyvgDOBvyqlDHSJ5h3dNmAhxAnnsS+3sTWzhA/njm+YfnSyaFpK+fOe/E4J8DpLbb2NqjobEf4ezbYHeFkoqbKQW1qNyaQTRkFBQc2ukSGhYaQVVBAd6NVwjRw6ZDDRcfGMHTcOb3c3ArysKMBs6trAXJ2IqdG2JCUlGevXrz/q46tqbQx6fCEPzEzg9jP7deLIhBCic+3cuZNBgwZ19zCOG1evVym1wTCMpG4a0knnWK+RQogTX355DRP++iN1NoMrx8Tw7CXDu3tIHXLbexvYmV2KxWwi3N+Dd28a12KftIIK3li5n/UHirhhUhyXjorG5AiKDMNg+Z483Eqz6Ns/gagAz04bW15ZDdklVST08sXdUfXnVGezk3KonDpHw5UIfw9CfT0axrQvr4KK2noi/T0JcWT50goqqKq1kRDue0zZ1o5eH0+ukL8TeFhMKKUDPSGEEEIIIU4mn6zPpM5mcN7wCOavy2BSvxDOT4zs7mG1qbbejt0w8LCY2Z5VytAoP8L9PHlvTRrVdTY8mgRTP+/N44Y312FWithgLx74dAvvr07jghFReFnNzPtlP3tyy3l9dgSF5bX08nXHzWwip6QKd4uZQC/rUY3RbhgUVtTiYTG3CO4ALGYTA8N9qbXZyS6uJre0Bn9PK1Y3E+U19VTU1mNSirzyGoJ89BjKqusJ8LIc91LaHtdkRSmFl8UsTVaEEEIIIcRJxW43mL8unbF9gnjuihEMi/Lnn4t3H3Wzko4eV2+z89qKVA4Wu16vbVVqAa//vK/Zeetsdi599Veu+O8qSqrqSC+sZEikP6cPCKG23s5fv9vJn7/dwbaDJZRW1/HAp1voE+LNygensPju0/n7pcOpqLXx9Dc7eOizrZhNJp67IpFQX3cMDEqr66ius3GorIaDRVXU1NmorbeReqicgvIal+OsrrORV1bdbJz55TXU1NsIP6w8symlFO5uZiID9D7ZJVXYDYPc0hosZhMxQV7U2ewUV9ZRWVOP3TDw87B06D3uDD0ugwfgaXWTAE8IIYQQQpxQUvPKuezVVcxOjOSe6QNaBAe/phaQVlDJPWcPwGI2cc34WB5csJUtmSUkxgR06Ln+vWQvn2zIYOm9Z7bZ/r+yth5PixmlFG+vSuMv3+1i4bYcPvntRKrrbHy+6SDVdTY2ZxTzzZZsAEb1DmRUbCAAryxPZUtmScP3AIMj/BjXJxhfDzfeXpWGScHbv6YxNMqP3NJqFtw2kTA/HURdnhTD5UkxpBVUUFhRy4iYAJRS7NxZhnIzUVJVT3WdHaUUSkFGURU2u52aejsVtfXU2Qx6+bk3ZNHKa+pJK6jAZjewmk34e1mprbdzqLQGPw9LuwIyq5uZUF93ckurKTmoX1tUgCd+Hm54WsxkOwJgpRTe7sc/3OqRAZ6X1UyVNFkRQgghhBAnkO+2ZFNYUcvbqw7w7dZsHjlnEBeMiGwITj5Ym0agl4UZQ8IBmDkkgse+2M5XyVkdCvC+3HyQ55boBbl355QxLNrf5X42u8GM51cQ6uPOs5cM57kf9hAV4MnG9GKeX7KHFXvySHYEb1Y3E7efGc+8X/azYEMmo2ID2ZVTyotL93Lu8Ag2pxfz2gpHgBfph6fVzNJ7z8SkdCB0z8ebWb47j1tP78tIR3DYVO9gb3oHezfb5u9pIb+slkqlv/dxdyOzqBKTUsSH+lBUWcuhsmrq7XaiAjwprqwjs7gKq9mE2WRwqKwGP09LQ0bSmZlrj1Bfd9xMCpvdwGRSBHlbUUoR4e9BXnktVrPCx8PS5Q1VXOlxJZqgAzzJ4AkhhBBCiKNltxss2ZFLdV3nfaZctvsQw6P9+eL2SUT4e3D3R5u59o21jpLCGhZvz+WSUdENc9b8vSyckRDKN1uyGtZvK6+pZ8ZzK3jzl/0un2NXTikPfLqFgeG+ACRntr7E5pbMYjIKq9iYXsw5//6Z2no77988jmmDwnhxaQq7csp49ZpRbH1yOlufnM4DMwcyY0g4XydnUVFTz32fJOPvaeGZC4Yy9/S+2A0I8bES5mhCEurrTrCPO0HeVuZdP4aP5o7n/hkJ7X6//D0tGBjYDINgbyuBXhYi/D3oE+KNt7sbUQGehPl6UFhRy57ccjKKKvGymokP9SbM152qOhvphZWUVdcR7u+B1a3l3LvWmJQi2MedMD8PQnwaM4Q+Hhb6hHgTFeiFv+fxL8+EHhrgeVrNVHXiP0YhhBBCCHHqS80rp97RRfGr5Cxufmc9181bS0lV3RGP/XFnLqtSC1p9vKiils0ZxZyZEEZiTACf3z6JJ88fzMqUfF79KZVPNmRQbzeYMy622XGzEyPJLa1h7f5CAD5el8Hu3DL+9O1ONqQVtnie91enoxS8d/M4Ar0sbGkjwFu2Ow+TglevGY2vhxt3TetPXIg3f75oGOcMC+e9m8cxc2gEvh4W3B3B0cWjoimtrufGt9ax7WApz1wwlCBvK5cnxRDiY2VYlL/LpiMmk2Jc32DczO0PTzwtZqxuJjwsZrysuow01NejoSxSKUW4vweRAZ7U2uyE+XrQN8QbN7OJAC8rFrOJkqo6/D0tBHsfXXOWE1GPDPC8rGYqaqREUwgh2lJcXMzLL798VMc+//zzVFZWdvKIhBDi+Hh/TRrfOuaTOeWWVjPjuRW8uDQF0GWOfh5ubEovamggArB6XwF/W7irWQOP9IJKbnt/I498sbVhW3FlLZ9uyOSejzezMb2IFXvzsBswJSEU0Gul3TCpD+cnRvLy8lTe/vUA4/sGER/q02xc0wb1auguWW+z8+av+xke7U9kgAd3friZd1en8eXmg9TZ7NjsBt9vy+GsgWGE+LgzPDqgYX6cK8t3H2JkbCAzh4az/tGzuWOKXmKsl58HL189mjFxQS2OOa1fCGG+7qzdX8i5wyOYNSwC0AmWj26dwJ8vGtbun8ORKKXoE+xNXLBXm50qQ3zcGRrpR7i/R8N+Jkc5pbdVZ/o62unyRL5G9sgAz9MiTVaEEOJITuSLlxBCHA273WB/fkWb+5RU1vHU1zv4y3c7mwVpv6bmU283eHd1GtklVfy8N58542J54/oxpBwq56EFW8guqeK29zbwyvJUdmaXNRz71Nfbqa23sy+vgv35FVTX2Zj5/M/c90kyX2w6yM1vr+ejdRkEeVsZHt18Lt0j5wzCYlLkltZw1bjeLcbraTXz+7P688OOXG58ax0ZhVXcdkY8L84ZRVFlLY99sY275m/m1eWprDtQSH55Dec4gq7EaH/25JZR6aI3RV5ZDVsyS5oFnO1hNinmjI0lzNedp2cPafZYfKgPkZ24bh2Au8XcrtJKVwFcgJeV+DCfDmUNnU7ka2TPbbIiJZpCCNGmhx56iNTUVEaMGMHZZ59NWFgYH3/8MTU1NVx00UU89dRTVFRUcPnll5OZmYnNZuOxxx4jNzeXrKwspkyZQkhICMuWLevulyKEEADMX5fBHz/fyhd3TGJEK01Jvth8kNp6OweLqxxrtukGJKtSCzCbFIUVtfzug03U2w1mJ0YyJNKf+2Yk8Oz3u9iUXkxNvR03k+Kr5CwGR/qxZEcuP+46xHUTevPOqjR+3JlLiI87OaXVvDhnJIMj/bjopV/4NbWAC0dEtgikwv09eOTcwby/Jo0ZQ3q5HPNvz+jLrpxSvtycRXSgJ9OHhGM2KdY9Mo2K2noe+Xwbr/6Uyq6cMtzdTExJCANgeHQAdgO2Z5VSVFFLal4Ft57eF5NJsWJPHgBnOvbtiLun9eeOKf3a7M55sjuRr5E9MsDzdpcmK0IIcSTPPvss27ZtY/PmzSxevJhPP/2UtWvXYhgGs2fPZsWKFeTl5REZGcm3334LQElJCf7+/vzrX/9i2bJlhISEdPOrEEKIRu+vSQPg9Z/38Z+rRrV43DAMPlybTt8Qbw4UVLB4R25jgLevgKkDw8gsqmJDWhHxod4MjvADYO7kvvyaWsCKPXn832WJfL0li6+Ts7hran+e/Ho7/cN8eOy8wazZV8iSnbkAxAZ5ce6wCEwmxUtXj+I3b61rKGc83FXjYrnqsLl3TSml+NslwzEpxcyh4Q1Bore7G97ubjw8ayDTn1vBt1uzmTkkvGGO2vAY/dq+Sc7i4/WZVNXZ2J5Vwj1nD2DBxkxCfd0ZEunX4fdZKYXV7fh3jzyeTuRrZI8M8DwtblRJgCeEOJl8/xDkbD3yfh0RPgxmPduuXRcvXszixYsZOXIkAOXl5ezdu5fJkydz77338uCDD3LeeecxefLkzh2jEEJ0km0HS9ieVUpUgCffb8vhYHEVFpPio3UZLNmZi1KKC0dEsiunjGcuHMrXyVks3p7DPWcPIKOwkozCKn4zqQ9+Hhbu/SSZ2YlRjfO5TIqXrhrJlswSJvULQSm45+Nkbnt/A5lFVXx4y3gsZhNTB4Xx6k+p2A24f0YCJkcgNrl/KFuemIGntf1dHA/nYTHz3BUjXD7WN9SHq8bF8s6qNM4Z3hhEhvl6EOHvwdur0vB1d+P2M+N5eXlqw3p2d57Vr8Nz07qFXCOb6ZEBnl4moR7DME6OX1ohhOhmhmHw8MMPc+utt7Z4bOPGjXz33Xc8+uijTJ06lccff7wbRiiEONmVVNXx4KdbePz8wW3O06qqtVFdZyOwg10PP1qXgbubif9dl8R5L/7Mo59vJTmzhKJKvXj2odIanvx6Bx4WE7MTI6mtt/PMNztIK6hgjaND5YT4YOJDfSisqOWypOhm5/f1sDCpn87ITB8SjrvbVpbvzuOCEZFMiA8GYOqgXry8PBWTgktHNz/+WIK79rh3egJRAZ7MdKyh5zQ82p/skmoePW8QV4yJZWyfIPbnVzAlIYy4EO9WziaaOtGukT0ywPO0mrEbUFNvb1hHRAghTmjt/CtiZ/L19aWsTDcJmDFjBo899hhXX301Pj4+HDx4EIvFQn19PUFBQVxzzTUEBATw+uuvNztWSjSFEO21cm8+C7fnMLp3ILec3rfV/Z74ahtLdx3iuzsnE+bX+sLUa/YV0L+XL0HeVkqr6/hi80HOGRbB4Eg/Zg2N4Nut2Qzo5cNHc8fTv5cvVbU2Xv95H0E+Vvw9LUwf3ItnvtnB/37eR1FFHUHeVgaE+WIyqTbHB+Dj7sb0IeEs23WIP54zqGH7iJgAevnp7pW92hh7V/D3tHDrGfEttl8/MY74UB8uT4oB9Jy7M9u/FN2JQa6RzfTIAM/L8ReSqlqbBHhCCNGK4OBgJk2axNChQ5k1axZXXXUVEyZMAMDHx4f33nuPlJQU7r//fkwmExaLhVdeeQWAuXPnMnPmTCIjI6XJihCiXTZnFAGw7kBhmwHUhrQi8strufujzbx70ziX3R1fWZ7K3xbuwsNi4qyBYfySUkB5TT1XO+ax/fHcQQyP9ue6CXENmTNPq5nfT+3fcI6YIC/OHR7Be6vTARrmy7XXny4cSkllXbNAzmxSLLhtIr7u3bMAtisT40OYGC9/jOuoE/kaqZq2fz0ZJCUlGevXrz+mc3y0Lp0HF2zll4fOIqqTW7UKIURn2blzJ4MGDTryjqcIV69XKbXBMIykbhrSSaczrpFCdKas4ipq6+3tKvW7/NVVrD1QSJC3lQ2PTmuYRpOaV84PO3K59fS+VNXZGPLEIhJ6+bIrp4z7ZyQ0rM22M7uUA/kV7Mwp44Uf9zJraDj+nha+3ZrNaf1CuOX0voyKDezQ+A3DYENaEfPXZXDFmBiX676J7tGTrpEdvT72yAyep1W/7EpZ7FwIIYQQotNV19l49adUXl6eioebiR/uOaPNksR6m52tB0sI9rZSUFFLal45/cJ8AXjyq+38vDefswf3oqSqDsOAP5w9gM82ZvLSshSuHhdLnc3g4pd/bVgGa9qgXrwwZyQWs4lnLxl+1K9DKUVSXBBJEtiJk8ipuzhFG7wcZZmyVIIQQgghROd7cMEWnl+ylykJodTa7Dzy+dZmi4a/vyaNdQcKG+7vzi2jqs7GtRP0Qt7rDuhyza2ZJfy8Nx/Q69BtzyoFYEikH384ewCVtTbe/jWN//6USk29jfdvHscPfzid164djeUoFq8W4lTQI3/zvdwlwBNCCCGE6Aq/puTz5eYs7jyrH/+9Non7piewZOchFmw8CMCCDZk88vk2rvrfar5OzgIgOaMEgItGRhHiY2Wdo2vlKz+l4OvuRoiPO6v2FbAjqxR/TwtRAZ4MDPdj6sAw5v2yn3dXp3HxqGgm9Quhfy/fDs2V63HqqiB1aXePQnShnhngOUo0q+qkRFMIcWI72eZJH62e8jqFOFnV1Nu48c21/JKS3+Z+tfV2Hv9qO7FBXtzumBt346Q+jI0L4v5Pk3n66x089uU2xsYFMTImkDvnb2L+2nQ2ZxQR5G0lNsiLpN5BrD1QyPLdh/h+Ww7XTujN5P4hrNlXwPasEgZH+DXMz7t9SjwlVXXU2w3uPKt/W0MTTiufh3cvgoy13T2SY9YTrh1H8xp7aIAnGTwhxInPw8ODgoKCU/4CZhgGBQUFeHgc35bhQoi2bc4oJr2gEoAfduSybHceH6xJb/OYD9emk3KonCdnD27oVG42Kd76zRguGhHFvF/24+5m4oU5I3nnprGcOSCUhz/fyvfbckiM9kcpxZg+QWQWVXHDm+sI9/PgN6f1YULfYPLLa9mSWcKQSL+G5xvdO4gLRkRy6+l9iQ326ro3w5WSg/DJjVCWe3yf90jsNvjyDkj71fVjm97T3298+/iOq5P1hGvk0V4fe2aTFZmDJ4Q4CURHR5OZmUleXl53D6XLeXh4EB0dfeQdhRDHhWEY3Pz2OoK8rXx352Q+WpcBwIq9edTZ7K3Ob/toXQbDo/05a2CvZtu9rG783+WJTB8STlSAJ+H++gPrK9eM5vp5a1mzv5DEmAAAzhkWzi8puqnKRSOj8LCYGxYKBxjcJMAD+PeVIzvtdXfIoj/Cji8gZABMebhxu90O9VVgPcZFwutrwa1ji7kDuvxy03tw4Be4Yw24uTc+tm8ZlGZCQCxs+xxmPgvuvsc2zm7SU66RR3N97JEBXtN18IQQ4kRlsVjo06dPdw9DCNEDpRVUkl9eS355Lf/+cS8rU/IZGuXHtoOlbEwrYlzfYA6VVbMnp5ySqjpmDg1nT24ZO7JLeWr2EJfnVEoxc2h4s20eFjNv3DCG53/Yw8Uj9YfYCH9P5t0wptl+MUFeRAV4crC4qkWA1y32r9DBnZunDqbOeABMjrWVlzwOmz+Eu5LB3afj57bbYNEjsOEt+O3PENLB0tONb+txFe2HVS/B5HuaPPYOeAbBha/AW+fCts9g9PUdH+MJQK6RreuhJZqOZRIkwBNCCCGEAKC0uo6C8hoANjkWHY8K8OTFpSkA/N9lI3AzKZbvyWPFnjwm/nUp17yxhjs+2Mgry1P4fNNB3EyK8xMjO/S8Pu5uPHre4COWWJ7WLwRPi5n40A4ETXa7DsBqytq3f8Y6/dWWumr4/iGdBTv/eZ0RS3UsVn1oJ6x6GSrzdQDYUfW1MP9qWPOKzgLu/Nr1fod2ui7BLM+D3d/DmJtg4Hmw4p9Q7CirLcuBXd9B4hzoPQlCB+qArzOV5ejn/OnvsOUTOIXLJ09kPTLA87CYUAoqa6XJihBCCCEEwP2fJHP5f1dhGAYb04rxcXfjuStGADq4Sgj3JSkukEXbc3howRbiQrz54JZxnDc8gn/9sIcP16YzZWAYQd5HUVbYDg/MTGD+3PEdW/4gc52ej7bkqSPvu/Z/MG86zJ+jAy1XKvLhnQvg0HaY+TcYcjF4BeusmWHAwod01i4w7uiCp93fwp7vYcZfIHw47F3ccp+acnj3Yt0opfiwOZHJH4K9HkZdB9P/BErBvJmw61udsVMKRt+gb0ddBwfXQ+6Ojo+zNatfhqXPwLI/w2c3w5e/a/29FF2mRwZ4Sik8LWbJ4AkhhOg2SqmZSqndSqkUpdRDLh6PVUotU0ptUkptUUqd0x3jFD1Dnc3Oyr35pOZVsCWzhE0ZRSTG+DO2TxD/d1kij583GIApCWHsy6vAVprN515/YqJvHn+9eBgxQV6UVddzyaioLhtjsI97wzy9djvkCF7WvwE521rfb81r8N19EDoIKvJgz8KW+9RVw7wZkL0ZLnsLBp6j58glzoFd38ALI2DfcpjyCCT9BjLWQN7ujo13z2LwCICxt8KAGfoclYXN91n5LyjL0gHl4kcbt5flwrrXIWY8hCZAUB+48Xsw7DD/Kn2e676E0AF6/+FXgskCm97t2Bjbkr4aosfCYwVwxoOw+T347JbOO39XW/kcfHZr+zO+R2Kr0z+jhX/snPO1U48M8ECXaUqAJ4QQojsopczAS8AsYDAwRyk1+LDdHgU+NgxjJHAl8PLxHaXoSbYeLKHC8bnoo/UZ7MwuY2RMIACXjI6mfy/diGPqoDAAnumfgm/OWvj2Pnzd3Xjt2iRuPaNvi+Yq3S5vF1i8dNC08KHWSwa3f64zZnOXg2+k6+zbgZVQkAIX/ReGXNS4fcIdOsiLSoLJ90LSTfq+ya1jWTy7HVJ+gH7TwOwG/Wfo4KzpmnWF++DXF2H4FXD6fbDjS9j8AexdAq9P1ZJfpN0AACAASURBVMHpWU2CvojhcMtSGH8H3LwEek9sfMw7GAadp7N+9TXtH2dr6qrg4EaIHa/HP+WPMO42XWZaW9H2saVZ7S/nrKuCioKOj68ore3Hc7fDj8/Alvk661mS2fHnaKq6BD64XP+8Vr8EhfuP7Xwd0IMDPDNVUqIphBCie4wFUgzD2GcYRi0wH7jgsH0MwNlNwh/IOo7jEz3MqlT9gTmpdyAfrcvAZjcYGdsyW9YvzJdFd5/O2W7JOoBJWwnbPych3JeHZw3C6naCfbTM26Xnmk35Ixz4WWeYDme3Q84WiBmnM3Ijr4GUJS0/4O9dpJuXDJjRfLtfJFz4Mlz6Bkx9XAc3PmGQMEvP/zs8A9earE06QHOeP2qULv9sWqa58nn9vk97Cib+HgJ6wxe3wfuX6NLMG7+HPpNbjm/mXyA4vuVzjrwWqop0BvJYZW0Cex3ETmjc1m8aGDbIXO/6GMPQr+lfg3RZ55EUpMKrp8HL4/S42yt1Kfx7OGz5uPVxfP8gePjBJW/oYPDLO9p/fleWPwv7foKzHgNlalye4jg4wf4VHj9eVinRFEII0W2igIwm9zMd25p6ErhGKZUJfAf8/vgMTZyK7Pa2syOr9xWQ0MuX6yfGYXPsOzI20OW+CYEKlbYSxtyis16LH4Payo4NaNP7kLO1Y8ccLmUJfHOP/tq33PU+hxwB3tBL9P20X1ruU7gPasshIlHfH3mNY4xNPpAbBuxZBH3PAItn+8Z35sO61M9V4GKr13P+8vY0btu7CFA6KALdlbPfNNj7g+6s6RxD/+ngF6HHMXc5XL1Af932K0SOaN/YnPpOAf/Yzmm24gyeY8Y1bosZo19T08Dabtclsd/cAx9cAUueAK8Q+OXf+mfRmqzN8Po0qCzQX8ufbf/Y1s/Tt4sfc11+ufNr/QeAsx6FYZfC2Ft0xra6pP3PcbiMtTpjevp9+ue4+QP9cz8OemyA52k1U1UnAZ4QQogT1hzgLcMwooFzgHeVUi2u20qpuUqp9Uqp9af6elDi6CzZkcuoP/3Awm3ZAPyams/Vr6/m8ldXce/HyZRU1rH+QBET4oOZNqgXXlYzccFerTdL2b8CbLWQMBOmPam7SKb80P4BFR2AL2+HFf84thf20991YLL5ffj6bh04NFVVBOU5EDYQvIL0/DpXGbycZH3rDPACe+sgavXLjaWA+XuhOE1vb69eQ3Q3y/Xzms//qymDD6/Uc/6W/alx+55FED1Gj9Vp4LlQVajXr8tO1q+naQbRKwj6T9NfTY9rL5MJhl4M+3/WcwyPRfpqCEnQpZ9OHv7Qayikr9L366rg0xvh+/t1WWzWJj1X77c/6/mAix51fW7QzVtMbnDzjzD6Rh0gt6dBjLOzaJ8z9Pu34p8t91n/BgT20ecF/R7b65uXx3aErR5ytzX5o8G1et5k6o9Hd74O6rEBnmTwhBBCdKODQEyT+9GObU3dBHwMYBjGKsADCDn8RIZhvGYYRpJhGEmhoaFdNFxxoskpqWZ//hHmNQG7ckq5a/4mSqrq+MNHyby/Jo2b3lrP/rwKTCb4fFMmF738C1V1Nsb3DcbTaubhWQO5fUq/1k+6dxFYfSF2ov7Q7O7vuttjaza9r2/TVx953pXdDkv/DG9MbzlPrDRLZ1vOf0Gv+Za2svnjh3bp29BB+jZ2nM6q2A/7/JedDGarzvQ5nf207la59JnG1wwdC/BAZ/E8AnQZZXmeLvucN1MHDqGD9PIKtjoozdbNWwYcdv4BM/W6dRvfcbzHCvqd3bExHEnUaF1GeWi7vr/4MfjwKh0gF+7T7/36N/Vj1SXw2pnwywvNf3Z2O2Ss1u/x4WLH626mtnr4cI6eNzj9T/DAPrh/ry6f9YvUma7d3+rM2eGKMyDlR90BNDheZ9rcffX7WpHf9utzdhY95x+QeJVeG7C0ScV7TbleFH7guY1rGUYl6Z/bng78XjeVvwfqqxsDvAEzwTu0cxvatKHHBnieFmmyIoQQotusA/orpfoopazoJipfHbZPOjAVQCk1CB3gSYpOsD+/gvNeXMnU/1vOk19tp7S6rsU+B4ureGPlfn7z5jq83d346o7TCPCy8Mjn2wj39+DL353G/LkT+PuliezLr0ApGN9XZ4CunRDH5UkxLc4J6A/1e3+A+DP1fDWzG/Q7y1FGaHd9TFN2my59NFuhPFdn81w9x76fdNncpzfCir/rbpJNyyvtdijLBt8IGDxbB5mHlxnmOQO8BH0bOwFqSvQack1lJ0PYYP16nMIGwrhb9WLjG96GbQsgbAgEtPK+tMYrCC56VWcAXz8L/jdVL21wzac6SKkp1YFu8od6/8EXNT/ezd3RpfM72PqJnpfn08l/yHEGIdnJjnUD39WB1v+m6pLIjDWw7g29T8oSnXX74TH4+s7GksO8XTr4azr/zil2vC6B/fEpnYmc9Xc9f1Cp5vuNv10HVc7nstvg4Ab9+7DZ8UcBZ/ms833N26WbyzQtdW3KMPTvhbOz6Gl363mCu79v3Gffcr2taWbU7KbLKlMO+73O3tL4hwbD0E1lXJVdZjuywuHD9a2bFQbN1kFqZzS0OYIeG+BJkxUhhBDdxTCMeuB3wCJgJ7pb5nal1NNKqdmO3e4FblFKJQMfAjcYhqwa3NNlFVdxzetrsBsGl46O5u1VB3h4QfO5bMWVtcx8fgXPfLMDXw8Lb1w/hmHR/rxx/RjOT4zkvZvHEerrDsClo6P51+WJ3DW1PwFe7Vi/bu9iKD0ICU1W7eg/QwdrzlLHtqT8qEvVJt+r77sqmVz1ErwzGz66Rmd7pjwKbh7NsykVeTor4xep56INvwx2fNW88UbeLrB4g78jKIsd73jOVY37GIb+MO4Mcpo640HwDdeBTNYmneE5GgNmwI3f6hJIsxVuWgzxZ0HfM3VZ4p6FOgjpfRqEuMicjrpWByD5e/R73dkCYnVglZ0MBXv1ezj6Bl0a6hGgl3zI3QolB/XPwDMIJt2tx7z7W32OzLX6NqaVDB7Ary/o93nMTa7HYfGAxCt1w5fKQj3H7n9nwVe/01nfvmfq8lmnhFlww7e6Q+cb0/QfBQ6Xvlq/plHX6fshA3RjmqYZ572LwN2vZXA6YIb+PcvapIO8JU/BfyfruYOgg87/TdHlttWlzY/NTtYNeUL6Nz9fXaXrDGUnc+vyZzhBeVnNDe2AhRBCiOPNMIzv0M1Tmm57vMn3O4BJx3tc4sT294W7KK6s5aNbJzA0yh+AxTtyMQwD5ciIrN5XSFl1PW/eMIYpA8Majh0c6ceLc0a2OOfFo6Lb9+T1tbDwYQjuD0Mvbdze/2xA6Q//kS3P38zGt3VDjUl36zlu6atgxJzGx8sPwU9/g/ipcPZTOsAIiNFZpL2LYJajsUaZo8TOL1LfjrpOrwG35RMYN1dvO7RTZ21MjnxGQG+d8UtfrZtoAJRk6IAmYnjLsXoGwB1rdMZNmXRwcLSiRsPvN+gSQKu33ubuA3GTdPljXQWc2WI5TC1skF5bLnNtyxLOzqCUfv3ZyY3B78Q7dadON3edZV0/TweizmUcpjyiA/GDG2HwBfpYd38I6tvy/P7ROsguydDZO2cZpCsjr4U1r+r5levn6fM5m92c7WKx+ugkPSfvg8vhvYv1+oSDzm98fNO7upx4yIWNr3XADNj4rp4P6ObhyEhPAbOl+bn7TdM/92/u0vtlroOgeL2237BLYcmTOjhOXarLbq/6qDHDm7MFwoc1f61xkx3Ptxj6TW3jB3LsenAGz40qCfCEEEIIcZIwDIOVKQVMG9yrIbgbFRtIcWUdBwoau1iu3leAp8XMpH4tpmw2qqvSc4860tVvzStQmAozn21ezugdogMY5zy11mSs1dmZpN/obE3MuJYZvB+f0mOb9Xf9Adn5gXnADD0frCBV33fOofKN0LcRifpr49uNc8PydjefV6eUziY1fU5nKV1EK90nPfz1OHoNaRkAdJSHX2Nw59R/hg7u3P11CV9rznxIB9XhLjKNnSEiUa8Dt/9nPVcsqK8OcC2e+j30j9XLGVQW6J+Fm1UHns73LztZB4mHl106jb8dTr+/MZvXmvCh+ndpzSs6OLr+G7j4fzDk4tYzqIG9dVY0dCD8+HTjz7+6RDdyGXZJ8/e9/wyor9KZtJwtutTX1dxKryAYO1dn7+qq9e/93OXg00sHlBX5cPk7uty2JEOXih7cqPfP3tIyK2z1gj6n62Y6XVyM0YMDPDOVtfVItYsQQgghupvNbvDz3ryGJQpcSc0rJ7+8hgl9G7sUjuqtlzLYmNZYmvhraj5JcYGtr0m340v4czj8NQpeHNW+ddqqS+Cnf8CAWbpj4+EGzNAfbstbmSZqt8P3D+iAbNJdelvseMjf3dipMm+PztaMv61lqWJ/R2ORPY4gsvSwDB7oLF7uNl1SV7i/sYNmU7ETdNdPZ6CYsRaUWc/B6w7OeV/DLtUBQGv6TdXr7Jm66KN7xAjdGXXn1/rn0jRQU0pnDkscmcz4sxzHJOrAzlanu4S6KnN1mnB78wXY2+Isp5x8D/hHwfDL4bI3dTaxNR7+MO63uow1Y43etm2BLol0ns8p7jSweOl/Bz/9XW9rrXHNrL/B7b/CbSv176WHn+4ca6vVpbORI/X7cdNiMLvDm+fAqv9AbZnr96P/dN0QyPn710V6bIDnaTVjN6Cmvh0TgoUQQgghuohhGDz6xVaufWMtn23MbHU/52LkE+IbA7x+oT74uruxKUMHePnlNezJLW+2Twu7F+rSxymP6syDc522QzshY53rY7Z+qj+0nnG/68f7TweM1pdL2Py+DrzOflqXJkLjnCfnB3LnfK7xt7U8PjBOt+B3ZgnLsnVg5t2k4cjQS/W8p03v6iYgFq/mpaTgyAIpSJ6vs5dbP9XBU1vBVVcKjocrP2h/8NNVnMGIrcZ1oxTn3L/osY3LMUQk6nl6qUv1ca1lQTtqxNU6azfxro4dN+QisPro8kvD0M1xeg2FyFHN97N46O6vm97VGeWznwHfXu1/nuFXwpUfwoy/Nm4LGwS3/KgzvT88pre5CvCcAf2Rst3HqMcGeF5WXRMrZZpCCCGE6E5//X4XH67NQClYd6B5Ni3lUDn/WLSL2no7q/YVEOnvQWxQYzBiMikSYwLYmFYM6PJMoFmWr4WM1TqLccb9MOZmPdfp5//T7e/nTYc1/215zMZ3oNewlh+WnSISwSfc9XIJdrte8y4qCYZd1rg9cpQOyPYs1Pf3LNblkE2zck31mwZpv+q5gKWODppN5zh5Bui5Vpve05koZwaoKf9oHdBtek+PtSxLz/vqTgPPPbo17DpTULwOjsB1GWWfyeAdpjONTs6Aztm9tK0MXkeYLTpr59aOpj9NufvoBe23fwYLbtbLToy5yXXZaOIV+vVe9hZMurNjz2MywcBzGv9Q4eQTBjd8o8tJ/WOalwc7BcTq5TG6uNFKj26yAlBZZyOwm8cihBBCiJ4pu6SK11bs48oxMeSV1bChSamlYRg88GkyG9OLcTOZWL2vkDMTQhuaqTiNig3gP8tSqKytZ1VqAT7ubgxzzNFroSxXz2VL+o2+f+bDOov149N6kW3vUF1Kueld3RBi4Hm6AUX2Zj0vrrU5Vkrp0s0dX+uSvabz1Q6s0IuET328+fEWD5112faZ7liZsQZO+0Prb1bUKFhdq7tjlh4Ev4iW+4y8Vi85ENAbJvze9XlGXQcfXwff3qtf74CZrT9nT2Ey6eA6O7mxtX9TFk+4d5cu0XTqNUTf3/297lYaHH/8xtuaUdfpeZjbHMtQOBcuP9yQi/Scx7YavhwNi6cuJ7XbWy+nvfpj8G3ljxidpMcGeL4e+j+e4spaogI8u3k0QgghhOiJduWUAbqT5fq0Qn7cdYiiiloCva18vy2HjenFxAZ58cLSvRgGTIxv2ThlZGwgdgOW787jpz15jIkLxM3cyofLDEeDEWcZnnM9sf0r9Adis1Vn89JX6Xl3S57Q3RLN7s2zb670n6EzYxlrdIbQaeM7uiR04Hktjxl1HSR/oJciMGzN1yI7nDNj5GyM4SpD0nsijLtNr41n8XB9ngGzdCfPsizdLbKjmaJT1cTf646hrTWTOTwYsnrpstm8nS07RnaXqNF6CY6IRN3dsy1dOd625koGxHbd8zqfvqtOrJSKUUotU0rtUEptV0q1KKRV2gtKqRSl1BalVCt5/87nLG9Ib9J1SgghhBDieNqbqwO8Ab18GB3raJiSXkRtvZ2/LdxFQi9fPrt9IsHeOghxNbduREwAALe/v5GckmquGNPGB8j01bossmmWZsAMmPFnnX0wmeGMB+Daz3X7+bMehYpDOmA6Uhlh/BTHum5N5hdVFupyycQrXQdcseP1sgspS8ArWH9Ab01QX11Wl52sSzRdlXIqpZdS6D2x9fO4WWHEVfr77i7PPJEMPNf1/Me2OMsyXS0z0R2U0pniIwV3p7iuzODVA/cahrFRKeULbFBK/eBY18dpFtDf8TUOeMVx2+V6B+sAb39BxfF4OiGEEEKIFnbnlBPm606Al5XEmADcTIr1aUWk5pWTVlDJmzeOIcTHnRfmjOSnPXkuq44Cva2cmRBKvc3gifMH07+Xb+tPmL5Krx3WnqyVUrq1fb+zIajPkfd399WB1bbPGjse5u3SHQdbC6SU0t0If3hcz7FrK6tiMunA9MAvuuGLr4sSzfY682G9XlroMaxtJ3Rgt2V+582/E52iywI8wzCygWzH92VKqZ1AFNA0wLsAeMfQaxWsVkoFKKUiHMd2KV8PCyE+VtLyJYMnhBBCiO6x91AZCeE6IPOwmBkS5c+SHblkFVcxdWAYUxL0QuUT40Nclmc6vXXj2CM/WU25Xp9r8j0dG2RkB7ojjrgKvvydLvN0ip+q1zdrTeJVutFL4pVHPn/EcL0QNoBfVNv7tsXqBTHteM9E2+Kn6oYicZO7eySiieMyB08pFQeMBNYc9lAUkNHkfqZjW7MATyk1F5gLEBvbeXWrccHeksETQgghxHFTZ7OTnFFMfKgP/p4W9uaWM2ds42ebpN6BvLFyP1Y3E0+cP6Rzn3zbp3qe25EWmz4WiVe2L1BryicU7kpu375NM0WumqyI4ytsIPxhW3ePQhymywM8pZQPsAC42zCM0qM5h2EYrwGvASQlJXXayuRxId6s2NPKgpxCCCGEEJ2goqaeJTtzWbLzEMt3H6Ksup5ZQ8N5eNYgqupsDOjV2G7dGeDdfmY8scFtrM1WVQx2G3i3sRyCk2HAyufgx6cgZvzJnW1pGuAdS4mmEKewLg3wlFIWdHD3vmEYn7nY5SAQ0+R+tGPbcdEnxJtPN2RSUVOPt3uPbSgqhBBCiC5SZ7Mz53+r2ZJZQoiPlZlDwimqrGPJzlzOGqjLLweEN86Zmza4F/+6PJFzhx8hePn4WqirgpuXHHkQWZt0cDfkYrjwlcb5cSejkAS9fEN9devr5QnRw3VZVKP0Ii1vADsNw/hXK7t9BfxOKTUf3Vyl5HjMv3OKC/YGIK2gksGRfsfraYUQQghxCrPZDarqbPjkbuDHX9ayJbMv/7wskYtHRmEyKbZnlbBkZy4vLk0BoH9YYwbPYjZx8ajotp8gP0Uva2Byg/qaIwdsRfv17en3t750wMnC7KbXXytI1V0/hRAtdGXaahJwLbBVKbXZse2PQCyAYRivAt8B5wApQCXQymqEXcPZSfNAQYUEeEIIIYToFC8u3ct/lqawyO9PTKg6wHnDvubS0Y1B2+AIPwaG+7Irp4yoAM+GtXnbbdM7+tZeD4d2QOTItvcvy9W3vuEde54TVeIcyNvd3aMQ4oTVlV00VwLqCPsYwB1dNYYjiQvRGbz9+dJoRQghhBCdY/H2XOK8aoir2oFZGTw9tXn3S6UUF4+K4i/f7aJ/k/l37WKrg80fQK9hkLtVrwnnDPAMA96cBaNvaN7opDxHL2DuGXhsL+xEMfaW7h6BECe0Llvo/GTg4+5GqK87adJJUwghhBCdoKC8hh3ZpTzYLwOz0n3hgipSW+x34YgozCbFoIhWKohs9ZCxruX2PQuhIk8vQO7urwM8p+I0vc7dvuXNjynLBZ9ees05IcQpr0cHeAB9gr05IGvhCSGEEKIT/JpaAEBS7TqwOpqnHNrVYr8wPw8+u20ivz093vWJti2AN6bBwY3Nt2//HLzD9KLgEcObB3jO74vSmh9TnqMDPCFEj9DjA7y4EC9ZC08IIYQQneKXlHwCPBQBWStg0PngFQx5O13umxgTgL9XK/PvDq7Xt3sWNm4zDEj7FfpM1s1GIhIhd7vO9kGTAO9A83OV5Z468++EEEckAV6IN3llNRSU13T3UIQQQghxkluZks+cyEOo6mIYMB1CBx1dQxBnsLZnUeO24nQoy4bYCfp+RKJeLiB/T/NjyrJ1d00nyeAJ0aP0+ABv2iD9H96CjZndPBIhhBBCnIzsdoNdOaVsO1hCZlEVMz22gzJD/FkQmqBLNA2jAye0Qc5WcPOE7M1QlqO3p6/Wt7Hj9a1z0e/sZH3+7GSweAMGFGfox+proKpIMnhC9CA9PsAb0MuXsXFBfLAmHbu9A//5CiGEEEIAr65IZebzP3PeiysBiDdlQ2Bv8PCHsEFQU6Kzau1VkAp1lZDkWD0qxbGYecZqcPeDsMH6fnA/sHjpwK4sRzdfGTBdP+Ys0yx3LJEgGTwheoweH+ABXD0+lgMFlQ0To4UQQggh2iOzqJIXftzL5P4h/PGcgTx+3mC8KzMhoLfeIXSgvj3keh6eS85SyxFXg29kY5lm+mqIGQsms75vMkP0GNjxBaT9orcNmq1viw/o21NtDTwhxBH1vADPMCB9TbNSiZlDwwnytvL+mrQ2DhRCCCGEaO6Zb3YA8Owlw5l7ejy/Oa0PqigNAuP0DmGD9G1H5uFlbwY3Dx0c9j8bUpdB9ha9qLmzPNPprEd1dnDhQ4DS3TXN7o2dNMsd5Z2SwROix+h5Ad6ub2He9GZdqdzdzFyWFM2i7TnszinrxsEJIYQQ4mSxcFsOi7bn8vuz+hMV4Kk31pRBVaEu0QTwDmmzk6ZL2cnQa4julDnmZlAmeH2afizmsAAvZiwMv1KXZwb3Aw8/CIjVa+JB4/w9yeAJ0WP0vABvwAz9H+CSJ/UkZodbT4/Hx92NP327A6MjE6GFEEKIDlJKzVRK7VZKpSilHnLx+HNKqc2Orz1KqeLuGKdo3cHiKh5csIVhUf7cMrlv4wPOzJmzRBP0nLnD17NrjWHobJ2zgUrEcLj5Bx2guXlC1OiWx0x7Eqw+jY8F9m4+B0+ZwDu0A69OCHEy63kBntkCUx+HvF2w+YOGzUHeVu6eNoCf9+azbPehbhygEEKIU5lSygy8BMwCBgNzlFKDm+5jGMYfDMMYYRjGCOBF4LPjP1LhSk5JNUt25HLH+xux2Q1enDMSq1uTj1POwMpZogl6Xlzutsa5dTu/gR+egCVP6YYqTRUd0E1ZnAEe6E6ct67QX1avloPyi4BblsGMP+v7Ab2blGjm6uDOOW9PCHHKc+vuAXSLQbP1pORlfwart65X9/Dj2gm9eW9NGk98tZ3h0QGE+Lh390iFEEKcesYCKYZh7ANQSs0HLgB2tLL/HOCJ4zQ20Yb1BwqZ87/V1NkM3EyK564YQVyId/OdnKWRTQO84ZfB4kdh47sw0oCPrtEBl90GBXvhivca983bpW/DhjQ/r2eA/mpN6IDG7wPjoLoYqkt0kxWZfydEj9IzAzylYNbf4IMr4NMbwWyFuMlYoscwP/YQq7buIe3ff8J/QF8swy6GflPBTYI9IYQQnSIKyGhyPxMY52pHpVRvoA+w9DiMS7ShuLKWOz/cRGSAJy+cH8WQFbfhFvXfljsWpYHVFzwDG7d5BsLg2bDlY91AxTsEfr8Bfvo7rHkVyg+BT5jj+AP6NqjP0Q/WOf+vKE03WZH5d0L0KD2vRNMpajTcuxtuXAjjbtX/of70LGEpnzLdNw23mmKqdyyE+XPghZGw4S2w1XX3qIUQQvQsVwKfGoZha20HpdRcpdR6pdT6vLy84zi0nuXBBVvIK6/hxTkjSazZiFvWekhb2XLH4jQdYCnVfPuo63TpZeY6mPqEXiNv1HVgr4fk+Y37FaXpxcq9go9+sM75f0UHJIMnRA/UMzN4TiYz9J6gv85+Rv8na7bgCWRuyeaGBRsZZ0/mz+ZFBH99F6x8HqY8AkMvAVPPjY2FEEIck4NATJP70Y5trlwJ3NHWyQzDeA14DSApKUm6hHWSbQdL8HF3Iy7Em43pRSzansv9MxIYHh0Am1bpnUpc/NiK0iA4vuX23qdBcH/d5XLE1XpbaALEjION78DE3+ugsLUAsSOC+urqpF+eh4pDksETooeRKMVJKd2AxeHc4RF8d89ZFEZPYfyhB9h39jw9X++zm+HdC6Bc/koqhBDiqKwD+iul+iilrOgg7qvDd1JKDQQCgVXHeXw9nmEYzH1nPde/uZbqOhtvrNyPn4cbN0yM0zukr9G3JZmHH6gDtKYdNJ1MJvjNQrj28+Z/JB51nZ6Hl75a3y9q5fiO8PCDS96A3B1g2CWDJ0QPIwFeGyL8PXnt2tGE+Xpy7c+BLDztE76Lewh7+hr472TI2tTdQxRCCHGSMQyjHvgdsAjYCXxsGMZ2pdTTSqnZTXa9EphvyNo9x11mURVZJdWkFVTy1NfbWbgthzljY/F2d4PKwsY17Uoymh9YkQd1lY1z4A7nHaJLM5safCEoM6Qu1QFi0YHmDVqO1uDZcOO3ED225eLoQohTmgR4RxDgZeU/V40kt7Sa376/idt3Dedmy7PYTRZ4+wLIXN/dQxRCCHGSMQzjO8MwBhiGEW8Yxp8d2x43DOOrJvs8aRhGizXyRNdbd6AQgKFRfny4Vgdx1zuzdxlr9a1vZMsMnqs18I7E3UeXamYnQ2UB1FW0HiB2VNRob3vAFQAAIABJREFUvYZe+LDOOZ8Q4qQgAV47jIwNZP7c8bx30zjevHEMS4t78Vr8i+AVBO9cCLnbu3uIQgghhOgk6w4U4uvhxn+vTcLbaubcYRFEBnjqB9NXgckCg86D0oNgtzce6GqJhPaISIScLUcXIAohxGEkwGunpLggTusfwpSEMC4ZFc0/V1eybfqH4GaF7x/UZRVCCCGEOOmtO1BEUu9AogI8WXj36fzl4iYZsPTVEDkCQgaArVaXZTo5A7yAGDokIhHKsiHTkR3srAyeEKJHkgDvKDxy7iDCfN25+L0D/Bp7Kxz4GXZ9293DEkIIIcQxKqyoJeVQOWP6BAEQE+SFj7uj6Xh9DWRt1HPa/KP1tqZlmqVZ4BGgm7J1RPhwfbvDUaErGTwhxDGQAO8oBHlb+ebOyUzuH8K1mwdR7N0XfngM6mu7e2hCCCGEOAbrHfPvxsQFtXywJFNn7cKGNAnwmjRaKc0Gv8iOP6lzjlz6KvAK0fPyhBDiKEmAd5SCvK28fn0S4/uF8XDFlVC4D1b9p7uHJYQQQohjsO5AIVY3E8Oj/Vs+WKmDP7xDXGfwyrLAN6LjT+rhB0HxgCHlmUKIYyYB3jFQSvH4eUNYVDOUHf6nw09/1+2NhRBCCHHSsdsNftx5iJExAbi7mVvuUFmgb72CHKWYPoeVaB5lBg/0PDyQ8kwhxDGTAO8YJYT7cvW43tySdzm1hsL2zX3ScEUIIYQ4Cf20J499+RXMGRvreoeGAC8YlNJZPGeJpq0OynOPPcCTDJ4Q4hhJgNcJ7pueQN/4Afyt+iLMqT9QtHNZdw9JCCGEEB30xsr99PJz55xhrZRZNg3wwBHgOTJ45bmAcXQlmtAkwIs7uuOFEMJBArxO4O9l4d2bxjHl6ocoNrzJXvJSdw9JCCGEEB2wK6eUlSn5XDchDqtbKx+PKgv0GnhWRxOUpgFeaba+PdoMXu+JMOF3kHDu0R0vhBAOEuB1otMGx7IhcBb9C5dRnp955ANcqauG7x+C7C2dOzghhBBCYBgGlbX1DffrbXa+3HyQ33+wCQ+LiavHtVKeCTrA+3/27ju+6up+/Pjr3Oy9Nwk7CXvIFhVBEdx14m5rq1at2tr+tO23ttUu7dS6qrVqrVuroqKAOBBEluwRCEmA7L13cn5/nHu5N8lNcklyE5K8n48Hj08+MycOPnnf9znvt216JpgAr7YYmupMgRXoeQbP0wfO+x0ERvXsfiGEsJIAr4/Fn3MHXrRwYNWTPXvAkU9h81Pw8pVQkdO3gxNCCCGGuY/35jP9wbXszi4H4L6393D3aztp0ZpHV8wg1N+785trS+3TMwFCrA3NK3IcMngJbhq5EEK4RgK8PjZh8kz2eM8gMeN1Ghp70Bfv8GrwCoDGGnj1amis7ftBCiGEEMPUlqxSGptb+embu/loTx5vf5PNrWeN4ZMfncV5k2K7vrm2xFTQtAkfY7ZFB6AyBzx82p4XQogBIAGeG3jNuo5Yilm97pOTu1FrOLQGxi2Gbz0F+XsgbZV7BimEEEIMQwfyKgnx8yKtoIo7XvmG1Ngg7j03BYtFdX+zbYqmTdw0E9Qd+xqq8iAo1j59UwghBogEeG6QMuc8AA5s+YTqhuZurnaQv8fM4R9/HiQvN5m845vdNEohhBBieNFacyCvivOnxHH5zBFYlOJPV0zrvKhKe3Xtpmh6+kDCTBPg9aYHnhBC9CEJ8NxAhSTS6B/LhOb9PPdlpus3Hl5ttuOXgoeneWkc3+KeQQohhBDDTF5FPRV1TUyMC+KRK6ay/v+dzZQRIa7d3NoCdWVtAzyApHmQtxNKMyTAE0KcEiTAcwel8B49n4U+R3j2y4w21bq6dGgNxM+AoBiznzgHCvbKOjwhhBCiDxzIqwRgQlwwHhZFfKif6zfXV4BudRLgzYfWZjMDp6cVNIUQog9JgOcuifMIby4kqKGATw4Udn99fQVkbzXZO5sRc8xLI3eH+8YphBBCDBO2AC81Lvjkb27f5NwmcY79a8ngCSFOARLguUvSXACWBGSycmdu99fn7wE0jJhtP2b7WtbhCSGEEL12IK+KpHB/An08T/7mEwFeuyqZfmEQNcF8LRk8IcQpQAI8d4mZAl7+XBxxnC8OFVJR29T19bbG5rFT7ccCIiBinMnsCSGEEKJX9udVMiEuqGc3d5bBA7MODySDJ4Q4JUiA5y4enpBwGlNaDtDUovlob17X1+fvhsAY+/o7mxFzTKEVrd03ViGEEGKIq21sJqukhgk9mZ4JXQd4ycvA0898KCuEEANMAjx3GrUQ39L9nBlexnvdTdPM2902e2eTOBtqi6Esyy1DFEIIIYaDg/lVaA0T3RHgpSyD+49CQGTPByiEEH1EAjx3mnUzysufB/zeYlNGCZnFNc6va6qHooMQO6XjuahUsy3NcN84hRBCiCHu0wOFWBTMSArr2QNqS0yWztvf+XlPn54PTggh+pAEeO4UGAUL7mJcyWfM9kznP5uynF9XdAB0C8Q5yeAFJ5htpQuFWoQQQggBQH5FPfN+v441+/LRWrNyVy4LxkYSFdTDQKy21Hn2TgghTjES4Lnb/DsgIIrfB/+Pt7ZlU9PgpCeeswIrNkFxgILKHLcOUwghhBhK/rMpi/zKev740UG+OVbOsdJaLp7WiyIotSUdK2gKIcQpSAI8d/MJhHm3M752J6GNOfxvh5NALX83eAdB2OiO5zy9ITAaKrLdP1YhhBBiCKhrbOGVLcdICPUjo7iGn7y5C28PC+dNju35Q2tLJIMnhBgUJMDrD5MvB+DmsJ28te14x/N5u836O0sn/zqCEySDJ4QQQ4hSaplSKk0pla6Uur+Ta65SSu1XSu1TSr3S32MczN7+Jpvy2ib+dvV0JsUHk1lcw6KUKEL8vOwXZa6HN26E1lbXHioBnhBikJAArz+EjYQRs1nGJg7kVdHU4vAyaW2Bgr3O19/ZhCRARScBXs52OLSmb8crhBDCbZRSHsATwHJgInCNUmpiu2vGAz8DTtdaTwLu6feBDlJaa57fmMmUhBBmjwrj3qXJAFw2M6Hthfvegf3vQaWLM2QkwBNCDBIS4PWXSZcRW3uIhNYcMoocqmmWHIGmWufr72yCR5gMnrNeeCvvhre/By1O1vYJIYQ4Fc0B0rXWGVrrRuA14JJ213wfeEJrXQagtS7s5zEOWrkV9RwpquGK00aglGJxagyf3nsW501qNz2zKM1sS450/9D6SqivgICovh+wEEL0MQnw+sukS9EoLrRs4mB+pf14vrXASlcZvOB4aKyGhsq2xwsPQMEeaKiA7K19P2YhhBDukAA4ztfPth5zlAwkK6U2KqW+Vkot67fRDXIH88y7cnKCvd/dmKhAlFL2i7Q271CAkvTuH5rxmdmOXNBXwxRCCLeRAK+/BMejk+ax3HMr+/McArW8XeDhbe9350yI9b3ffprmnjdBWUB5wGGZpimEEEOIJzAeWARcAzyrlAp1dqFS6hal1Dal1LaioqJ+HOKp6WB+FQDJMUGdX1RTBHWl5mtX+sweWgO+IZA4tw9GKIQQ7iUBXj+yjF1MqjrGsZw8+8H83RA9ATy8Or8xeITZOhZa0doEeGPONi+c9LXuGbQQQoi+lgMkOuyPsB5zlA2s1Fo3aa0zgUOYgK8DrfUzWutZWutZUVEyhfBAXiUjwvwI8u3ivWrL3qE6z+C9ezusfcAUYTm8BsYuAQ/PPh+vEEL0NQnw+lPSfCxofPOs0ym1tlbQ7GJ6Jjhk8BwWgh/fAuXHYMqVMP5cyN8DVfnuGbcQQginlFIXKaVO9l26FRivlBqtlPIGVgAr213zLiZ7h1IqEjNl04VUk0jLryI1Nrjri2zr7xLnOl+DpzXsXwkbH4NvXoCaQkg+r8/HKoQQ7uC2AE8p9W+lVKFSam8n5xcppSqUUjutfx5w11hOGSNm0aI8SW7YQ0l1A1TmmikicdO6vi8w1kzFdMzgbX4aPP1gwoUmwANI/8R9YxdCCOHM1cBhpdQjSqku5trbaa2bgTuB1cAB4A2t9T6l1INKqYutl60GSpRS+4HPgJ9qrUvcMP4hpb6phYziGibEdTE9E6DogJlyOXIBlB+Flqa252uKoLEK0PDhTwAF485x17CFEKJPuTOD9wLQ3aLwL7XW061/HnTjWE4NXn7URExhtiWNtPwqe4GV7jJ4Hp4myLOtwUv7GPb9D06/G3yCIGYyBMVJgCeEEP1Ma309MAM4AryglNpkXRPXZYShtV6ltU7WWo/VWv/OeuwBrfVK69daa/1jrfVErfUUrfVrbv9hhoD0wmpaWnX3GbzCgxA1ASLGQWuzmRHjyDZtc9JloFsg4TQIiHTPoIUQoo+5LcDTWq8HSt31/MHKc/TpTFVHSMsuNNMzURAzqfsbQ6zNzusr4IMfQfREOONec05Zn1F21K1jF0II0ZHWuhJ4C9PuIA74FvCNUuqHAzqwYchWYCW1qwye1iaDF5ViAjzoOE3Ttr/4/2DatTD/djeMVggh3GOg1+DNV0rtUkp9pJRyIcoZ/PzHnYG3aqE2c6vJ4EWMA5/A7m8MTjBr8Fb+EKrz4eLHwdPbft43FOrK3DdwIYQQHSilLlZKvQN8DngBc7TWy4FpwL0DObbh6GBeJT6eFkZFBHR+UU2ReV9GT4CIseZY+0IrpUfA4gWhI+FbT8Hky903aCGE6GMDWQ7qG2Ck1rpaKXU+ZkG50wphSqlbgFsAkpKS+m+E7pA0l1YUS4/9Ba1yUFOvdu2+kBGw/13z0jn3IRhxWtvzfmFQX9734xVCCNGVy4G/WWetnKC1rlVK3TxAYxq2DuZXkRwThIdFdX6RrYJmVCr4R5i1eKXtM3jpEDZKqmYKIQalAcvgaa0rtdbV1q9XAV7WSmHOrh06JaD9wqgMSWVM6zEKx14JS3/r2n3B1kqaM2+EBU5m/fiFQl25KecshBCiv/wa2GLbUUr5KaVGAWit1w3MkIavg/lVpMZ2V2DloNlGTzBLHMLHOpmimWGfvimEEIPMgAV4SqlYpZSyfj3HOpZhUSHM59r/cmHrX3nU/w7wD3ftpsmXmczd+X8xL6T2fEMBDQ2VHc8JIYRwlzcBx0/WWqzHRD8rqmqguLqB1LjuCqxYK2gGxpj9iHYBXmuraX5um74phBCDjDvbJLwKbAJSlFLZSqmblVK3KaVus15yBbBXKbULeAxYobXW7hrPqcQvZhzjJ85g1Z48GptdzLgFxcLpd7Vdd9fmoWFmK+vwhBCiP3lqrRttO9avO/mLWrhTmrXAyoRuM3hppoKm7cPS8DFQcRyarf8aq3Khuc4cF0KIQchtk8u11td0c/5x4HF3ff9T3SXT41m5K5cN6UUsTo3p/QP9Qs1W1uEJIUR/KlJKXWxrb6CUugQoHuAxDUsH880MlpSuAjxbBc2Jl9iPhY4EtAnyHLN5MkVTCDFIDXQVzWHrjPFRhPh58d7O3L554IkMngR4QgjRj24Dfq6UOqaUOg7cB9w6wGMalg7kVREV5ENEoE/nF1UXmpkuURPsx8JGmW25tdWQraKmTNEUQgxSUh5qgHh7Wjh/Shzv7cyhtrEZf+9e/qvwtWbwZIqmEEL0G631EWCeUirQul89wEMattIKKl0osGKtoBmdaj8WNtJsbb1kSzPA0w+C4vt+kEII0Q9cyuAppQKUUhbr18nWvj9e7h3a0HfxtHhqG1v45EBh7x9my+DJFE0hhOhXSqkLgNuBHyulHlBKPTDQYxrqCirrySyuObHf3NLKoYJqJnRXYKUozWyjHAK8oDjT864sy+yXpJv1dxaZ5CSEGJxc/dtrPeCrlEoA1gA3AC+4a1DDxZzR4cQG+7KyL6Zp+kkGTwgh+ptS6mngauCHgAKuBEYO6KCGgV++u5fvvbj1xH5WSQ2Nza3dZ/AKD5gZL4EOa98tHhCaaJ+iWbCvbYZPCCEGGVcDPKW1rgUuA57UWl8JTHLfsIYHD4viwqlxfHGokPLaxu5v6IqXH3j6yho8IYToXwu01jcCZVrr3wDzgeQBHtOQty+3koziGmoamgGz/g4gNba7DN5Be/87R2GjzBTNmhJTbCVuuhtGLYQQ/cPlAE8pNR+4DvjQeszDPUMaXi6ZnkBTi+bjvfm9f5hvqGTwhBCif9Vbt7VKqXigCYgbwPEMeVX1TeSU16E1HCowgd3B/Eo8LYqx0QGd36i1yeBFOcnOhY40UzTzd5n9uGl9P3AhhOgnrgZ49wA/A97RWu9TSo0BPnPfsIaPyQnBxIf4siG9D6pq+4XJGjwhhOhf7yulQoE/Ad8AWcArAzqiIc4W1AEctPa+O5hXxdioQHw8u/jsubrQvCOdBXhhI6GuFI5+ZfbjpvblkIUQol+5VLpRa/0F8AWAtdhKsdb6LncObLhQSjFjZBg7jvVBYOYXKlM0hRCin1jfh+u01uXA20qpDwBfrXXFAA9tSLMFdRYFB/Mq0VqzO6eC08dGdH1j0UGzdba+LtS6bHL/SghNshcuE0KIQcjVKpqvKKWClVIBwF5gv1Lqp+4d2vAxIzGUnPI6Cqvqu7+4K35hEuAJIUQ/0Vq3Ak847DdIcOd+h/KrCPTxZFpiKAfyq9iXW0lRVQOnj4vs+saaIrN11v7A1guvOE2mZwohBj1Xp2hO1FpXApcCHwGjMZU0RR+YkWQqYO7sbRZP1uAJIUR/W6eUulyp9lU7hLsczK8iOSaQCXHBpOVX8XmaaTV0VkpU1zfa3o/OsnO2AA8kwBNCDHquBnhe1r53lwIrtdZNgHbfsIaXSfEheHkodhzvZYAna/CEEKK/3Qq8CTQopSqVUlVKqcqBHtRQpbXmUEEVKbHBpMYGUVHXxBvbspmSEEJ0kG/XN9tmuNjaCjnyCwNva4sFqaAphBjkXA3w/olZOB4ArFdKjQTkBdZHfL08mBgXzI5jvcy++YVCYzW0NPXNwIQQQnRJax2ktbZorb211sHW/W5q9YueKqpqoKy2iZSYwBMtEY6V1rKou+wdmAyedyB4eHU8p5QptAKSwRNCDHquFll5DHjM4dBRpdTZ7hnS8DQ9MZQ3t2fT3NKKp4ercXc7tmkndeUQ6MLLTgghRK8opc50dlxrvb6/xzIc2AqspMQGk+LQ1HxRSnT3N9eVdV08JXwM1JZCoAvPEkKIU5hLAZ5SKgT4FWB7kX0BPAjIYvI+MiMpjBc3HeVQQTUT43v44a+vddpJXZkEeEII0T8cC475AnOA7cDigRnO0GZrkZASG0SInxcJoX7UNDYzPdHJtMv26svt70lnzn1Q1rELIYYElwI84N+Y6plXWfdvAJ4HLnPHoIYjW6GVz9IKex7g2T6ZlHV4QgjRL7TWFznuK6USgb8P0HCGvL05FUQH+RAe4A3ADfNH4qEUHhYXatzUlTlff2cTPhpTQ04IIQY3VwO8sVrryx32f6OU2umOAQ1XSeH+LEqJ4m9rDzEzKYz53fXzccb24pJWCUIIMVCygQkDPYihamtWGbNHhZ/Yv+2ssa7fXFcOkePcMCohhDi1uLrYq04ptdC2o5Q6Hahzz5CGJ6UUj66YwcgIf37w8nayy2pP/iEn1uB1McWkubFnAxRCCNGBUuofSqnHrH8eB74EvhnocQ1F2WW15JTXMWd0ePcXO9PdGjwhhBgiXA3wbgOeUEplKaWygMcxpaFFHwrx8+K5m2ZTXd/MS5uOnvwDbGsLOpuiWZoJf0iAg6t6PkghhBCOtmHW3G0HNgH3aa2v7+4mpdQypVSaUipdKXW/k/PfVkoVKaV2Wv98r++HPrhszSoFaJPBOykS4AkhhglXq2juAqYppYKt+5VKqXuA3e4c3HA0KjKAM8ZH8v6uXO5blorFlXUFNr4hZttZBi9vJ7Q0wtpfwvil4OHqDF0hhBCdeAuo11q3ACilPJRS/lrrTqdhKKU8gCeAczFTOrcqpVZqrfe3u/R1rfWd7hr4YLMls5RgX8821TNd1lQHLQ1dF1kRQogh4qTq8WutK7XWtv53P3bDeARwyfQEcivq2X6yffE8PMEnuPM1eKUZZluSDjte6t0ghRBCAKwD/Bz2/YBPurlnDpCutc7QWjcCrwGXuGl8Q8bmzFJmjwp3raBKe7YPPiWDJ4QYBnrYcA2AHvwNK1xx7sQYfL0srNyZe/I3+4VCXanzcyUZEBANiXPh8z+aTzSFEEL0hq/Wutq2Y/3av5t7EoDjDvvZ1mPtXa6U2q2UestanXPYKq5uIKOohtk9Xn9n/eCzqyqaQggxRPQmwNN9NgrRRoCPJ+dMiOHDPXlkFtdQVNXg+s1ho6HooPNzpRkQMRYW3AXV+ZC7o28GLIQQw1eNUmqmbUcpdRp9U4TsfWCU1noqsBZ4sbMLlVK3KKW2KaW2FRUV9cG3PvVszTQfXPaqwApIBk8IMSx0GeAppaqUUpVO/lQB8f00xmHpkukJlNY0cvafP2fu7z/h3R05rt2YcBoU7IOm+o7nSo9A+FgITTL7NUPzFwEhhOhH9wBvKqW+VEptAF4Huls3lwM4ZuRGWI+doLUu0VrbPt37F3BaZw/TWj+jtZ6ltZ4VFRV10j/AYLA5sxRfLwuT40N69gAJ8IQQw0iXVTa01j1YySz6wpLUaJ66biZ1TS28tvU4P31rFzHBvt33x0uYCa3NkL8HEmfbjzdUQ3UBRIyBgEhzrKbYfT+AEEIMA1rrrUqpVCDFeihNa93UzW1bgfFKqdGYwG4FcK3jBUqpOK11nnX3YuBAHw570NmaVcrMpDC8PXs48chWXVqKrAghhoHeTNEUbmSxKJZPieOymSN49oZZjIwI4NaXtlFR283vDfHWmUK57dow2QqshI8Bf2uQWFvSt4MWQohhRil1BxCgtd6rtd4LBCqlbu/qHq11MybLtxoTuL2htd6nlHpQKXWx9bK7lFL7lFK7gLuAb7vvpzi1VdY3sT+vsufTM0EyeEKIYUUCvEEgxN+Lhy+fSmV9M5+mFXR9cXA8BMZCTmcB3ljw9AGfEMngCSFE731fa32idLHWugz4fnc3aa1Xaa2TtdZjtda/sx57QGu90vr1z7TWk7TW07TWZ2utO1lcPfRtP1qG1jCnp/3vwBRZUR7gIxOThBBDnwR4g8SMxFCig3xYu7+bAE8pM00zZ3vb46VHzDZ8tNkGRMgaPCGE6D0PpdSJqtLWHnfeAzieIWdLZimeFsWMpF5k3+rKTAVNJQXAhRBDnwR4g4TFojhnYgxfpBXR0NzS9cXxM6HkMNRX2I+VZkBgjP3TS/9IqJUMnhBC9NLHwOtKqSVKqSXAq8BHAzymIWVLZilTR4Tg5+3R84fUlcn0TCHEsCEB3iBy7sQYahpb+OpIN2vnEmaYrWMbhJIMs/7OJiASamQNnhBC9NJ9wKfAbdY/e2jb+Fz0Qn1TC7uzy3ve/+7Eg8qlwIoQYtiQAG8QWTA2ggBvD9bs62aapq3QiuM6vNIMs/7OJkAyeEII0Vta61ZgM5AFzAEWM8wrXvalrVmlNLVo5vY2wJMMnhBiGJEAbxDx8fRgUUo0nxwoQOsu+sz7h5tedwX7zH5DtWlsHuGQwfOPNEVWWlvdO2ghhBiClFLJSqlfKaUOAv8AjgFYC6I8PrCjGxrW7Mvn9pe/Iczfi1m9KbACpsiKn2TwhBDDgwR4g8z8sREUVTWQW+GkkbmjyBQoSjNfF1u3EePt5wMiQbfYewMJIYQ4GQcx2boLtdYLtdb/ALpZIC1ctS2rlFte2s7oyABW3rmQYF+v3j1QMnhCiGFEArxBJiXWFEk5VFDV9YVRKabQSmsLFOw3x2Im2c/7W5udSy88IYToicuAPOAzpdSz1gIrUqKxj2zJKgXgpe/OJTHcv3cPa201RcdkDZ4QYpiQAG+QSY62Bnj5LgR4zfVQfhQK94OnH4SNsp8PsAZ40gtPCCFOmtb6Xa31CiAV+Ay4B4hWSj2llFo6sKMb/A4XVBMX4kuIfw8yd0318Pr1kPG52W+oALRk8IQQw4YEeINMiL8XMcE+pHWXwYtMMduiQ2YtXvQEsDiUmD4R4EkvPCGE6CmtdY3W+hWt9UXACGAHprKm6IW0/CrGx/SwKfmmf8CB92H9n81+XZnZSoAnhBgmJMAbhJJjgjhcUN31RVHJZlucZgK8mIltz5+YoikZPCGE6Ata6zKt9TNa6yUDPZbBrKVVk15UTUpM4MnfXJENX/4VfIIh60soOWIvOGb7YFMIIYY4CfAGoeSYIA4XVtHa2kUlTb8w09g8a4MJ4qIntT1/IoMna/CEEEIMgD1vmQDMUWMt5ev+imquP7kM3oH3YfUv4K3vgm6F694CZYFt/4a1vzJFxkaf1bfjF0KIU5QEeINQSkwQ9U2tHC+r7frCyGQ48qn5un0Gz9PHfMIpGTwhhBD9rboQ3r4ZNj3R9vj6PxGx8UGWWL4h5WQCvI/ug81Pm6Ji5z4ISXNh/Hmw6XEoPQLL/gie3n37MwghxClKArxBaLx12kpat4VWUqG12XzdPoMH4B8ha/CEEEL0v8Nrzbb8qP1YaYYJyIBkSzbjol2cotnSDFX5cPo98PNsmHurOT7zRrNNXgbjz+mjgQshxKlPArxByDZtxaVWCQAB0RAY1fF8QKRU0RRCCNH/Dq822zKHAG/1L8DDm0qPMKb55BHg4+nas2oKTV/X4Li2x8cvhSUPwIV/65sxCyHEICEB3iAU6OPJiDA/DhVU09KqaW5pdX6hLcBrPz3TJiBK+uAJIYToXy1NcOQz83X5UdOnruQIpK2ChfewV40n2ZLr+vMq88w2KL7tcQ9POONeCI7veI8QQgxhEuANUskxQaw7UMD036zh0ic3Oi+4YmuV4Gx6JlinaEoGTwghRD869jU0VMLYxdDSCNX5ULAXgKbRS9jVEEdsczY0N7r2vCprMCiBnBBCABLgDVrnTYohJsSXmSPD2JtTydoDBR0vCoyGZQ/D7JudPyTsryQCAAAgAElEQVQg0hRZ0V1U4+xrm56Ezx/uv+8nhBDi1HJ4NVi8YOZNZr/sKBQeBBRZagQHWxLw0C2mOIorbBk8CfCEEAKQAG/Qunp2Ep/eu4jnbprFyAh/nvwsndrGZu5/ezdvbjtuLlIK5t0GEWOdP8Q/0hRhqcpz7Zs+fwF89XjvBr7zFdj+fO+eIYQQYvBK/xRGnQ4x1tkl5Ueh6ACEJnGkvIXDeoQ5XnjAtedV5ZqA0V/63AkhBEiAN+h5eli47ayx7Mqu4ILHNvDa1uP8d/Mx124eMdv0CXp6Iex6retr6yvg6AZ724We0NpUSavKM88TQggxvLQ0Q3EaxM+EkERAmQxeURpETyCjuIYjOh6tLOaYKypzISgWLPIrjRBCgAR4Q8JlMxOICfYhp6yOaYmhHMyr7LzwiqOkuXDLFxA+Ft65FYoPd35t0SGzLT7U84FWF0BTjfU5XXwvIYQQQ1P5UTNzJGIsePlCUByUpJt3QlQqWcU1BAUGocJGmayeKypzZXqmEEI4kABvCPDx9OClm+fy3p2nc9P8kTQ0t5JRXOPazXFTYcXLYPGE7S90fl3RQbOtOA4N1T0baInDegpXP5kVQggxdJRmmG24delA2EjI+BxamyB6ApnFNYyJDICoCdZ1eS6oyjOBohBCCEACvCEjOSaICXHBTE4IAWBf7klMgQyMhtQLYefL0FTv/JoihxdtSQ+zb7YXe/vnCSGEGB5K0s02YpzZho40fewAolLILK5ldGQARKeaIivdVdLU2hRZkQyeEEKcIAHeEDMmMgAfTwv7cipP7sZZ34G6Mtj/nvPzRQfBJ9j6dQ+naZYeMZnCyGTnUz1bmuCj+1xfWC+EEGJwKTli3iUB1oIoYaOsJxSVQWMorm5gVGQARKWaqZzdVdJsqDRT/yWDJ4QQJ0iAN8R4elhIjQtm78lk8ABGnQnhYzqvcFl4EMYtAeVhFsj3RMkR82lt9ETnUzT3vQObn4bN/+zZ84UQQpzaSo+Y9XdKmf2wkSe2WRWmZc/oyADzPgIoy+r6edIiQQghOnBbgKeU+rdSqlAptbeT80op9ZhSKl0ptVspNdNdYxluJsUHsz+3En0y/e0sFph8hWlA29hu/V59JVRmQ+wU89Lt6fq50kzzYo9KNQvtHaeDag1fPWa+Prymf3vzCSHEAFBKLVNKpVnfg/d3cd3lSimtlJrVn+Nzi5J0+/o7MB/6AUSZ9XcAY6IC7MfLjnb9vMocs5UATwghTnBnBu8FYFkX55cD461/bgGecuNYhpVJ8cFU1jeTXVZ3cjfGTwc0FOxve9w2nTIqFaJSelZJ09YiIXwsRCWDbrWvxQCzyD5/DyTNNy/swv2dPkoIIQY7pZQH8ATmXTgRuEYpNdHJdUHA3cDm/h2hGzQ3QEV2296stgxeVAqZxTUoBUnh/mYKp1dA9xk8Wx9XmaIphBAnuC3A01qvB0q7uOQS4D/a+BoIVUrJ39B9YHJ8DwqtgMnQAeTvbnvcVhAlKtWsnyvNMOvlTkZVvlknETEWIlPaPhfgq39AQDR8yzo989Dq7p+59Tn460R4cgGs//PJjUcIIQbWHCBda52htW4EXsO8F9t7CHgY6KQC1iBSlmU+3LMVWAEIToCzfwEzbiCruIb4ED98vTzMFM6wkWa2R1cqJcATQoj2BnINXgJw3GE/23pM9FJKbBAeFsWj69J5fmMmlfUuBmMhieAbYjJpjooOgqevWQwflWJd+J7h9BGdOlEae4x5uSuLPRNYcgSOrIM5t5gXetw0M02zO0c+haZaEzhu62TtoBBCnJq6fQdaly4kaq0/7M+BuY1t1objFE2l4Kz/B5HjTIuEqAD7udCR3U/RrMoFv3DTU08IIQQwSIqsKKVuUUptU0ptKyoqGujhnPJ8vTz42fJUGptb+M37+7nk8Y2kF7rQu04piJ0KBe2WTRYehMjxYPEwGTw4+XV4tkpo4WPMizhsFORsN8d2vGQCvhnXm/3xS+H4ZqjtKgGMmcqZcBpMucp83V05bSGEGCSUUhbgr8C9Llw7ON6Rtl6oEWM6nNJak1Fcw6gIhwAvbKQ169fFmmxpkSCEEB0MZICXAyQ67I+wHutAa/2M1nqW1npWVFRUvwxusPveGWNYd+8iXr9lHlX1TVz6xEZufmErP/vfHkprugiEYiZDwT5obbEfKz5kD+xs25OtpFlyBCxeJksIJihL/wSyNsLOV2D8eRBsnWIzfqmZxpO1oetnVuaaF3vYSECbJuxCCDE4dPcODAImA58rpbKAecBKZ4VWBs07siQd/CPAL6zN4X25FTz8cRpV9c2mgqZN2CgzQ6O2xPnztDZLChzX9AkhhBjQAG8lcKO1muY8oEJrnTeA4xmS5o6J4L07F3JmciR5FfW8uuUY7+/K7fyG2Clm2qNtSmVzowmcbGsmfAIhNOnke9Ud22Qa13p4mv3T74LAWHj9eqgugJk32K+Nsq7R62pxfXMjVBdCULy9j1J3azWEEOLUsRUYr5QarZTyBlZg3osAaK0rtNaRWutRWutRwNfAxVrrbQMz3D5gK7TloLK+iUse38izX2Ywb0w4506MsZ/srpJmwV4ze2PcuW4asBBCDE7ubJPwKrAJSFFKZSulblZK3aaUus16ySogA0gHngVud9dYhruEUD+evO40Vt19Bknh/mxIL+784vaFVsqPmmxauMOUmuhJJsvnzNFN8Og0yPjCfqwsy0y5nHSZ/Zh3ACx5AOpKITDGZO1sfEPAJ8RUW+tMdT6gTQbP1XLaQghxitBaNwN3AquBA8AbWut9SqkHlVIXD+zo3KSmCIJi2xxKy6+iuVXz1HUzee2W+SSG+9tP2ipslmc5f56tGJfj+0MIIQSe7nqw1vqabs5r4A53fX/h3OnjIvhgVx7NLa14ejiJ76NSzVTK/D0w+XL7mgnHAC9moimC0twAnj5t79/xkgnoXr4Srn4Jks+DPW+ac1OuaHvttGsgbRWMPhM8vNqeCxnRdYBXac1CBieYIM/iJRk8IcSgorVehfmw0/HYA51cu6g/xuRWdWUdpmem5VcBMCkhpOP1Jz68y3L+vMNrIW46BMU4Py+EEMPUoCiyIvrO6eMiqWpoZk9OJy0UPL1NkGerpHmi+qXDtJroiaBbOvbDa22BQx+bT1OjJ8Br18GhNbD7DUhaYKZ2OrJYYMXLMPfWjuMIGQEVxzr/QRyb21o8zPWSwRNCiFOT1lBXDn6hbQ6n5VcR5ONJfIiTKpg+geAf6fzv9tpSyN5iPkQUQgjRhgR4w8yCsZEAbOxqmmbcVMjdaW1OfsRMl/QPt5+PmWS27RuiH99iFsNPuwZufM9k+l671gSCU686uYG6nMGzVk9zpV+SEEKIgdFUBy0NTjN4ybFBKKWc39fZ3+3p68zyAZmeKYQQHUiAN8yEB3gzMS6463V4I2ZDbbHJ3pVmmJLWji/fiHFmSmRhu3V4aavM8XHnmE9pr3/HVDfz8IGJzvr3diE00UznaeikvUNlHngFmPV64Fq/JCGEEAOjrsxsfe0ZPK01aQVVpMQGdX5f6EjnUzT3vm2ye/Ez+3acQggxBEiANwwtHB/JN0fLqWtscX5B0jyzPb7ZWvWsXc8iDy9T6bJ9Bi/tIxh9BvgGm/2ACLh5Ddz2ZdsMoCts7RQqnXbOMMeD4+2BZ9hIE5R2FhAKIYQYOPXlZuuQwSuobKCiromUmC4CvLBRZjaHY+uezPVw6CMzvd8iv8YIIUR78jfjMLQ4NZrGllbu/99umltaO14QmWIyY1kboPxYxwAPzDq8QocAr/gwlByGlPPbXucbYm97cDJCRphteSe97Ww98Gxsi/HLu1i3N9C2PQ9rfjnQoxBCiP5ny+A5rME7mF8J0HUGL3oitDbbK2a2NMNH95k13Qt+6K7RCiHEoCYB3jA0b0wEPz0vhfd25nLvm7s6BnkWC4yYA/tXWlskOGkiGzPRZNFsL+30dWbbV+shbBm8zpqXV+aaCpo2tl54XfXOG2g7XzF/hBBiuKnrmME7VGAqaHaZwZt0qfnQcfXPTeXmL/9sPlxc+jvw8nPniIUQYtCSAG+YuuPscV0HeUlzodG8fJ1n8KyFVmwNzzM+M9fZ+hb1VlAsKA/nhVZaW6Aqr5MM3im6Dk9rKDpoppE21Q/0aIQQon+dyODZA7yD+VVEB/kQFuDd+X0eXrD8j1CWCc8ugc//YFr4TLjIzQMWQojBSwK8YcwxyPvJm7tobdX2k4lz7V87C/BiJ5vtsU3Q0mSmc45Z1HeDs3iYDJ2zDF51oWnT4BjgBUSCl/+pW2ilMgcazHQkqvIGdixCCNHfnBRZOdRdgRWbsYsh9UIo2AML7oLL/tW28JcQQog23NboXAwOd5w9jtZWzV/WHmJifDC3nGmdjplwmsmgeQeY4Km94HjT2277i5A4DxqrYczZfTu4zloltG+RAOZlHzbK3r/vVFN40P51VR6Ejx64sQghRH+rLzfvFB8T0BVVNXAov5rvLBzl2v2XPgWFP7QXARNCCNEpyeAJ7lw8jmWTYnn44zS2H7V+yuodAHHTTEuEzj4pnfM9MyXyk1+BspgKmn0pNNF5Bs+xybmjqVfB0Q1w+JO+HYerakvhy7+YjGZ7jgVpbAGqEEIMF3VlpsCK9X3y/MZMmlpbuXpWomv3+wZLcCeEEC6SAE+glOLhK6YSH+rLXa/uoL7JWo76W0/DpU92fmPqRRAQDdlbIX5Ghwa2vRYywgRDre3aOdimODoWWQGYd7spCPPxfdDc2LdjccUnv4Z1D8LRrzqeKzpoGsZD560fhBBiqKorP/GOqKxv4qVNRzl/chxjogIHeGBCCDH0SIAnAAjx8+JPV0wjp7yO5zZkmoNRKRA9ofObPL3htG+br8cscsOgRpjy2FX5bY8XHzJNzv0j2o3HB5Y/AiXpsOWffT+eruTvhR0vma9LMzqeL9wPCTPAJ1gyeEKI4aeu7ESA99+vj1LV0MwPFjmp0CyEEKLXJMATJ8wbE8HSiTE8+Vk6RVUNJ463tmpaHAuwOJp9s2mpMOXKvh9QSJLZFuxtezxro5mq42zq6PhzIGk+7Hqt78fTGa1NCW/fEPDw6RjgtbZCURpETTDTSrvL4GVvh/oK941XCCH6W10Z+IbS2qp58asszhgfyeSEkIEelRBCDEkS4Ik27l+eSkNzK39YdYDWVk1ueR3n/PULfvrmrhPX1DQ02ytuBsXC99Z2nenrqZELTJC39lf2dW3VRVB0oOv1finnm6Cwv5qeH9sEmV/AWfeb4intA7zyo9BUa/4ZBcd3ncErOQL/WgyPz4F977p33EII0V/qzRTNndnlFFQ2cNnMhO7vEUII0SMS4Ik2xkQFcutZY/jfjhxu/PcWVjzzNRnFNbyzM4cjRdXkV9Qz/w/reOqLI+4fjLc/nP+ICeg2PWGOHd1gtqO6CvCWm+2h1e4dn82u18yU0Zk3mJYS7QO8ImsFTVcCvCzrz+cTCG/e5Hw9nxBCDDbWIiur9+XjaVEsTokZ6BEJIcSQJQGe6OAnS1P442VT2JpVSmlNI/+6cRbeHhaeXZ/BQx/up7K+mde2HkPrTqZt9qWU5ZByAXzxsMnIZW0A70BT4bMzkeNNsZVDH7t/fM0NsP9dSL3AVB4NHwOlmWZapo2tgmZUqikMU5XvvNImmIAuIAq+85HZP1XbPgghhIv2ZZei6yvRvqGs2VfA/LERhPh7DfSwhBBiyJIAT3SglGLFnCTW/ugsPrxrIedMjOHKWSN4c3s2H+7OY0pCCMdL69hma6ngbssfNtuP7jMBXtJ88Ojml4PkZZC5HhqqXf8+9ZXw7u3w/AXQUOXaPYfXmvVyU68y++FjoLmubTPzojQT2PkGW1s7aKgucP68oxvN1NSAKPD0679ppkII4SZ/eGcLCs22Qk1mcQ1LJ8UO9JCEEGJIkwBPdCopwp+REQEAfP+MMWitGRnhz4vfnYOflwf/+6afyv2HJsKi+yFtlZnuOGph9/ekLIOWRsj4rOvrjm+B58+HN26CpxfCrlfh2Fcm0HMlQ7nnTfCPtDd5Dx9jto7TNIvSIDLZfG1r7eBsmmb5MdP3b+RCU0AmNNGs33OmpdkEpEIIcQqrqGsiJ9e8K17dbT44WzpRpmcKIYQ7SYAnXDIyIoBHV8zgqetOIzzAm2WTY/lwd669Z567zbsdoiear7taf2eTNN/0netqmmZrK3z4Y1OQpWAv+ASZqZHnPggHVsKGv3b9PQr2medPvgw8PM2xCGvZ79Ij9u9RfNi0nAB7c3ZnlTRt6+1GLjDb0CQod9LoHeDTh+Dx2SbQE8IdKvNM0R8heuHrjBKCqAGgyTuUWSPDiAn2HeBRCSHE0CYBnnDZRdPimRgfDMBlMxOorG/m/V391NPNwwsuewbm3gbx0127fvw5cGhN2/Vwjna/bta4nf8X+OF2+IG1/cL8O2HiJfD5w1CR7fzeA+/Dv84F31AzJpvgBPDwtmfwKnOgqcaewQuKsx538s/t6EbTasEWyIYmOZ+i2dxoeu5V50P+ro7nbVpb4L9XmLEKcbLevwueXQw1xQM9EjGIbUwvJtqzFoBfX3U6T11/2gCPSAghhj4J8ESPLBgbyfTEUB76YD/ZZbX9801jp5j1eBYP165PXgY1hZD7jf1YUz1sfwG2PQ+f/hbipsPky9vepxQs/S3oVvjikY7PPfwJvHGjqYp5y+f2rB2YsYWNsgd4xWlma8vg+YWZtXVOA7yvIGkBWKz/W4YkQl1px3WEh1dDbYn5OvPLzn/+Y5sgfS3sfKXza4RwpqXJ9JusL4c1vxzo0YhBbGN6MafFmJ6lEVExRAX5DPCIhBBi6JMAT/SIh0Xx2IoZtGq457WdNLd0kiUbSOPOAeUBadaKlM2N8MYN8P7d8ME9Jrt23u/sAZWj0CSY9R3Y8V8zFfP4FsjdAXm74a3vQMwkuGklBMd1vDd8LJRYA7wia4AXaQ3wlHLeKqEiB0rSYdTpbccAZl2eo52vQGAsRIyHrC4CvP3vmW3WRpPNE8JVuTtN5jl2Kux6pesPEoToRF5FHUeKapgaYV3P7Bs6sAMSQohhQgI80WNJEf787luT2Xa0jJ+/s8fe/PxU4R9uplweWm0yd299Bw6vgQv+Cj/aD/fs7rpgyxk/MdMtn1oAz50LzyyCf55hjq141bRFcMbWC09rE+D5hUFApP18aBKUHG57j60YzNjFDteNNFvHaZrVhebnmXY1jDkLjm5y3nKhtRX2rwSfYGiokHYL4uTY+k2ueBlCkmDdg2a/tcUUI1r/p4Ebmzhl1TY2c6zEPqNjY7qZaTA+yPp3lJ8EeEII0R88B3oAYnC7ZHoCGUU1PLruML5eHvzm4kkopQZ6WHbJ58HaB+DZs00/umUPw+ybXbs3KAa+9bQJjhJmQmszFB+C1AtNhcvORIw1rRKKD5vrI1NM5s4maT58/geoLTVBKED6OpOVs62/A/v3cAzwdr4CugWmXWsqim79l8ksJs5pO4bsLWaN3tLfwZpfmEyfK2sXhQDTjiQq1ZrJ/rYJ8MqPmQ8u8vdAcTpMv955BlsMOzUNzTz9xRFe+voo5bVNfHvBKJZOiuHPq9OICfYhyrMOvALAU6ZnCiFEf5AMnui1e84Zz61njuE/m47y6Dp7Zqqirom/rj3Er1fuG7jBJS8328ock3Wbd1vX17c36VJY8kvTyHziJXDmT83au66kXgAWT9j+vMngRSW3PT/mLEDbp1e2tpgM3tjFbQPBgGjw8LEHeE318PWTMGYRRKfaq4lmru84hn3vmntPuwkixnU9xe7A+/DvZZ0XlBHDS0szHPvant2edJnZ7nsHdr8B3oHmw471TtanimEjvbCa2sZmSqobuPbZr3n8s3TmjArn2rlJvPBVFtc+uxkfLwvP3TQbVV8u2TshhOhHksETvaaU4v7lqZTUNPL3Tw7j7WmhrKaR17cep7LelPG/eeFoEsP9+39wUcmw4hVToMW2ps3dgmJh0rdMMZemWvv6O5uE08wvyRmfm6AxbxfUlbWdnglmbWBooj3A2/myaZB++b/MfkAERE8yAd6ZP7HfpzUc/ADGLTGtH0adAXvfNr+4e7T7X74qH9670xTTePlK0yZCfhEbXrQ26zX3v2eK+qReCI3VMNK6HjR8NMTPhF2vmbYdEy8FLz/Y9m9TcdaxyJBNXbmZTtz+ww3RhlJqGfAo4AH8S2v9x3bnbwPuAFqAauAWrfX+fh9oO1uzSrny6U34eFoI8vWiqr6JZ26YxbnW/naLkqPYnFnK3eeMJ7jmmPmAKTB6gEcthBDDhwR4ok8opfjDZVMoqKznkY/T8PJQnDMhhuVT4rjr1R18daSYq8P7KcBqL/WC/v+ec28zTdDBXkHTxsPL/PKc8YXZP7LObMcs6vgcW6uElmbY+CiMmN22D+C4JSarV10EgVHmWGmGKcxyxo/N/qiFJpuYtwtGOJQo1xo++BE015t1iR/dZ4rQXP9Ox0BQDF3b/m36QfpHmiqwGZ+b4yMdCv5MvtxM9QWYeqWZSvzNi7D1OVj2+47P3Pu2eebtm022WXSglPIAngDOBbKBrUqple0CuFe01k9br78Y+CuwrF8GmPmlfW1wO/m7cvmlXwPjowMprW1kzsRw4vO2Qp45vxRY6gdsaIXtL5qDtg+mhBBCuJ38Fif6jJeHhaevP41PDxZy+rhIwgO80Vrz0Af72ZhewtWzOwZ4H+7OY2SEP5MTQgZgxG40YpbJ1OVst/fAczTmLNPuoPy46dUXN80eoDkKSTSVOzc/DeVHTZsIx2mc06+Drx4zPf0W3GmO2X5BH32WdXsmePrCK1eaKaZzbjG/yO9/D9JWmZYQs282WZl3fwCf/RbO+bUJGlube7/OSuu2Yxa9pzU0VIFvcNfXbXsemuogaa7Jwjn793DwQ1OR9Y7NJnP36W+hsdasQbWZ9C0T4AXFmQ8YLB7mv6tDH5lKtO2fu/d/5r/79h9uCEdzgHStdQaAUuo14BLgRICnta50uD4A6J9KVuXH4OUroKURVNuVHFrDslaNxQIeRdZ/73u7eFZUKlz1H+eZXiGEEG4hAZ7oUwE+nlw0Lf7EvlKKBWMj2Jhegta6TQGWqvom7nl9B+Oig1h118JTqzhLX1jyK5PlCHFSkMUWfL1wgQnczn3I+TNCk6C22BSKSbnA9PZzFJ1qsno7XoL5d5hftDPXQ/AIU80TzNSo734Ma38FH99vpnku+pl5ZsxkmHe7uW76tXB8M2z4G1QVmDVXYIK9Obc4bydh01BlpqTOuKHtFM/tL8CGv8N1b0Lk+K7/eRUdMhnFebfBhIu6vravNDdA9ra27SkcVeaaqqV5O8202tFnwdizTRZ2IK19wBTYuf5tGLnA+TUF+007EJs5t8L57dbNNdaagiqzv2eCNt8QON9JhcyQBJOVjky296FMXgarfmKKCTlOxazMhaMbYdH9Eth3LQFw7IGSDcxtf5FS6g7gx4A3sLj9ebdY80tAwd27OxSU+uEr3/B5WhEb/99iQvwG+P8DIYQQTkmRFeF2C8ZGUFzdwOHCtg27vzhURFOL5kBeJV9nlA7Q6NxozFlwxb+dB0bREyEgyhR/Wf4ILPih82fYWiVEpcBl/3T+C/OM601FzZxvTHuEzPUmu+J4bfwM07dv5o0m4Hr3ByawXPpQ28bxyx426xV3vQKp58PoM+Dj++DNG82zO7P+T7Dm/8wfG63hq39AWSb85xIoO9rxvppi0+ph9xvwr3NMef537zCZzf7w5V/ghfPh8NqO5woPwNNnmCBp37uw5VmTBf3k1/0zts5U5sLmf5qptS9fZf69O7P1WVNo5wdfmQBuyz/hm5faXnN0I7Q0mKm+3VnergKt7cOGQx+1vW7fu4C2F2cRvaK1fkJrPRa4D/g/Z9copW5RSm1TSm0rKirq3TfMXA/734WFP+oQ3BVW1rNqTx7XzU2S4E4IIU5hEuAJt1sw1vSA+yq9uM3xT/YXEObvRXiAN//emMnenAoW/+Vzfv7OHkprGgdiqP3HYoFrXoPvfwZzb+080zFqoclmrXjFFExxZtJl4OlnfqEv3GcKZYw+0/m15/3BFM3Y+7ZpBN++sIuXL9z0Pty5zQSn175hMngH3u+891nZUfj6adPvb8dLprE6mMxYSbrJEDZWwytXtW24XnwYHp8Fzy+D/33fZIluet+0gXj3B10HlH2hodoESmAC05ZmM231ze/AZ7+HFy8y1VBv+QLuy4L7j8L4pSazqQew5+OGv5l/Rt/+EPzD4PUbOjayrys3RVGmXAkxk0zgPvossy7uyKf26w6vNf/tjOwkg9mV0ESImQJp7QK8vW+bDwmkwEp3cgDHCGqE9VhnXgMudXZCa/2M1nqW1npWVJSTqd4nY91Dpvfh6Xd1OLVmfwGtGi4/bUTvvocQQgi3kgBPuF1iuD+J4X5sPFJy4lhTSyufHixkyYQYrpubxCcHCrj6n5uoqG3i9a3HWfSnz9ifW9nFU4eAEbMgbmrX1wTHwdX/NUFZZ3yDTWZl16vwrnW6ZWcBnk8gXP4cJM6F85wUxwATqNmmUyoFp98DU1eY3n2H1nS8/tOHzHU3f2J+MfzgHhM87XrVBA+LfgYX/t1kGQ9+aO6pKTZrfJSHCXS/vQq+/6kZ97I/mBYSm58212Z+CU8ttBel6SvfvGiqh55+txnbGzfAGzeawhJfPGKCu29/YPoHKmXWKE642GRdCwao9UdRmpn2Ov1aMzXz3IegMrtjq4ydL5sKrnNvMfsennDlC6Zlxn+vMNlIrSH9E5Ol9fLt2XhSlptpvbWl9uflbIPJV/TmpxwutgLjlVKjlVLewApgpeMFSinHec0XAIdxt6teNB/uePl1OLV6Xz6jIvwZHx3o9mEIIYToOQnwRL9YnBLN52mF7M2pAGBrZimV9c2cMyGGG1x908YAACAASURBVOaNxMvDQnyoHx/edQYf322qRD7xebrTZxVW1XOkqNrpuWHr3AdNEJa/2/wSH5LQ+bUJM+HmNa4XwFAKLvq7Wa+38k7T0sEmZ7upFjr/TogcBxf9zWTtXjjfZHImXGgC0ImXQNgoUxCmqQ5eXWFaNFz7ugkSRp1u/4Vyxg2mf+EnvzZB3VvfhYI98N/LYc9bPf0n1FZzI3z1uCkYcs5vIHGeKTgz/jz48UH4WbZZf9R+3eD4c8328OrejyF/Dxz9qmP2zVHml/D3qfDkAnjmbHhijgk8z7jXnE9eBj7BZoqrTfo6M/U0cZ4p3mPjHw7fXW0yt6t+Ao9OhdIjZr+nUpaDboVHp5ts7H8vN4VYpl7d82cOE1rrZuBOYDVwAHhDa71PKfWgtWImwJ1KqX1KqZ2YdXg3uX1gwfGQOLvD4Yq6JjYdKeG8SbFDb720EEIMMVJkRfSLH52bzMf78rn7tR2svHMh7+3MxcfTwpnJkfh7e7LmnjOJCvIhwMeT2BBfVsxJ4rkNmeSW1xEfan7xzyqu4Zfv7WVjejHenha2/uIcgnxlHQhg1tFd+iSEjHBetbO3vPzg0idMkLHml3DJ4yZjs+aXZi3hQmsxj3HnmIzcm9+BphqYdo19fPPvNIHFCxeYdWNX/cdkMdtTCi5+DJ6cb9buefqY/nyf/hbe/p6p7Df92p7/LFrD6p9DVS5c8g/z/S590mQX594Gnt6d3xsUa4Kmw2vtQdbJam4wWc+vHgc0+EeYSoPeASa4nWj93b44HV6/3mRUQxNNYL34/0zwZOvp6OVrgud978AFf4b1f4YNfzXPu/ixjt/bNxiuedVUXd39OjTWmCCtp+JnwLeegWOboCzLTMedfq3T7I/oSGu9CljV7tgDDl/f3e+D6sTnaYU0t2qWTood6KEIIYTohtIDuZakB2bNmqW3bds20MMQPbDhcDHXP7cZH08LDc2tXDwtnseumeH02uyyWs585DNuOXMs9y83fbRueG4zO4+Vc+6kGP73TQ5PXz+TZZN7WcJfnJy1v4KNf4eLHjOBxxs3mB56jsU3wPTcS//ETO+0FXFprIG/TTKBytLf2ds6dObgh/DGTXDh32DmDdBUbzJ/mV/AZc/ClB5OA/zs9/DFw7DgLlNk5mR9+luTIfvpEZMVs2msNdNKW1tMJdEpV3ZsGl+VD69eA7nfwGnfNr0P0z420z4rjpsgacEPTeXVr5801Um//6nJfnYm80t48UITbOXugJk3mYIoQyTIUkpt11o7+SRAOOOud+TtL29na1YZm3+2BItFMnhCCDHQuno/SgZP9JuF4yP52fJU9uRUsHxyHEsmRHd67Ygwf5ZOjOXVLce44+yx7Mmu4MvDxfzfBRO4acEo1u4v4NODhRLg9bdF95v1Xu9bCzBEJpuAor24aW2nB4LJUF30GFRkw7wfdP+9Ui8whU28A8y+l68pNvPyFaYoS0MVzPqO62NvbTEZx6+fMJVHz33Q9XsdjT/PFJxJX2eafttsfwHW/ca+v+4hE5hGJpsCOfXlsP4vJsC9+r/2VhCTvmW2zQ2m2fxX/zD74WNgxatdB3dgCqQEJ5jg7vS7zZRTmUIn+lBDcwufpxVxyfQECe6EEGIQkABP9Ktbz3K92e33zxzD6v35XPrERrNGL8SX663r9c5MjuKztCJaW7X8wtGfvPzge+vg4AemSMnCH5sCHq6yTT90lS24O7Hvb3rqvXGTKeZy9CsTPAXFmoxZ+2I0zY2w/hHTdqE0A7K3mGmYS50053ZVwkyTYdtqzSIqZaZ9bn8eEmaZdW6F+0yhlk1P0KY3dfAI+O5HHYNfMFNRL/q7aWXhH959YGdjsZgiNpU5JisowZ3oY9uzyqhtbGFxaucfygkhhDh1SIAnTlmnjQzj5ZvncvfrOymqauCRK6bi62Wm+y1OiebD3Xnsy61kyoiQk352XWMLq/flc8n0eCkYcLIsFhOonWyw1le8A8w6slU/NQVePLxNVuyz35lCMHHTzLqylPNNu4W9b5nqnhYLXPSoCYJ6w+JheoR9+GNTcXPsYtNPrvgQXPKkCXjjpsGKl02AWV1gso0+QRAY0/UaPzAB5MlKXtqzn0UIF6w/XIynRTF/bMRAD0UIIYQLJMATp7QF4yL56O4z2HC4mIumxZ84viglCqXgvZ05bDxSTHiAN1fNSnT6jPTCKpLCA/D2tBeNfXTdYZ7+4ggjI/yZkRTm9p9D9DEPL5PtuujvZr8i21SSPLoRDq02bQICY0xwteRXcMaP+/b7z7jerMP7/I8w5mzY9m/wDbFPt7Tx9O7QLFqIwWb9oSJmjgwj0Ed+ZRBCiMFA/rYWp7zIQB8undG27H9EoA/TRoTyrw2ZAObT5TERJIb7t7nuvZ053P3aTi6YGsfj18xAKUVhZT0vfGXuyyiqkQBvKAgZYYK4M35s1trtecu0ZJhxvcm29TVPH/O9PrwXnjnL9MWb/T0zhVSIIaSoqoH9eZX89DwX26oIIYQYcNIHTwxaP1w8jmvmJPL8d2ZjUYonPmvbN2/TkRJ+8uYuIgN9+HB3Hm9uzwbgH5+m09yisSjIKqkZiKELd7J4wLSr4QcbYckD7luTNuMGmHataRMx/jyYf4d7vo8QA2hDehEAZ46PGuCRCCGEcJVk8MSgtWRCDEsmxABwzZxEXt58jDvOHseIMD9e2XKM335wgFERAbxx63x+8PJ2fvXePt7dkcOWzFJWzEnki0NF/P/27js+6irf//jrTCrpkA4JCZDQOygiKqi4YmUVe1l19bqWXcsWy09X3bvNsrt3112vbVdlvaioK4oFRLGgoEDoBBI6CaSQAqRAymTO748ZYkISTCBhZsL7+XjMg5kzM9/5zJdJTj5zymd7qRI8OUqBIXDJs96OQqRLLdrkngI/rHeUt0MREZF20giedAt3nJmBw2G45H8XM/mpL3hoznrGp/dk1i0T6BkezF+vHMPo1BhqnS6mj+7DvVMH0i8uonEEb+2ufTw+L4eurAtZ53RRU9/QZccXEels32wt49QBsdqtWETEj2gET7qFxKhQ/nrlaOatL6LO2cCtZ/TnmpP7Nv5RkhQdyuu3ntLsOf1iw1i5cy/WWv79zU7eXrGLGWP7kJkYyScbisnaUc7l41PISIgEwFrL4/NyOC0zjtOPYrrSo3PXs7GwknfvnHTsb1hEpIuVV9dRVFHDqJQYb4ciIiIdoARPuo3zRyRz/oj2Fz5PjwunqtZJaVUdK3fuBeCL3BIyEiL47QcbyCs/wPOLtnHl+FQenzGCD9cV8vyibazO33dUCd4XuSXsqaylpr6hsdzD4Vwuy/OLtjFjbB8SokI7/BoiIp0lp6gCgMHJkV6OREREOkIJnpyw0uPcRbRX5u1lm2ct3heb9jBxQCx55Qe4f9pgiitqeGXJDtLiwpj1bR7GwPId5ZRW1RIXEdLu1yrYd5DC/TUAbNlTxfA+rdfu21hUwRPzc3BZy51nZhzjOxQROXo5hZUADEpSgici4k+0Bk9OWP1i3QneOyvdu2uOTo1h+fa9vJmVT6DDcNVJqTx60VCmDknkyfm57N53kEcvHIrLwoLs4hbHq3O6+GBtAXVOV4v7sjwjhAC5RZVtxrR+937AnQSKiHhTTlEFseHBxHfgyywREfE+JXhywkrp2YNAh+GznD0EOgw/OyuDugYXs5bmMSkjjp7hwRhj+PMVo8hMiGDG2BRuODWdtNgw5mcXtTje7Kx8fvraKv7fnHUtNmtZsaOcsOAAggMdbCpuO8Fb50nwjvQYEZHjIaeoksHJkZiuKjUiIiJdQgmenLACAxyk9gqjvsEyrE80p2XGERYcQIPLcsHI79byRfcIYv49Z/Cny0dijGHa8CSWbCll/4H6Zsf7cG0BQQGGt1fs4tkvtza7L2vnXkanxpARH0HOEUbw1u12r3nZsqeKBlfX7egpInIkDS5LblElg5NUHkFExN8owZMTWnpsGADj+vYkJDCAUwfEERRgOHdoUrPHBThM47fY04Yl4XRZLn9+CTe9vIzcokpKKmtZtr2c2ycP4KJRvXnq41y2lbinWVbVOtlYWMH4tJ4MSopsc4pmfYOLjYUV9AoPptbpYtfeA134zkVE2razrJpap4vBWn8nIuJ3lODJCe3QRitj09zbgD9w3mCevXYc0WFBbT5ndGoMN0xMIzEqlJV5+7h39mo+XFuAy8L5I5N5+IIhALy7ugCA1Xn7cFkYl96LQUmRFFXUtBj9A/eoXZ3TxcWjegOwqbhj6/CstTz4zlpeWLT1+x8sInIEh2YaaARPRMT/dGmCZ4yZZozJNcZsMcY80Mr9NxpjSowxqz2XW7oyHpHDDU2OIijAcFJ6LwAyEiKYOjTxiM8xxvCb6cN59eYJPH7pCDYUVvDE/Fz6x4czKDGSxKhQTh0Qy3urd2OtZfHWUoyBMX1jGnejyy2uZHNxJTOX7OCJ+TlkF+xvXH93yZg+AGze07F1eB+sLeT1Zfn86+vtR1Wwff76Qu58bWWXFnsXEf+QU1iBw0BmYoS3QxERkQ7qsjIJxpgA4BngHGAXsNwYM9dau+Gwh8621v60q+IQOZJLx6ZwSv9YEo+y5ty04UlMHZLApxv3cMGI5MZpnNNH9+G+t9cyd00BLy/ezjlDEokKDWqc7vTG8jw+WldITb17x823svI5Kb0XESGBjOgTTXJ0KJubjODVOV3kFlUyIqX18gr7D9bzm/c30CMogOKKWrILKtosxdAal8vy5PxctpVW8+sLhpIUrRp8IieyjUWV9IsLb7Nmp4iI+K6uHME7Gdhird1mra0D3gCmd+HriXRYgMOQ2ivsqJ9vjOG3PxzOWYMTuGJ8amP7tOFJBAc6+MWbawh0OPjN9GEAJEWFEhUayDsrd5MUFcqXv5rCx/ecQVWtk3nrixjaOwqHw5CZGNm4k6azwcUds1Zy0T++5sO1hS1iaHBZfv3uesqra3n2urEAfJ6zp0Pv48vNJY21ALML9rf7ebXOBh6bm03h/oMdej0R8W07y6oZEK/ROxERf9SVCV4fIL/J7V2etsPNMMasNca8bYxJbeV+EZ+WHN2Dl248qVmiGBUaxNQhCThdlvunDSI5ugfgTghHpcaQEBnCqzdPIC02nEFJkTx2kTsBHN7bPeo2MCGicSfNh99dz6cbi4mPDOGR99ZTXl3X+DrOBhe/eHM1c9cU8IsfDGLKoARGpUTzWW7bCV5lTT3/+GwzNfUNjW2vLN5BXEQwxkB2QUW73/uqvH28smQHb2XtavdzRMT3lVXVER+p+nciIv7I25usvA+kW2tHAp8AM1t7kDHmVmNMljEmq6Sk5LgGKHK07jo7k7vPzuTaCWnN2v921Rjm3X16s4TwypNS+fPlo7j59H6Ae91LrdPF+X/7ijeW5/OzszJ49eaTqaip59G52Y3r5B5+dz3vri7gV+cO4s4zMwA4c3ACq/P3UVZV22pcf/9sC39asIkFG9zF2reWVPHlphJ+NDGd9NjwDo3gbSx0J4PfbC1r93O8ZfmO8laL0ItIcw0uS/mBOmJV4FxExC91ZYK3G2g6IpfiaWtkrS2z1h76K/SfwLjWDmStfcFaO95aOz4+Pr5LghXpbIOTorj3nIE4HM2LBPcKD27xh5MxhhnjUugT4x7pG+YZydt3sI6nLhvJz88ZyOCkKO46K5P31xTwwqJtfLSukDeW53P7lAGNyR3AWYMTsBZ+9+FGHpqzjjX5+xrv273vIK8s2QHA0m3upGzOyt0EOAxXn9yXob2jOjSCl1Ponka6Im9vsxHBwzkbXByoc7b7uJ1tR2k1lz/3Df/8epvXYhDxF3sP1GEtxEUEezsUERE5Cl22yQqwHMg0xvTDndhdBVzT9AHGmGRr7aFFRRcDG7swHhG/MbxPNP+5/VSGJkfRI/i7TQ7uPDOD3OJK/jgvh7DgAEalRPPzcwY2f27vaFJ69mDOKnfitmhzCR/fcwZhwYH8ZcEmAIb1jmLp9nIAPs/dw7i0nsRHhjCsdxQfri1k/4H6I5aKOGRjUQUhgQ5qnS5W5e1j4oDYVh/36Nxs3lqxi+mjenPnmRmN5SmOl1X5ewF4d9Vubp88oHEzHBFpqazKPQ08NlwjeCIi/qjLRvCstU7gp8DHuBO3N6212caY/zbGXOx52F3GmGxjzBrgLuDGropHxN+MS+vZLLkDcDgMf75iFBP7x2KAv141hqAAR4vHfHT36ax55Ae8dssE8ssP8uT8XJ7/civvrNrFjaemc+HI3mzZU8WGggqyCyqYMsg9Mn5o5DC7sO1pmut27aeq1omzwb2z5/TRvXEY+GZb69M0i/bX8GZWPv1iw/lgbSE3vbL8mEoxOBtc7Kms6dBz1uS738+m4io2FjYvP9FaTUKRrtaOMkI/N8Zs8KxRX2iMSWvtOF3h0PTuWI3giYj4pa4cwcNa+xHw0WFtjzS5/iDwYFfGINLdhAQG8OrNJ7P/YH2ba2SiQt2jbxP6x3LdKX0bp2VOG5bEXWdnkuspYvzUxzkAnDkoAXCP7AFsKKig1unC5bKcPeS7uoBzVu3i3tlruHxcCj+Z3J9ap4sJ/WLZWFjJt1vLsFMt1XUNRIR896vl5cXbcVn45w3jWbK1lPv/s67NMg65RZWkxYa1uTV7rbOBW2ZmsXxHOZ//ckrj5jXgLvTudNkWCS/A2l37GJgYwbaSat5bvZuhnvc5c8kOfv/hRr741RR6x/Ro8TyRrtDOMkKrgPHW2gPGmNuBJ4Erj0d8pZ6NnDRFU0TEP3l7kxUROQqBAY52b4Bw/7TBnDc8iSdnjOTZ68YSERLIyJRoegQF8HluCUlRoY31+eIiQkiMCuGlr7dz08vLuWPWysYSCJ9uKOaXb60lOMDBR+sKWbnTvbZvSHIUEwfEsip/L1c+/y3DH/2Yq1/4lvfXFJBbVMmspXmcPyKZ1F5hnDM0iQCHYf76ohZx5pcf4Pynv+LFRa2vk3M2uLjr9VV8tbmUOqeLFxdtb7yvpr6Bq174loEPz2Pcbz/h4XfXNa4JrG9wkV1QwRmZ8ZwxMJ65awpwuSzl1XX8eUEudQ0uFm3q+OZNJZW1nPWnLzpckkKEdpQRstZ+bq094Ln5Le517MdF4wiepmiKiPglJXgi3VxkaBDPXjeOK05KbVx7FhTgYFxaTwDOHBzfbE3asN7RFOyvYeqQRKyFvyzYxOr8fdz52kqG9Y7i+R+No7qugX98voVAh2FAQjinZcRR32DZWV7NTZPSySs/wM9eX8W5f11EVa2Tn5zRH3BvMDOhXy/mrW9Zz+/NrHwaXJZFm1tPtt5ZtZuPs4t55MKh/HBMH15flkd5dR3WWn719lqW7SjnhonpTMqI4/++zWPGs0vYtfcAm4orqXW6GJkaw/TRvSncX8Pj83N4cn4OVbVOokID+XpLaYfP6zOfb2FbaTUzv9nR4efKCa+9ZYQOuRmY16URNVFWVUeAwxDd4/vX4YqIiO/p0imaIuK7JvTrxddbSpnimZ55yN1nZ3LW4ASuObkvf5y3kX9+vZ2FOXtIiArhpRtPIjY8mL69wsgrP8DgpEhCAgM4PTOOt26byIg+0YQGBfDQ+UNYs2s/uUWVBAc6mk3HnDY8iUfey2ZDQQVZO8vJTIjkpPSejbX0VuXto7rWSXhI819PK3bspWdYEDdNSmdrSRVzVu3mkffW42ywzM8u4v5pg7l9ygAApo/uzT2zV3PPG6u5dKx74GNUSjS9Y3rw1eZSXvCMEl5/ShrVdU6+yC3B5bItdjw9tFbw8E1Zdu87yGtL84gICeSrzaWUVNb6RM2wBpfFYVrGeyy27KnEGKOi115ijLkOGA9MPsJjbgVuBejbt+8xv2ZZdS29woNb/DyIiIh/0AieyAlqxrgUrjulL5MHNi89Mio1hutOScPhMNx5ZgaRIYHUN7h4+caTiIsIwRjDpWPdgw1Dkt1r2YwxnJTeq3HtXKBnhPCaCX25bFzzmWXnDktyv/6zS3jkvWxuemUZTy/cTFFFDdefkobTZVnm2eGzqXW79zMiJQZjDBkJkUwblsQHawv5ZlsZt08ZwG2T+zc+9uwhifz6gqFk7dzLM59vISYsiL69wggKcPCny0fx+n+dwtUnp/LzcwZyWkYc5dV1bChsWR7ip6+t4uaZWc02hbHW8j+fuHcjfebasTS4LB+sLejw+T8W89cXct0/l5JffqCxzeWyXPn8N5z+5Oe8v6bgmDayaeruN1ZzzYvfUlXrvTIX3dD3lhECMMZMBR4CLm5SUqiFzi4lVFpVR2y41t+JiPgrJXgiJ6jeMT343Q9HtLmhCUBMWDCv33oKc+6YREZCZGP7pWNSCHAYRqa03Cjl+yRGhTJ5YDy9woP521WjSYwK5enPthAXEcx90wYRHOhg8WFTJmvqG9hUXMnIJiOBT1w2krk/ncSKh6dy/7TBLUatLhuXwqiUaHbvO8iIPtHN7p84IJY/XjqSnuHBnJYRB9BimuY3W8v4cF0hn+XsaSwK/1lOMRf942veXrGL6yemMXlgPEOTo3h31W4WbizmnjdWsXBjcaclV61xuSxPzM/l6y2lXPK/i1mx010CYu6aArJ27qXBZfnZ66t4fH7OMb9Wda2TjYUVFFfU8vTCzcd8PGnUWEbIGBOMu4zQ3KYPMMaMAZ7Hndwd14WeZVW1xKnIuYiI31KCJyJHNKx3NBkJzafn9Y0N45N7z+DaCUe3c/u/bhjPV/edyfTRfZh508kkR4dy06R+RIYGMT6tJ4u3Ni+5sLGwAqfLMqJJQhkVGsTIlBgCW9k1E9zlIh67eBgAY/r2bDOWhKhQBiZGsGhTCcUVNew74F7X96cFuSRFhZKREMET83L419fb+fErWVTXNvDEjBE8cN5gAC4Z04c1u/Zz88wsPlpfxM0zs7juX0uPWPi9PZomiQfrGngzK59aZwOLNpewvbSae6ZmEh4SyNUvfsvbK3bx1Me5DO8TxVf3ncm0YUm8tjTvmGNYu2s/LgsZCRG89PV2Nhd/V2KitKqW577cyuXPLSG7oO2yGtJSO8sIPQVEAG8ZY1YbY+a2cbhOV1ZdpxIJIiJ+TGvwROSo9D+GNVlNk7L0uHC+vv8sDi33mZQRx1Mf5/LPr7axbvd+HjxvCOt2uxOIjo4Yjunbk3fvnMSA+CMXVj8tI56XFm9nwh8WEuAwjEvryYqde/n9JcNJjAzlln9n8dsPNvCDoYn8/ZoxhAR+N+p5ydg+LMwp5pyhSVxzcl9eXrKdJ+fn8nnOHs4bkdzma97w0jKSokJ54rKRLe7LKarg8ue+4fnrx3HqgDheX5bHf3+wgS83lVBV4yQ+MoQ7pmTwo4np3PbqCn751hoAnrp8JIEBDq6fmMb87CIWbCjmB0MTefS9bKYMij9iPK05VCD+hevHccn/LuHBd9Yx+ycT2VlWzfRnFlNZ4562OXdNQWMNRWmfdpQRmnrcg/Ioq6rTDpoiIn5MCZ6IeF1Ak80cDiV4v/twIwDhIYHUOV3ERYSQFBXa4WOPTo353sf8ZHJ/EqNCiAgNJK/sAG+v2MWA+HCuGJ9KoMNwyZg+9AgO4DcXD2tRZy8uIoQ3bp3YePvW0/vz4qJtfJxd1Cyh+suCXFbk7WXmTSezdvd+vtxUQoDDcPfUTKJ6BHHZs0s4d1gS90zN5LcfbKCyxsmHaws5dUAci7eUEhzo4MO17t1H7z47k+BAB70Cg3n1lpP5w4cbMcZw6gD3dNOJ/WPpE9ODt1fsYk3+PmZn5TM7K58bJqZx0ajeJEaFktorrNVzUbj/IAX7ahiX1pNVefvoHxdO//gIHrt4KPfOXsPfP9vMwo17CHAY5t19Og/NWUfWjr0d/n8R31RT30BVrVMjeCIifkwJnoj4lFEp0Tx99Rj6x4Xz2rI83s7aRWxEMCNTojt1d8imEqNC+cnkAY23f3nuIBqaFE3/nytHt/tYgQEOzh6SyMfZRdQ5XQQHOtiyp5JnvthKg8sya2key3aUExESyIE6J69+u5MAY8gpqiSnqJL8vQdYvKWMyJBAvtxUQn2Di6Xby7lsXAqRIYG8tWIX1074bqfEkMAAfjN9eLMYHA7DjLF9+PvnW/hqcwlXn9yXHkEBvLR4OzO/2QnAfdMGcceUjGbPs9Zy56yVrN9dwRe/msKqvH2cMdCdNP5wdB8+3bCHv37qXov3wvXjGJIcxfj0XryyeAc19Q1HXM8p/qFMRc5FRPyeEjwR8SnGGC4e1RuA2ycPYPbyfAr313DF+NTveWbnCQpwcCy5yrnDknh7xS6Wbi/j9Mx4Hp+XQ1hQAAOTIvnTglwO1DVwy2n92Fl2gFnf7qTW6eLCkcnsPVDHOyt3k5EQwXUT+vLY+xuYs2o3VbVOTsuI4/wRyfzy3EEtRhFbM2NcCk9/toX02DB+feEQwoIDuWZCXwr2HWR2Vj5Pzs8lPDiQG05Nb3zOgg3FrMxzF7B/aM46SqtqG9cvGmP4/SXD2VhYwdShifzAsxvq+LSevLDIPZ32pPReR3/SxCeUVqrIuYiIv1OCJyI+K7VXGJeM6cPbK3Yd1Y6d3nJ6ZhxhwQHMX19EWVUdn27cw33TBjF1SCLn/e0rAG44NZ388gPMzy4iJNDBg+cPITw4gEfey+bGSenER4Tw2Psb+J9PNmGMe9ol0K7kDiAtNpynLhvJqNQYwoLdv+ozEiLISIhg4oBY6pwuHp2bzf6D9fzsrAwaXJYn5+fQPz6cCf168foydx3uMU2muMaEBbPwF5ObjaSOS3MngFk79irB6wbKqj0JnkbwRET8lhI8EfFpPz9nIEEBhokDYr0dSruFBgUweWA8s5bmMWtpHhkJEfx4Uj9CgwJ4YNpgDtY30DumB8nRoVwwIpkxfWPoE9MDgKevHtN4nP7x4WwrqWZY7yh6HkVdssvbGPUMCnDwj2vG8MB/1vGXTzaxTUa1AQAAClZJREFUeEspNU4XW0uqee66cYxKjeY/K3bjcMCgpMhmzz18mmxsRAj948PJ2lEODED8W2nVoSmaGsETEfFXSvBExKf1junBHy9tudOkr7vx1HQqauqZMTaFC0f2JjjQPfL2X2d8V5DdGMMz145t8xhnZMazraSaSZ5afZ0pJDCAv1wxikFJkbz6zU6So0O5++xMzh2WiDGGe88ZSGlVbbtGDE9K68X87CL2H6hnQ2EFp/Tv1WXrJaVrlXkSPI3giYj4LyV4IiJdYEL/WGb1P7ZRx3OGJvLKkh1MGRTfSVE1Z4zhtskDuG1yy5G326e0fzRuXHpPZmflM/73n1DfYLn5tH48fMEQJXl+qKyqlh5BAY3TekVExP/oN7iIiI+alBHHZ7+YfEw1B4+HMwclMLZvDCNTYjhY18C/vt5OZGgg90wd6O3QpINU5FxExP8pwRMR8WG+ntwBxEeG8M4dkwBwuSwua/nbws2cOyyJIclRXo5OOqK0qpZYrb8TEfFrSvBERKTTOByGx2eMZMa4FCV3fugPl4zgYH2Dt8MQEZFjoARPREQ6VYDDcMoxrj8U70jtFebtEERE5Bi1r6CSiIiIiIiI+DwleCIiIiIiIt2EEjwREREREZFuQgmeiIiIiIhIN6EET0REREREpJtQgiciIiIiItJNKMETERERERHpJpTgiYiIiIiIdBNK8ERERERERLoJJXgiIiIiIiLdhLHWejuGDjHGlAA7j/EwcUBpJ4TjLYrfuxS/9/hz7KD4j0aatTb+OL+m31IfCSh+b/Ln2EHxe5s/x+9T/aPfJXidwRiTZa0d7+04jpbi9y7F7z3+HDsofvEP/v7/rPi9x59jB8Xvbf4cv6/FrimaIiIiIiIi3YQSPBERERERkW7iRE3wXvB2AMdI8XuX4vcef44dFL/4B3//f1b83uPPsYPi9zZ/jt+nYj8h1+CJiIiIiIh0RyfqCJ6IiIiIiEi3c8IleMaYacaYXGPMFmPMA96O5/sYY1KNMZ8bYzYYY7KNMXd72h8zxuw2xqz2XM73dqxtMcbsMMas88SZ5WnrZYz5xBiz2fNvT2/HeThjzKAm53e1MabCGHOPL597Y8xLxpg9xpj1TdpaPdfG7WnPz8JaY8xY70XeGGtr8T9ljMnxxDjHGBPjaU83xhxs8v/wnPcib4y1tfjb/LwYYx70nP9cY8y53om6MZbWYp/dJO4dxpjVnnafO/fSOfypj1T/6F3qI48v9Y/e5Xd9pLX2hLkAAcBWoD8QDKwBhno7ru+JORkY67keCWwChgKPAb/0dnztfA87gLjD2p4EHvBcfwB4wttxtuOzUwSk+fK5B84AxgLrv+9cA+cD8wADnAIs9dH4fwAEeq4/0ST+9KaP84VLG/G3+nnx/ByvAUKAfp7fTQG+FPth9/8ZeMRXz70unfIZ8Ks+Uv2j71zUR3otdvWPXoz/sPt9qo880UbwTga2WGu3WWvrgDeA6V6O6YistYXW2pWe65XARqCPd6PqFNOBmZ7rM4EfejGW9jgb2GqtPdYCwl3KWrsIKD+sua1zPR34t3X7FogxxiQfn0hb11r81toF1lqn5+a3QMpxD6yd2jj/bZkOvGGtrbXWbge24P4d5RVHit0YY4ArgNePa1ByvPlVH6n+0aeoj+xi6h+91z+C//WRJ1qC1wfIb3J7F37UGRhj0oExwFJP0089w/Iv+eoUDg8LLDDGrDDG3OppS7TWFnquFwGJ3gmt3a6i+Q+uv5x7aPtc++PPw49xf6N6SD9jzCpjzJfGmNO9FVQ7tPZ58afzfzpQbK3d3KTNX869tJ8/fSabUf/odeojvU/9o/f4XB95oiV4fssYEwH8B7jHWlsBPAsMAEYDhbiHhn3VadbascB5wJ3GmDOa3mnd49k+u52rMSYYuBh4y9PkT+e+GV8/10dijHkIcAKzPE2FQF9r7Rjg58Brxpgob8V3BH77eWniapr/8eYv515OAOofvUt9pPepf/Q6n+sjT7QEbzeQ2uR2iqfNpxljgnB3XrOste8AWGuLrbUN1loX8CJeHro+Emvtbs+/e4A5uGMtPjTVwfPvHu9F+L3OA1Zaa4vBv869R1vn2m9+HowxNwIXAtd6OmA8UzfKPNdX4J6jP9BrQbbhCJ8Xvzj/xphA4FJg9qE2fzn30mF+8ZlsSv2jT1Af6UXqH73LV/vIEy3BWw5kGmP6eb5xugqY6+WYjsgzr/dfwEZr7V+atDedB34JsP7w5/oCY0y4MSby0HXcC4LX4z7vN3gedgPwnncibJdm38z4y7lvoq1zPRf4kXE7BdjfZJqKzzDGTAPuAy621h5o0h5vjAnwXO8PZALbvBNl247weZkLXGWMCTHG9MMd/7LjHV87TAVyrLW7DjX4y7mXDvOrPlL9o89QH+kl6h99gm/2kZ21W4u/XHDvirQJdzb9kLfjaUe8p+GeLrAWWO25nA+8CqzztM8Fkr0daxvx98e9E9IaIPvQOQdigYXAZuBToJe3Y20j/nCgDIhu0uaz5x53J1sI1OOes35zW+ca985gz3h+FtYB4300/i245+If+vw/53nsDM9najWwErjIR+Nv8/MCPOQ5/7nAeb4Wu6f9FeC2wx7rc+del077HPhNH6n+0fsX9ZFej139oxfj97T7ZB9pPIGIiIiIiIiInzvRpmiKiIiIiIh0W0rwREREREREugkleCIiIiIiIt2EEjwREREREZFuQgmeiIiIiIhIN6EET+Q4MMY0GGNWN7k80InHTjfG+HqdIRERkRbUP4p0vkBvByBygjhorR3t7SBERER8jPpHkU6mETwRLzLG7DDGPGmMWWeMWWaMyfC0pxtjPjPGrDXGLDTG9PW0Jxpj5hhj1ngup3oOFWCMedEYk22MWWCM6eF5/F3GmA2e47zhpbcpIiLSIeofRY6eEjyR46PHYVNQrmxy335r7QjgH8BfPW1/B2Zaa0cCs4CnPe1PA19aa0cBY4FsT3sm8Iy1dhiwD5jhaX8AGOM5zm1d9eZERESOkvpHkU5mrLXejkGk2zPGVFlrI1pp3wGcZa3dZowJAoqstbHGmFIg2Vpb72kvtNbGGWNKgBRrbW2TY6QDn1hrMz237weCrLW/M8bMB6qAd4F3rbVVXfxWRURE2k39o0jn0wieiPfZNq53RG2T6w18t772AuAZ3N9mLjfGaN2tiIj4C/WPIkdBCZ6I913Z5N9vPNeXAFd5rl8LfOW5vhC4HcAYE2CMiW7roMYYB5Bqrf0cuB+IBlp8SyoiIuKj1D+KHAV9WyFyfPQwxqxucnu+tfbQVtA9jTFrcX/LeLWn7WfAy8aYXwElwE2e9ruBF4wxN+P+JvJ2oLCN1wwA/s/TyRngaWvtvk57RyIiIsdO/aNIJ9MaPBEv8qwxGG+tLfV2LCIiIr5C/aPI0dMUTRERERERkW5CI3giIiIiIiLdhEbwREREREREugkleCIiIiIiIt2EEjwREREREZFuQgmeiIiIiIhIN6EET0REREREpJtQgiciIiIiItJN/H9E4YeDt0LMvwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ], "source": [ "display_learning_curves(history)" ] }, { "cell_type": "markdown", "metadata": { "id": "UO6Ss5eBuw5r" }, "source": [ "Now we evaluate the GNN model on the test data split.\n", "The results may vary depending on the training sample, however the GNN model always outperforms\n", "the baseline model in terms of the test accuracy." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "id": "r8OoqyKjuw5r", "outputId": "efbf256e-88ef-45af-ac2a-f1265fcf4db0", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Test accuracy: 79.69%\n" ] } ], "source": [ "x_test = test_data.paper_id.to_numpy()\n", "_, test_accuracy = gnn_model.evaluate(x=x_test, y=y_test, verbose=0)\n", "print(f\"Test accuracy: {round(test_accuracy * 100, 2)}%\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Ik1cqrxauw5r" }, "source": [ "### Examine the GNN model predictions\n", "\n", "Let's add the new instances as nodes to the `node_features`, and generate links\n", "(citations) to existing nodes." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "id": "N5ubeNmJuw5r" }, "outputs": [], "source": [ "# First we add the N new_instances as nodes to the graph\n", "# by appending the new_instance to node_features.\n", "num_nodes = node_features.shape[0]\n", "new_node_features = np.concatenate([node_features, new_instances])\n", "# Second we add the M edges (citations) from each new node to a set\n", "# of existing nodes in a particular subject\n", "new_node_indices = [i + num_nodes for i in range(num_classes)]\n", "new_citations = []\n", "for subject_idx, group in papers.groupby(\"subject\"):\n", " subject_papers = list(group.paper_id)\n", " # Select random x papers specific subject.\n", " selected_paper_indices1 = np.random.choice(subject_papers, 5)\n", " # Select random y papers from any subject (where y < x).\n", " selected_paper_indices2 = np.random.choice(list(papers.paper_id), 2)\n", " # Merge the selected paper indices.\n", " selected_paper_indices = np.concatenate(\n", " [selected_paper_indices1, selected_paper_indices2], axis=0\n", " )\n", " # Create edges between a citing paper idx and the selected cited papers.\n", " citing_paper_indx = new_node_indices[subject_idx]\n", " for cited_paper_idx in selected_paper_indices:\n", " new_citations.append([citing_paper_indx, cited_paper_idx])\n", "\n", "new_citations = np.array(new_citations).T\n", "new_edges = np.concatenate([edges, new_citations], axis=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "iUk1GzcNuw5r" }, "source": [ "Now let's update the `node_features` and the `edges` in the GNN model." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "cUC80ZRFuw5r", "outputId": "220e8f6e-e95a-488f-aeae-7973be3272bb", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original node_features shape: (2708, 1433)\n", "Original edges shape: (2, 5429)\n", "New node_features shape: (2715, 1433)\n", "New edges shape: (2, 5478)\n", "Instance 1:\n", "- Case_Based: 30.51%\n", "- Genetic_Algorithms: 18.0%\n", "- Neural_Networks: 3.5%\n", "- Probabilistic_Methods: 2.29%\n", "- Reinforcement_Learning: 39.68%\n", "- Rule_Learning: 1.64%\n", "- Theory: 4.38%\n", "Instance 2:\n", "- Case_Based: 0.18%\n", "- Genetic_Algorithms: 95.39%\n", "- Neural_Networks: 4.01%\n", "- Probabilistic_Methods: 0.05%\n", "- Reinforcement_Learning: 0.22%\n", "- Rule_Learning: 0.04%\n", "- Theory: 0.1%\n", "Instance 3:\n", "- Case_Based: 0.27%\n", "- Genetic_Algorithms: 0.19%\n", "- Neural_Networks: 91.87%\n", "- Probabilistic_Methods: 6.27%\n", "- Reinforcement_Learning: 0.52%\n", "- Rule_Learning: 0.1%\n", "- Theory: 0.78%\n", "Instance 4:\n", "- Case_Based: 65.41%\n", "- Genetic_Algorithms: 1.8%\n", "- Neural_Networks: 4.07%\n", "- Probabilistic_Methods: 9.52%\n", "- Reinforcement_Learning: 1.07%\n", "- Rule_Learning: 13.52%\n", "- Theory: 4.6%\n", "Instance 5:\n", "- Case_Based: 0.98%\n", "- Genetic_Algorithms: 77.79%\n", "- Neural_Networks: 0.96%\n", "- Probabilistic_Methods: 0.07%\n", "- Reinforcement_Learning: 19.92%\n", "- Rule_Learning: 0.04%\n", "- Theory: 0.24%\n", "Instance 6:\n", "- Case_Based: 0.87%\n", "- Genetic_Algorithms: 0.17%\n", "- Neural_Networks: 56.18%\n", "- Probabilistic_Methods: 1.64%\n", "- Reinforcement_Learning: 0.6%\n", "- Rule_Learning: 1.8%\n", "- Theory: 38.73%\n", "Instance 7:\n", "- Case_Based: 0.35%\n", "- Genetic_Algorithms: 0.09%\n", "- Neural_Networks: 30.04%\n", "- Probabilistic_Methods: 67.39%\n", "- Reinforcement_Learning: 0.8%\n", "- Rule_Learning: 0.2%\n", "- Theory: 1.13%\n" ] } ], "source": [ "print(\"Original node_features shape:\", gnn_model.node_features.shape)\n", "print(\"Original edges shape:\", gnn_model.edges.shape)\n", "gnn_model.node_features = new_node_features\n", "gnn_model.edges = new_edges\n", "gnn_model.edge_weights = tf.ones(shape=new_edges.shape[1])\n", "print(\"New node_features shape:\", gnn_model.node_features.shape)\n", "print(\"New edges shape:\", gnn_model.edges.shape)\n", "\n", "logits = gnn_model.predict(tf.convert_to_tensor(new_node_indices))\n", "probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()\n", "display_class_probabilities(probabilities)" ] }, { "cell_type": "markdown", "metadata": { "id": "Wy6gCYzTuw5r" }, "source": [ "Notice that the probabilities of the expected subjects\n", "(to which several citations are added) are higher compared to the baseline model." ] }, { "cell_type": "code", "source": [ "!pip install huggingface-hub\n", "!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash\n", "!sudo apt-get install git-lfs\n", "!git-lfs install" ], "metadata": { "id": "3PDc8EE1vyjx", "outputId": "bb76bbbe-cd13-4eb3-e2a0-3aeb22774a28", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 31, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting huggingface-hub\n", " Downloading huggingface_hub-0.2.1-py3-none-any.whl (61 kB)\n", "\u001b[?25l\r\u001b[K |█████▎ | 10 kB 17.4 MB/s eta 0:00:01\r\u001b[K |██████████▋ | 20 kB 9.8 MB/s eta 0:00:01\r\u001b[K |███████████████▉ | 30 kB 7.9 MB/s eta 0:00:01\r\u001b[K |█████████████████████▏ | 40 kB 7.2 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▌ | 51 kB 4.1 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▊| 61 kB 4.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 61 kB 388 kB/s \n", "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.4.0)\n", "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.8.2)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (4.62.3)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.10.0.2)\n", "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (21.3)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (2.23.0)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub) (3.13)\n", "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.9->huggingface-hub) (3.0.6)\n", "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->huggingface-hub) (3.6.0)\n", "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (1.24.3)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2.10)\n", "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (3.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->huggingface-hub) (2021.10.8)\n", "Installing collected packages: huggingface-hub\n", "Successfully installed huggingface-hub-0.2.1\n", "Detected operating system as Ubuntu/bionic.\n", "Checking for curl...\n", "Detected curl...\n", "Checking for gpg...\n", "Detected gpg...\n", "Running apt-get update... done.\n", "Installing apt-transport-https... done.\n", "Installing /etc/apt/sources.list.d/github_git-lfs.list...done.\n", "Importing packagecloud gpg key... done.\n", "Running apt-get update... done.\n", "\n", "The repository is setup! You can now install packages.\n", "Reading package lists... Done\n", "Building dependency tree \n", "Reading state information... Done\n", "The following NEW packages will be installed:\n", " git-lfs\n", "0 upgraded, 1 newly installed, 0 to remove and 67 not upgraded.\n", "Need to get 6,526 kB of archives.\n", "After this operation, 14.7 MB of additional disk space will be used.\n", "Get:1 https://packagecloud.io/github/git-lfs/ubuntu bionic/main amd64 git-lfs amd64 3.0.2 [6,526 kB]\n", "Fetched 6,526 kB in 1s (6,956 kB/s)\n", "debconf: unable to initialize frontend: Dialog\n", "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n", "debconf: falling back to frontend: Readline\n", "debconf: unable to initialize frontend: Readline\n", "debconf: (This frontend requires a controlling tty.)\n", "debconf: falling back to frontend: Teletype\n", "dpkg-preconfigure: unable to re-open stdin: \n", "Selecting previously unselected package git-lfs.\n", "(Reading database ... 155226 files and directories currently installed.)\n", "Preparing to unpack .../git-lfs_3.0.2_amd64.deb ...\n", "Unpacking git-lfs (3.0.2) ...\n", "Setting up git-lfs (3.0.2) ...\n", "Git LFS initialized.\n", "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n", "Git LFS initialized.\n" ] } ] }, { "cell_type": "code", "source": [ "!huggingface-cli login" ], "metadata": { "id": "ggB9kTy5v00W", "outputId": "54caf99c-a3a1-4fe0-bb1c-c0f14e61464e", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 32, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n", " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n", " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n", "\n", " To login, `huggingface_hub` now requires a token generated from https://huggingface.co/settings/token.\n", " (Deprecated, will be removed in v0.3.0) To login with username and password instead, interrupt with Ctrl+C.\n", " \n", "Token: \n", "Login successful\n", "Your token has been saved to /root/.huggingface/token\n", "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n", "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n", "\n", "git config --global credential.helper store\u001b[0m\n" ] } ] }, { "cell_type": "code", "source": [ "from huggingface_hub.keras_mixin import push_to_hub_keras\n", "push_to_hub_keras(model = gnn_model, repo_url = \"https://huggingface.co/keras-io/graph-attention-nets\", organization = \"keras-io\")\n" ], "metadata": { "id": "ihaggFkGv16r", "outputId": "532efb2a-3081-414f-d458-1e5b7d729000", "colab": { "base_uri": "https://localhost:8080/", "height": 187, "referenced_widgets": [ "02a900330032498cab8abbeaeda25f60", "fac067e536ff4f858d85821c1dd27c53", "f32a408fe89d46dd9c763f79f508849c", "d233cdf5234d4335917f7076da6890ec", "ab25e23f9a254d8a93c0a3b26a23d65d", "fea4185b344f4a7e99c4ba6e88c7466e", "55d90faad141451ba879867f1067349c", "371bbe061ae047f0928b29ee6b98b205", "0e243ed4268047318dafd43e5f9da334", "1a0f8a3250b04f008ee59a177dc30f51", "bffee562cd2845e284d0e725d311e41c", "aaaa0eef43c644a2a051e6039848bb6a", "2b46334cb01a49fa856e730126493ec1", "1eb6f9a0509147eab1370ee7ad74faf0", "3798b6c1873841a9854e79ca363336e1", "1af6815d69c34979af48feec45c1b80d", "2a9de25067024b039d33be465575a56b", "d348cc3a5d3d49609df8c083236a7ce8", "963ad473b34d43db82dc6dc69f5f70f6", "ad0b4d1d291b4b138a226959f35330dd", "3fe0c52755b248278d2c64bc3d0cbf18", "fbe7a8ced9d14176a72e5302c5e7bc3f" ] } }, "execution_count": 35, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Cloning https://huggingface.co/keras-io/graph-attention-nets into local empty directory.\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "INFO:tensorflow:Assets written to: graph-attention-nets/assets\n" ] }, { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "02a900330032498cab8abbeaeda25f60", "version_minor": 0, "version_major": 2 }, "text/plain": [ "Upload file saved_model.pb: 0%| | 32.0k/211M [00:00 main\n", "\n" ] }, { "output_type": "execute_result", "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'https://huggingface.co/keras-io/graph-attention-nets/commit/88c5cf87d3e5138347f4ff448cc3e2f2c78d1301'" ] }, "metadata": {}, "execution_count": 35 } ] }, { "cell_type": "code", "source": [ "" ], "metadata": { "id": "JTwh_3jRxVlk" }, "execution_count": null, "outputs": [] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "gnn_citations", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "02a900330032498cab8abbeaeda25f60": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_view_name": "HBoxView", "_dom_classes": [], "_model_name": "HBoxModel", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", "layout": "IPY_MODEL_fac067e536ff4f858d85821c1dd27c53", "_model_module": "@jupyter-widgets/controls", "children": [ "IPY_MODEL_f32a408fe89d46dd9c763f79f508849c", "IPY_MODEL_d233cdf5234d4335917f7076da6890ec", "IPY_MODEL_ab25e23f9a254d8a93c0a3b26a23d65d" ] } }, "fac067e536ff4f858d85821c1dd27c53": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "f32a408fe89d46dd9c763f79f508849c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_fea4185b344f4a7e99c4ba6e88c7466e", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": "Upload file saved_model.pb: 100%", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_55d90faad141451ba879867f1067349c" } }, "d233cdf5234d4335917f7076da6890ec": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", "style": "IPY_MODEL_371bbe061ae047f0928b29ee6b98b205", "_dom_classes": [], "description": "", "_model_name": "FloatProgressModel", "bar_style": "success", "max": 220956677, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": 220956677, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_0e243ed4268047318dafd43e5f9da334" } }, "ab25e23f9a254d8a93c0a3b26a23d65d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_1a0f8a3250b04f008ee59a177dc30f51", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": " 211M/211M [00:41<00:00, 2.29MB/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_bffee562cd2845e284d0e725d311e41c" } }, "fea4185b344f4a7e99c4ba6e88c7466e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "55d90faad141451ba879867f1067349c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "371bbe061ae047f0928b29ee6b98b205": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null, "_model_module": "@jupyter-widgets/controls" } }, "0e243ed4268047318dafd43e5f9da334": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "1a0f8a3250b04f008ee59a177dc30f51": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "bffee562cd2845e284d0e725d311e41c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "aaaa0eef43c644a2a051e6039848bb6a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_view_name": "HBoxView", "_dom_classes": [], "_model_name": "HBoxModel", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", "layout": "IPY_MODEL_2b46334cb01a49fa856e730126493ec1", "_model_module": "@jupyter-widgets/controls", "children": [ "IPY_MODEL_1eb6f9a0509147eab1370ee7ad74faf0", "IPY_MODEL_3798b6c1873841a9854e79ca363336e1", "IPY_MODEL_1af6815d69c34979af48feec45c1b80d" ] } }, "2b46334cb01a49fa856e730126493ec1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "1eb6f9a0509147eab1370ee7ad74faf0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_2a9de25067024b039d33be465575a56b", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": "Upload file keras_metadata.pb: 100%", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_d348cc3a5d3d49609df8c083236a7ce8" } }, "3798b6c1873841a9854e79ca363336e1": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", "style": "IPY_MODEL_963ad473b34d43db82dc6dc69f5f70f6", "_dom_classes": [], "description": "", "_model_name": "FloatProgressModel", "bar_style": "success", "max": 73082, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": 73082, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_ad0b4d1d291b4b138a226959f35330dd" } }, "1af6815d69c34979af48feec45c1b80d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", "style": "IPY_MODEL_3fe0c52755b248278d2c64bc3d0cbf18", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "value": " 71.4k/71.4k [00:40<00:00, 1.00kB/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", "layout": "IPY_MODEL_fbe7a8ced9d14176a72e5302c5e7bc3f" } }, "2a9de25067024b039d33be465575a56b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "d348cc3a5d3d49609df8c083236a7ce8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "963ad473b34d43db82dc6dc69f5f70f6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "ProgressStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "bar_color": null, "_model_module": "@jupyter-widgets/controls" } }, "ad0b4d1d291b4b138a226959f35330dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } }, "3fe0c52755b248278d2c64bc3d0cbf18": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_view_name": "StyleView", "_model_name": "DescriptionStyleModel", "description_width": "", "_view_module": "@jupyter-widgets/base", "_model_module_version": "1.5.0", "_view_count": null, "_view_module_version": "1.2.0", "_model_module": "@jupyter-widgets/controls" } }, "fbe7a8ced9d14176a72e5302c5e7bc3f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_view_name": "LayoutView", "grid_template_rows": null, "right": null, "justify_content": null, "_view_module": "@jupyter-widgets/base", "overflow": null, "_model_module_version": "1.2.0", "_view_count": null, "flex_flow": null, "width": null, "min_width": null, "border": null, "align_items": null, "bottom": null, "_model_module": "@jupyter-widgets/base", "top": null, "grid_column": null, "overflow_y": null, "overflow_x": null, "grid_auto_flow": null, "grid_area": null, "grid_template_columns": null, "flex": null, "_model_name": "LayoutModel", "justify_items": null, "grid_row": null, "max_height": null, "align_content": null, "visibility": null, "align_self": null, "height": null, "min_height": null, "padding": null, "grid_auto_rows": null, "grid_gap": null, "max_width": null, "order": null, "_view_module_version": "1.2.0", "grid_template_areas": null, "object_position": null, "object_fit": null, "grid_auto_columns": null, "margin": null, "display": null, "left": null } } } } }, "nbformat": 4, "nbformat_minor": 0 }