|
import tensorflow as tf |
|
import numpy as np |
|
from tensorflow import keras |
|
import os |
|
from typing import Dict, List, Any |
|
import pickle |
|
from PIL import Image |
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
|
|
self.decoder = keras.models.load_model(os.path.join(path, "decoder")) |
|
self.decoder = keras.models.load_model(os.path.join(path, "encoder")) |
|
|
|
image_model = tf.keras.applications.InceptionV3(include_top=False, |
|
weights='imagenet') |
|
new_input = image_model.input |
|
hidden_layer = image_model.layers[-1].output |
|
|
|
self.image_features_extract_model = tf.keras.Model(new_input, hidden_layer) |
|
|
|
with open('tokenizer.pickle', 'rb') as handle: |
|
self.tokenizer = pickle.load(handle) |
|
|
|
|
|
|
|
def load_image(image_path): |
|
img = tf.io.read_file(image_path) |
|
img = tf.io.decode_jpeg(img, channels=3) |
|
img = tf.image.resize(img, (299, 299)) |
|
img = tf.keras.applications.inception_v3.preprocess_input(img) |
|
return img, image_path |
|
|
|
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
inputs (:obj:`PIL.Image`): |
|
The raw image representation as PIL. |
|
No transformation made whatsoever from the input. Make all necessary transformations here. |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
It is preferred if the returned list is in decreasing `score` order |
|
""" |
|
|
|
hidden = tf.zeros((1, 512)) |
|
|
|
temp_input = tf.expand_dims(load_image(image)[0], 0) |
|
img_tensor_val = self.image_features_extract_model(temp_input) |
|
img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], |
|
-1, |
|
img_tensor_val.shape[3])) |
|
|
|
features = self.encoder(img_tensor_val) |
|
|
|
dec_input = tf.expand_dims([self.tokenizer.word_index['<start>']], 0) |
|
result = [] |
|
|
|
for i in range(max_length): |
|
predictions, hidden, attention_weights = self.decoder(dec_input, |
|
features, |
|
hidden) |
|
|
|
predicted_id = tf.random.categorical(predictions, 1)[0][0].numpy() |
|
result.append(self.tokenizer.index_word[predicted_id]) |
|
|
|
if self.tokenizer.index_word[predicted_id] == '<end>': |
|
return result |
|
|
|
dec_input = tf.expand_dims([predicted_id], 0) |
|
return result |
|
|