--- library_name: keras tags: - structured-data-classification - time-series - anomaly-detection --- ## Timeseries anomaly detection using an Autoencoder This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/) Full credits to: [Pavithra Vijay](https://github.com/pavithrasv) ## Background and Datasets This script demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data. We will use the [Numenta Anomaly Benchmark(NAB)](https://www.kaggle.com/datasets/boltzmannbrain/nab) dataset. It provides artifical timeseries data containing labeled anomalous periods of behavior. Data are ordered, timestamped, single-valued metrics. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Validation Loss | |--- |--- |--- | | 1| 0.011| 0.014| | 2| 0.011| 0.015| | 3| 0.01| 0.012| | 4| 0.01| 0.013| | 5| 0.01| 0.012| | 6| 0.009| 0.014| | 7| 0.009| 0.013| | 8| 0.009| 0.012| | 9| 0.009| 0.012| | 10| 0.009| 0.011| | 11| 0.008| 0.01| | 12| 0.008| 0.011| | 13| 0.008| 0.009| | 14| 0.008| 0.011| | 15| 0.008| 0.009| | 16| 0.008| 0.009| | 17| 0.008| 0.009| | 18| 0.007| 0.01| | 19| 0.007| 0.009| | 20| 0.007| 0.008| | 21| 0.007| 0.009| | 22| 0.007| 0.008| | 23| 0.007| 0.008| | 24| 0.007| 0.007| | 25| 0.007| 0.008| | 26| 0.006| 0.009| | 27| 0.006| 0.008| | 28| 0.006| 0.009| | 29| 0.006| 0.008| ## Model Plot
View Model Plot ![Model Image](./model.png)