File size: 4,823 Bytes
dbea7f4 808ebc9 901d938 dbea7f4 48633f2 72bd8da c0e08a4 72bd8da 2c27dae 72bd8da 48633f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
library_name: keras-hub
license: apache-2.0
language:
- en
tags:
- text-classification
pipeline_tag: text-classification
---
### Model Overview
DistilBert is a set of language models published by HuggingFace. They are efficient, distilled version of BERT, and are intended for classification and embedding of text, not for text-generation. See the model card below for benchmarks, data sources, and intended use cases.
Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
## Links
* [DistilBert Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/distilbert-quickstart)
* [DistilBert API Documentation](https://keras.io/api/keras_hub/models/distil_bert/)
* [DistilBert Model Card](https://huggingface.co/distilbert/distilbert-base-uncased)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras>=3
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|-----------------------------|------------|--------------------------------------------------------|
| distil_bert_base_en_uncased | 66.36M | 6-layer model where all input is lowercased. |
| distil_bert_base_en | 65.19M | 6-layer model where case is maintained. |
| distil_bert_base_multi | 134.73M | 6-layer multi-linguage model where case is maintained. |
## Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Use a shorter sequence length.
preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset(
"distil_bert_base_en_uncased",
sequence_length=128,
)
# Pretrained classifier.
classifier = keras_hub.models.DistilBertClassifier.from_preset(
"distil_bert_base_en_uncased",
num_classes=4,
preprocessor=preprocessor,
)
classifier.fit(x=features, y=labels, batch_size=2)
# Re-compile (e.g., with a new learning rate)
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```
Preprocessed integer data.
```python
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.DistilBertClassifier.from_preset(
"distil_bert_base_en_uncased",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Use a shorter sequence length.
preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset(
"hf://keras/distil_bert_base_en_uncased",
sequence_length=128,
)
# Pretrained classifier.
classifier = keras_hub.models.DistilBertClassifier.from_preset(
"hf://keras/distil_bert_base_en_uncased",
num_classes=4,
preprocessor=preprocessor,
)
classifier.fit(x=features, y=labels, batch_size=2)
# Re-compile (e.g., with a new learning rate)
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```
Preprocessed integer data.
```python
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.DistilBertClassifier.from_preset(
"hf://keras/distil_bert_base_en_uncased",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```
|