Divyasreepat
commited on
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -1,16 +1,134 @@
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
*
|
12 |
-
*
|
13 |
-
*
|
14 |
-
*
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
+
### Model Overview
|
5 |
+
FNet is a set of language models published by Google as part of the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824). FNet replaces the self-attention of BERT with an unparameterized fourier transform, dramatically lowering the number of trainable parameters in the model. FNet achieves training at 92-97% accuracy of BERT counterparts on GLUE benchmark, with faster training and much smaller saved checkpoints.
|
6 |
+
|
7 |
+
Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
|
8 |
+
|
9 |
+
## Links
|
10 |
+
|
11 |
+
* [FNet Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/fnet-quickstart/)
|
12 |
+
* [FNet API Documentation](https://keras.io/api/keras_hub/models/f_net/)
|
13 |
+
* [FNet Model Card](https://github.com/google-research/google-research/blob/master/f_net/README.md)
|
14 |
+
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
|
15 |
+
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
|
16 |
+
|
17 |
+
## Installation
|
18 |
+
|
19 |
+
Keras and KerasHub can be installed with:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U -q keras-hub
|
23 |
+
pip install -U -q keras>=3
|
24 |
+
```
|
25 |
+
|
26 |
+
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
|
27 |
+
|
28 |
+
## Presets
|
29 |
+
|
30 |
+
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
|
31 |
+
|
32 |
+
| Preset name | Parameters | Description |
|
33 |
+
|----------------|------------|-----------------------------------------------|
|
34 |
+
| `f_net_base_en` | 82.86M | 12-layer FNet model where case is maintained. |
|
35 |
+
| `f_net_large_en` | 236.95M | 24-layer FNet model where case is maintained. |
|
36 |
+
|
37 |
+
### Example Usage
|
38 |
+
```python
|
39 |
+
import keras
|
40 |
+
import keras_hub
|
41 |
+
import numpy as np
|
42 |
+
```
|
43 |
+
|
44 |
+
Raw string data.
|
45 |
+
```python
|
46 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
47 |
+
labels = [0, 3]
|
48 |
+
|
49 |
+
# Pretrained classifier.
|
50 |
+
classifier = keras_hub.models.FNetClassifier.from_preset(
|
51 |
+
"f_net_base_en",
|
52 |
+
num_classes=4,
|
53 |
+
)
|
54 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
55 |
+
classifier.predict(x=features, batch_size=2)
|
56 |
+
|
57 |
+
# Re-compile (e.g., with a new learning rate).
|
58 |
+
classifier.compile(
|
59 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
60 |
+
optimizer=keras.optimizers.Adam(5e-5),
|
61 |
+
jit_compile=True,
|
62 |
+
)
|
63 |
+
# Access backbone programmatically (e.g., to change `trainable`).
|
64 |
+
classifier.backbone.trainable = False
|
65 |
+
# Fit again.
|
66 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
67 |
+
```
|
68 |
+
|
69 |
+
Preprocessed integer data.
|
70 |
+
```python
|
71 |
+
features = {
|
72 |
+
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
|
73 |
+
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
74 |
+
}
|
75 |
+
labels = [0, 3]
|
76 |
+
|
77 |
+
# Pretrained classifier without preprocessing.
|
78 |
+
classifier = keras_hub.models.FNetClassifier.from_preset(
|
79 |
+
"f_net_base_en",
|
80 |
+
num_classes=4,
|
81 |
+
preprocessor=None,
|
82 |
+
)
|
83 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Example Usage with Hugging Face URI
|
87 |
+
|
88 |
+
```python
|
89 |
+
import keras
|
90 |
+
import keras_hub
|
91 |
+
import numpy as np
|
92 |
+
```
|
93 |
+
|
94 |
+
Raw string data.
|
95 |
+
```python
|
96 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
97 |
+
labels = [0, 3]
|
98 |
+
|
99 |
+
# Pretrained classifier.
|
100 |
+
classifier = keras_hub.models.FNetClassifier.from_preset(
|
101 |
+
"f_net_base_en",
|
102 |
+
num_classes=4,
|
103 |
+
)
|
104 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
105 |
+
classifier.predict(x=features, batch_size=2)
|
106 |
+
|
107 |
+
# Re-compile (e.g., with a new learning rate).
|
108 |
+
classifier.compile(
|
109 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
110 |
+
optimizer=keras.optimizers.Adam(5e-5),
|
111 |
+
jit_compile=True,
|
112 |
+
)
|
113 |
+
# Access backbone programmatically (e.g., to change `trainable`).
|
114 |
+
classifier.backbone.trainable = False
|
115 |
+
# Fit again.
|
116 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
117 |
+
```
|
118 |
+
|
119 |
+
Preprocessed integer data.
|
120 |
+
```python
|
121 |
+
features = {
|
122 |
+
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
|
123 |
+
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
124 |
+
}
|
125 |
+
labels = [0, 3]
|
126 |
+
|
127 |
+
# Pretrained classifier without preprocessing.
|
128 |
+
classifier = keras_hub.models.FNetClassifier.from_preset(
|
129 |
+
"f_net_base_en",
|
130 |
+
num_classes=4,
|
131 |
+
preprocessor=None,
|
132 |
+
)
|
133 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
134 |
+
```
|