Divyasreepat
commited on
Commit
•
54f38bd
1
Parent(s):
bce5a49
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -36,7 +36,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
36 |
input_data = np.ones(shape=(2, 224, 224, 3))
|
37 |
|
38 |
# Pretrained backbone
|
39 |
-
model = keras_hub.models.VGGBackbone.from_preset("
|
40 |
model(input_data)
|
41 |
|
42 |
# Randomly initialized backbone with a custom config
|
@@ -47,7 +47,7 @@ model = keras_hub.models.VGGBackbone(
|
|
47 |
model(input_data)
|
48 |
|
49 |
# Use VGG for image classification task
|
50 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
51 |
|
52 |
# User Timm presets directly from HuggingFace
|
53 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/vgg11.tv_in1k')
|
@@ -59,7 +59,7 @@ model = keras_hub.models.ImageClassifier.from_preset('hf://timm/vgg11.tv_in1k')
|
|
59 |
input_data = np.ones(shape=(2, 224, 224, 3))
|
60 |
|
61 |
# Pretrained backbone
|
62 |
-
model = keras_hub.models.VGGBackbone.from_preset("
|
63 |
model(input_data)
|
64 |
|
65 |
# Randomly initialized backbone with a custom config
|
@@ -70,7 +70,7 @@ model = keras_hub.models.VGGBackbone(
|
|
70 |
model(input_data)
|
71 |
|
72 |
# Use VGG for image classification task
|
73 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
74 |
|
75 |
# User Timm presets directly from HuggingFace
|
76 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/vgg11.tv_in1k')
|
|
|
36 |
input_data = np.ones(shape=(2, 224, 224, 3))
|
37 |
|
38 |
# Pretrained backbone
|
39 |
+
model = keras_hub.models.VGGBackbone.from_preset("vgg_19_imagenet")
|
40 |
model(input_data)
|
41 |
|
42 |
# Randomly initialized backbone with a custom config
|
|
|
47 |
model(input_data)
|
48 |
|
49 |
# Use VGG for image classification task
|
50 |
+
model = keras_hub.models.ImageClassifier.from_preset("vgg_19_imagenet")
|
51 |
|
52 |
# User Timm presets directly from HuggingFace
|
53 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/vgg11.tv_in1k')
|
|
|
59 |
input_data = np.ones(shape=(2, 224, 224, 3))
|
60 |
|
61 |
# Pretrained backbone
|
62 |
+
model = keras_hub.models.VGGBackbone.from_preset("hf://keras/vgg_19_imagenet")
|
63 |
model(input_data)
|
64 |
|
65 |
# Randomly initialized backbone with a custom config
|
|
|
70 |
model(input_data)
|
71 |
|
72 |
# Use VGG for image classification task
|
73 |
+
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/vgg_19_imagenet")
|
74 |
|
75 |
# User Timm presets directly from HuggingFace
|
76 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/vgg11.tv_in1k')
|