---
tags:
- yolov5
- yolo
- vision
- object-detection
- pytorch
library_name: yolov5
library_version: 7.0.6
inference: false
datasets:
- keremberke/forklift-object-detection
model-index:
- name: keremberke/yolov5m-forklift
results:
- task:
type: object-detection
dataset:
type: keremberke/forklift-object-detection
name: keremberke/forklift-object-detection
split: validation
metrics:
- type: precision # since mAP@0.5 is not available on hf.co/metrics
value: 0.8515819366709647 # min: 0.0 - max: 1.0
name: mAP@0.5
---
### How to use
- Install [yolov5](https://github.com/fcakyon/yolov5-pip):
```bash
pip install -U yolov5
```
- Load model and perform prediction:
```python
import yolov5
# load model
model = yolov5.load('keremberke/yolov5m-forklift')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model(img, size=640)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
```
- Finetune the model on your custom dataset:
```bash
yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5m-forklift --epochs 10
```
**More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**