keremberke
commited on
Commit
•
137b7b8
1
Parent(s):
0842328
add ultralytics model card
Browse files
README.md
CHANGED
@@ -8,8 +8,9 @@ tags:
|
|
8 |
- vision
|
9 |
- object-detection
|
10 |
- pytorch
|
|
|
11 |
library_name: ultralytics
|
12 |
-
library_version: 8.0.
|
13 |
inference: false
|
14 |
|
15 |
datasets:
|
@@ -28,7 +29,7 @@ model-index:
|
|
28 |
|
29 |
metrics:
|
30 |
- type: precision # since mAP@0.5 is not available on hf.co/metrics
|
31 |
-
value: 0.
|
32 |
name: mAP@0.5(box)
|
33 |
---
|
34 |
|
@@ -44,16 +45,16 @@ model-index:
|
|
44 |
|
45 |
### How to use
|
46 |
|
47 |
-
- Install [
|
48 |
|
49 |
```bash
|
50 |
-
pip install -U
|
51 |
```
|
52 |
|
53 |
- Load model and perform prediction:
|
54 |
|
55 |
```python
|
56 |
-
from ultralyticsplus import YOLO,
|
57 |
|
58 |
# load model
|
59 |
model = YOLO('keremberke/yolov8n-forklift-detection')
|
@@ -68,9 +69,11 @@ model.overrides['max_det'] = 1000 # maximum number of detections per image
|
|
68 |
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
|
69 |
|
70 |
# perform inference
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
```
|
76 |
|
|
|
8 |
- vision
|
9 |
- object-detection
|
10 |
- pytorch
|
11 |
+
|
12 |
library_name: ultralytics
|
13 |
+
library_version: 8.0.8
|
14 |
inference: false
|
15 |
|
16 |
datasets:
|
|
|
29 |
|
30 |
metrics:
|
31 |
- type: precision # since mAP@0.5 is not available on hf.co/metrics
|
32 |
+
value: 0.41547 # min: 0.0 - max: 1.0
|
33 |
name: mAP@0.5(box)
|
34 |
---
|
35 |
|
|
|
45 |
|
46 |
### How to use
|
47 |
|
48 |
+
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
|
49 |
|
50 |
```bash
|
51 |
+
pip install -U ultralyticsplus
|
52 |
```
|
53 |
|
54 |
- Load model and perform prediction:
|
55 |
|
56 |
```python
|
57 |
+
from ultralyticsplus import YOLO, render_result
|
58 |
|
59 |
# load model
|
60 |
model = YOLO('keremberke/yolov8n-forklift-detection')
|
|
|
69 |
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
|
70 |
|
71 |
# perform inference
|
72 |
+
results = model.predict(image)
|
73 |
+
|
74 |
+
# observe results
|
75 |
+
print(results[0].boxes)
|
76 |
+
render = render_result(model=model, image=image, result=results[0])
|
77 |
+
render.show()
|
78 |
```
|
79 |
|