Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: deepseek-ai/deepseek-coder-1.3b-base
|
4 |
+
tags:
|
5 |
+
- axolotl
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: deepseek-coder-1.3b-typescript
|
9 |
+
results: []
|
10 |
+
datasets:
|
11 |
+
- bigcode/the-stack-dedup
|
12 |
+
widget:
|
13 |
+
- text: "class Person {\n constructor(public name:"
|
14 |
+
example_title: "class"
|
15 |
+
- text: "function quickSort"
|
16 |
+
example_title: "function"
|
17 |
+
---
|
18 |
+
|
19 |
+
<p align="center">
|
20 |
+
<img width="1000px" alt="CodeGPT: DeepSeek Coder - Typescript" src="codegpt-deepseek-typescript.png?raw=true">
|
21 |
+
</p>
|
22 |
+
<p align="center"><a href="https://codegpt.co/">[CodeGPT.co]</a> | <a href="https://ollama.ai/codegpt/deepseek-coder-1.3b-typescript">[🦙 Ollama]</a> | <a href="https://discord.gg/fKyyJX5pne">[Discord]</a> | <a href="https://marketplace.visualstudio.com/items?itemName=DanielSanMedium.dscodegpt">[VSCode Extension]</a> </p>
|
23 |
+
<hr>
|
24 |
+
|
25 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
26 |
+
<details><summary>See axolotl config</summary>
|
27 |
+
|
28 |
+
axolotl version: `0.3.0`
|
29 |
+
```yaml
|
30 |
+
base_model: deepseek-ai/deepseek-coder-1.3b-base
|
31 |
+
model_type: AutoModelForCausalLM
|
32 |
+
trust_remote_code: true
|
33 |
+
load_in_8bit: false
|
34 |
+
load_in_4bit: false
|
35 |
+
strict: false
|
36 |
+
|
37 |
+
|
38 |
+
datasets:
|
39 |
+
- path: CodeGPTPlus/typescript-0-500000-seq1024
|
40 |
+
type: completion
|
41 |
+
field: text
|
42 |
+
|
43 |
+
|
44 |
+
val_set_size: 0.001
|
45 |
+
output_dir: ./fft-out
|
46 |
+
|
47 |
+
sequence_len: 1024
|
48 |
+
|
49 |
+
adapter:
|
50 |
+
lora_model_dir:
|
51 |
+
lora_r:
|
52 |
+
lora_alpha:
|
53 |
+
lora_dropout:
|
54 |
+
lora_target_linear:
|
55 |
+
lora_fan_in_fan_out:
|
56 |
+
lora_modules_to_save:
|
57 |
+
|
58 |
+
wandb_project: deepseek_1.3_fft
|
59 |
+
wandb_entity:
|
60 |
+
wandb_watch:
|
61 |
+
wandb_name: aws_a10g
|
62 |
+
wandb_log_model: end
|
63 |
+
|
64 |
+
|
65 |
+
gradient_accumulation_steps: 2
|
66 |
+
micro_batch_size: 20
|
67 |
+
num_epochs: 1
|
68 |
+
optimizer: adamw_bnb_8bit
|
69 |
+
adam_beta1: 0.9
|
70 |
+
adam_beta2: 0.999
|
71 |
+
adam_epsilon: 0.000001
|
72 |
+
max_grad_norm: 1.0
|
73 |
+
weight_decay: 0.1
|
74 |
+
lr_scheduler: cosine
|
75 |
+
learning_rate: 0.00002
|
76 |
+
train_on_inputs: false
|
77 |
+
group_by_length: false
|
78 |
+
bf16: true
|
79 |
+
fp16: false
|
80 |
+
tf32: false
|
81 |
+
gradient_checkpointing: true
|
82 |
+
early_stopping_patience:
|
83 |
+
resume_from_checkpoint:
|
84 |
+
local_rank:
|
85 |
+
logging_steps: 1
|
86 |
+
xformers_attention:
|
87 |
+
flash_attention: true
|
88 |
+
|
89 |
+
loss_watchdog_threshold: 5.0
|
90 |
+
loss_watchdog_patience: 3
|
91 |
+
|
92 |
+
hub_model_id: CodeGPTPlus/deepseek_coder_1.3b_typescript
|
93 |
+
hub_strategy: every_save
|
94 |
+
warmup_ratio: 0.01
|
95 |
+
evals_per_epoch: 20
|
96 |
+
saves_per_epoch: 3
|
97 |
+
debug:
|
98 |
+
deepspeed:
|
99 |
+
|
100 |
+
fsdp:
|
101 |
+
fsdp_config:
|
102 |
+
special_tokens:
|
103 |
+
bos_token: "<|begin▁of▁sentence|>"
|
104 |
+
eos_token: "<|end▁of▁sentence|>"
|
105 |
+
pad_token: "<|end▁of▁sentence|>"
|
106 |
+
```
|
107 |
+
|
108 |
+
</details><br>
|
109 |
+
|
110 |
+
# deepseek-coder-1.3b-typescript
|
111 |
+
|
112 |
+
CodeGPTPlus/deepseek-coder-1.3b-typescript, emerges as a fine-tuned iteration of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base), meticulously crafted by the CodeGPT team to excel in generating expert code in TypeScript. With specific fine-tuning for TypeScript and a dataset of 0.5B tokens, this model excels in producing precise and efficient solutions in this programming language.
|
113 |
+
|
114 |
+
The 16K window size and an additional fill-in-the-middle task are employed to deliver project-level code completion.
|
115 |
+
|
116 |
+
This new model stands as the ideal choice for those seeking a specialized code generator for TypeScript, backed by the expertise of the CodeGPT team.
|
117 |
+
|
118 |
+
It achieves the following results on the evaluation set:
|
119 |
+
- Loss: 0.7681
|
120 |
+
|
121 |
+
**Model Developers** CodeGPT Team
|
122 |
+
|
123 |
+
**Variations** 1.3B
|
124 |
+
|
125 |
+
**Input** Models input text only.
|
126 |
+
|
127 |
+
**Output** Models generate text only.
|
128 |
+
|
129 |
+
## How to Use
|
130 |
+
This model is for completion purposes only. Here give some examples of how to use the model.
|
131 |
+
|
132 |
+
#### Running the model on a GPU
|
133 |
+
```python
|
134 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained("CodeGPTPlus/deepseek-coder-1.3b-typescript",
|
136 |
+
trust_remote_code=True)
|
137 |
+
model = AutoModelForCausalLM.from_pretrained("CodeGPTPlus/deepseek-coder-1.3b-typescript",
|
138 |
+
trust_remote_code=True).cuda()
|
139 |
+
|
140 |
+
input_text = """<|fim▁begin|>function quickSort(arr: number[]): number[] {
|
141 |
+
if (arr.length <= 1) {
|
142 |
+
return arr;
|
143 |
+
}
|
144 |
+
const pivot = arr[0];
|
145 |
+
const left = [];
|
146 |
+
const right = [];
|
147 |
+
<|fim▁hole|>
|
148 |
+
return [...quickSort(left), pivot, ...quickSort(right)];
|
149 |
+
}<|fim▁end|>"""
|
150 |
+
|
151 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
152 |
+
outputs = model.generate(**inputs, max_length=256)
|
153 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
154 |
+
```
|
155 |
+
|
156 |
+
### Running with Ollama
|
157 |
+
**Model:** https://ollama.ai/codegpt/deepseek-coder-1.3b-typescript
|
158 |
+
|
159 |
+
```ollama run codegpt/deepseek-coder-1.3b-typescript```
|
160 |
+
|
161 |
+
### Running with Ollama and CodeGPT Autocomplete in VSCode
|
162 |
+
|
163 |
+
**Documentation:** https://docs.codegpt.co/docs/tutorial-features/code_autocompletion
|
164 |
+
|
165 |
+
Select "Ollama - codegpt/deepseek-coder-1.3b-typescript" in the autocomplete model selector.
|
166 |
+
|
167 |
+
Then, write any code or comment in the vscode text editor, and the model will provide you with code suggestions through the CodeGPT code autocomplete.
|
168 |
+
|
169 |
+
<img width="1000px" alt="CodeGPT: DeepSeek Coder - Typescript" src="ollama_autocomplete_codegpt.gif">
|
170 |
+
|
171 |
+
### Fill In the Middle (FIM)
|
172 |
+
```python
|
173 |
+
<|fim▁begin|>function quickSort(arr: number[]): number[] {
|
174 |
+
if (arr.length <= 1) {
|
175 |
+
return arr;
|
176 |
+
}
|
177 |
+
const pivot = arr[0];
|
178 |
+
const left = [];
|
179 |
+
const right = [];
|
180 |
+
<|fim▁hole|>
|
181 |
+
return [...quickSort(left), pivot, ...quickSort(right)];
|
182 |
+
}<|fim▁end|>
|
183 |
+
```
|
184 |
+
|
185 |
+
## Training procedure
|
186 |
+
|
187 |
+
### Training hyperparameters
|
188 |
+
|
189 |
+
The following hyperparameters were used during training:
|
190 |
+
- learning_rate: 2e-05
|
191 |
+
- train_batch_size: 20
|
192 |
+
- eval_batch_size: 20
|
193 |
+
- seed: 42
|
194 |
+
- gradient_accumulation_steps: 2
|
195 |
+
- total_train_batch_size: 40
|
196 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
197 |
+
- lr_scheduler_type: cosine
|
198 |
+
- lr_scheduler_warmup_steps: 261
|
199 |
+
- num_epochs: 1
|
200 |
+
|
201 |
+
### Training results
|
202 |
+
|
203 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
204 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
205 |
+
| 1.0745 | 0.0 | 1 | 0.8681 |
|
206 |
+
| 1.2267 | 0.05 | 1308 | 0.8130 |
|
207 |
+
| 1.1594 | 0.1 | 2616 | 0.8018 |
|
208 |
+
| 0.7674 | 0.15 | 3924 | 0.7942 |
|
209 |
+
| 0.6443 | 0.2 | 5232 | 0.7889 |
|
210 |
+
| 0.9155 | 0.25 | 6540 | 0.7847 |
|
211 |
+
| 0.7501 | 0.3 | 7848 | 0.7819 |
|
212 |
+
| 0.8835 | 0.35 | 9156 | 0.7792 |
|
213 |
+
| 0.7261 | 0.4 | 10464 | 0.7769 |
|
214 |
+
| 0.9746 | 0.45 | 11772 | 0.7748 |
|
215 |
+
| 0.6884 | 0.5 | 13080 | 0.7734 |
|
216 |
+
| 0.6104 | 0.55 | 14388 | 0.7722 |
|
217 |
+
| 0.8876 | 0.6 | 15696 | 0.7710 |
|
218 |
+
| 0.9567 | 0.65 | 17004 | 0.7703 |
|
219 |
+
| 0.6915 | 0.7 | 18312 | 0.7696 |
|
220 |
+
| 0.8874 | 0.75 | 19620 | 0.7691 |
|
221 |
+
| 0.6124 | 0.8 | 20928 | 0.7686 |
|
222 |
+
| 0.8147 | 0.85 | 22236 | 0.7684 |
|
223 |
+
| 0.8021 | 0.9 | 23544 | 0.7683 |
|
224 |
+
| 0.8665 | 0.95 | 24852 | 0.7681 |
|
225 |
+
|
226 |
+
|
227 |
+
### Framework versions
|
228 |
+
|
229 |
+
- Transformers 4.37.0.dev0
|
230 |
+
- Pytorch 2.0.1+cu118
|
231 |
+
- Datasets 2.16.1
|
232 |
+
- Tokenizers 0.15.0
|