Delete layout-fine-tune.ipynb
Browse files- layout-fine-tune.ipynb +0 -187
layout-fine-tune.ipynb
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# Loading Packages"
|
8 |
-
]
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"cell_type": "code",
|
12 |
-
"execution_count": null,
|
13 |
-
"metadata": {},
|
14 |
-
"outputs": [],
|
15 |
-
"source": [
|
16 |
-
"import os\n",
|
17 |
-
"import torch\n",
|
18 |
-
"import torch.nn as nn\n",
|
19 |
-
"import torch.optim as optim\n",
|
20 |
-
"from torch.utils.data import DataLoader\n",
|
21 |
-
"# from transformers import SegformerConfig\n",
|
22 |
-
"# from surya.model.detection.segformer import SegformerForRegressionMask\n",
|
23 |
-
"from surya.input.processing import prepare_image_detection\n",
|
24 |
-
"from surya.model.detection.segformer import load_processor , load_model\n",
|
25 |
-
"from datasets import load_dataset\n",
|
26 |
-
"from tqdm import tqdm\n",
|
27 |
-
"from torch.utils.tensorboard import SummaryWriter\n",
|
28 |
-
"import torch.nn.functional as F\n",
|
29 |
-
"import numpy as np \n",
|
30 |
-
"from surya.layout import parallel_get_regions"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"cell_type": "markdown",
|
35 |
-
"metadata": {},
|
36 |
-
"source": [
|
37 |
-
"# Initializing The Dataset And Model"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "code",
|
42 |
-
"execution_count": null,
|
43 |
-
"metadata": {},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
47 |
-
"dataset = load_dataset(\"vikp/publaynet_bench\", split=\"train[:100]\") # You can choose you own dataset\n",
|
48 |
-
"model = load_model(\"vikp/surya_layout2\") "
|
49 |
-
]
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"cell_type": "markdown",
|
53 |
-
"metadata": {},
|
54 |
-
"source": [
|
55 |
-
"# Helper Functions, Loss Function And Optimizer"
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": null,
|
61 |
-
"metadata": {},
|
62 |
-
"outputs": [],
|
63 |
-
"source": [
|
64 |
-
"\n",
|
65 |
-
"optimizer = optim.Adam(model.parameters(), lr=0.00001)\n",
|
66 |
-
"log_dir = \"logs\"\n",
|
67 |
-
"checkpoint_dir = \"checkpoints\"\n",
|
68 |
-
"os.makedirs(log_dir, exist_ok=True)\n",
|
69 |
-
"os.makedirs(checkpoint_dir, exist_ok=True)\n",
|
70 |
-
"writer = SummaryWriter(log_dir=log_dir)\n",
|
71 |
-
"\n",
|
72 |
-
"def logits_to_bboxes(logits,image) : # This function is useful for converting the logits(mask) into bounding boxes.(The model does not provide bounding boxes.)\n",
|
73 |
-
" correct_shape = (300, 300) \n",
|
74 |
-
" logits_temp = F.interpolate(logits, size=correct_shape, mode='bilinear', align_corners=False)\n",
|
75 |
-
" logits_temp = logits_temp.cpu().detach().numpy().astype(np.float32)\n",
|
76 |
-
"\n",
|
77 |
-
" heatmap_count = logits_temp.shape[1]\n",
|
78 |
-
" heatmaps = [logits_temp[i][k] for i in range(logits_temp.shape[0]) for k in range(heatmap_count)]\n",
|
79 |
-
" regions = parallel_get_regions(heatmaps=heatmaps, orig_size=image.size, id2label=model.config.id2label)\n",
|
80 |
-
"\n",
|
81 |
-
" final_bboxes = []\n",
|
82 |
-
" for i in regions.bboxes :\n",
|
83 |
-
" final_bboxes.append(i.bbox)\n",
|
84 |
-
" return final_bboxes\n",
|
85 |
-
"\n",
|
86 |
-
"\n",
|
87 |
-
"def loss_function(): # This model does not have inbuild loss function, So we have to define it according to our dataset and the Requirements.\n",
|
88 |
-
" pass"
|
89 |
-
]
|
90 |
-
},
|
91 |
-
{
|
92 |
-
"cell_type": "markdown",
|
93 |
-
"metadata": {},
|
94 |
-
"source": [
|
95 |
-
"# Fine-Tuning Process"
|
96 |
-
]
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"cell_type": "code",
|
100 |
-
"execution_count": null,
|
101 |
-
"metadata": {},
|
102 |
-
"outputs": [],
|
103 |
-
"source": [
|
104 |
-
"num_epochs = 5\n",
|
105 |
-
"for epoch in range(num_epochs):\n",
|
106 |
-
" model.train()\n",
|
107 |
-
" running_loss = 0.0\n",
|
108 |
-
" avg_loss = 0.0\n",
|
109 |
-
"\n",
|
110 |
-
" for idx, item in enumerate(tqdm(dataset, desc=f\"Epoch {epoch + 1}/{num_epochs}\")):\n",
|
111 |
-
"\n",
|
112 |
-
" images = [prepare_image_detection(img=item['image'], processor=load_processor())]\n",
|
113 |
-
" images = torch.stack(images, dim=0).to(model.dtype).to(model.device)\n",
|
114 |
-
" \n",
|
115 |
-
" optimizer.zero_grad()\n",
|
116 |
-
" outputs = model(pixel_values=images)\n",
|
117 |
-
"\n",
|
118 |
-
" predicted_boxes = logits_to_bboxes(outputs.logits, item['image'])\n",
|
119 |
-
" target_boxes = item['bboxes']\n",
|
120 |
-
"\n",
|
121 |
-
" loss = loss_function(predicted_boxes,target_boxes)\n",
|
122 |
-
"\n",
|
123 |
-
" loss.backward()\n",
|
124 |
-
" optimizer.step()\n",
|
125 |
-
" running_loss += loss.item()\n",
|
126 |
-
"\n",
|
127 |
-
" avg_loss = 0.9 * avg_loss + 0.1 * loss.item() if idx > 0 else loss.item()\n",
|
128 |
-
"\n",
|
129 |
-
" avg_loss = running_loss / len(dataset)\n",
|
130 |
-
" writer.add_scalar('Training Loss', avg_loss, epoch + 1)\n",
|
131 |
-
" print(f\"Average Loss for Epoch {epoch + 1}: {avg_loss:.4f}\")\n",
|
132 |
-
"\n",
|
133 |
-
" torch.save(model.state_dict(), os.path.join(checkpoint_dir, f\"model_epoch_{epoch + 1}.pth\"))"
|
134 |
-
]
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"cell_type": "markdown",
|
138 |
-
"metadata": {},
|
139 |
-
"source": [
|
140 |
-
"# Loading The Checkpoint "
|
141 |
-
]
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"cell_type": "code",
|
145 |
-
"execution_count": null,
|
146 |
-
"metadata": {},
|
147 |
-
"outputs": [],
|
148 |
-
"source": [
|
149 |
-
"checkpoint_path = 'checkpoints/model_epoch_350.pth' \n",
|
150 |
-
"state_dict = torch.load(checkpoint_path,weights_only=True)\n",
|
151 |
-
"\n",
|
152 |
-
"model.load_state_dict(state_dict)"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "code",
|
157 |
-
"execution_count": null,
|
158 |
-
"metadata": {},
|
159 |
-
"outputs": [],
|
160 |
-
"source": [
|
161 |
-
"model.to('cpu')\n",
|
162 |
-
"model.save_pretrained(\"fine-tuned-surya-model-layout\")"
|
163 |
-
]
|
164 |
-
}
|
165 |
-
],
|
166 |
-
"metadata": {
|
167 |
-
"kernelspec": {
|
168 |
-
"display_name": "Python 3",
|
169 |
-
"language": "python",
|
170 |
-
"name": "python3"
|
171 |
-
},
|
172 |
-
"language_info": {
|
173 |
-
"codemirror_mode": {
|
174 |
-
"name": "ipython",
|
175 |
-
"version": 3
|
176 |
-
},
|
177 |
-
"file_extension": ".py",
|
178 |
-
"mimetype": "text/x-python",
|
179 |
-
"name": "python",
|
180 |
-
"nbconvert_exporter": "python",
|
181 |
-
"pygments_lexer": "ipython3",
|
182 |
-
"version": "3.10.14"
|
183 |
-
}
|
184 |
-
},
|
185 |
-
"nbformat": 4,
|
186 |
-
"nbformat_minor": 2
|
187 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|