Model save
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -46,49 +46,81 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:------:|:-----:|:---------------:|
|
49 |
-
| 0.
|
50 |
-
| 0.
|
51 |
-
| 0.
|
52 |
-
| 0.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.8028
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:------:|:-----:|:---------------:|
|
49 |
+
| 0.4667 | 0.0533 | 500 | 1.4426 |
|
50 |
+
| 0.4532 | 0.1067 | 1000 | 1.3816 |
|
51 |
+
| 0.3749 | 0.1600 | 1500 | 1.3311 |
|
52 |
+
| 0.336 | 0.2133 | 2000 | 1.2891 |
|
53 |
+
| 0.3585 | 0.2666 | 2500 | 1.2536 |
|
54 |
+
| 0.303 | 0.3200 | 3000 | 1.2203 |
|
55 |
+
| 0.3242 | 0.3733 | 3500 | 1.1956 |
|
56 |
+
| 0.2427 | 0.4266 | 4000 | 1.1694 |
|
57 |
+
| 0.2993 | 0.4799 | 4500 | 1.1456 |
|
58 |
+
| 0.3183 | 0.5333 | 5000 | 1.1201 |
|
59 |
+
| 0.307 | 0.5866 | 5500 | 1.0982 |
|
60 |
+
| 0.2638 | 0.6399 | 6000 | 1.0780 |
|
61 |
+
| 0.2226 | 0.6933 | 6500 | 1.0613 |
|
62 |
+
| 0.2453 | 0.7466 | 7000 | 1.0444 |
|
63 |
+
| 0.272 | 0.7999 | 7500 | 1.0301 |
|
64 |
+
| 0.283 | 0.8532 | 8000 | 1.0167 |
|
65 |
+
| 0.2331 | 0.9066 | 8500 | 1.0035 |
|
66 |
+
| 0.2362 | 0.9599 | 9000 | 0.9925 |
|
67 |
+
| 0.2396 | 1.0132 | 9500 | 0.9830 |
|
68 |
+
| 0.2013 | 1.0666 | 10000 | 0.9736 |
|
69 |
+
| 0.2082 | 1.1199 | 10500 | 0.9639 |
|
70 |
+
| 0.2023 | 1.1732 | 11000 | 0.9558 |
|
71 |
+
| 0.2331 | 1.2265 | 11500 | 0.9465 |
|
72 |
+
| 0.1784 | 1.2799 | 12000 | 0.9392 |
|
73 |
+
| 0.1953 | 1.3332 | 12500 | 0.9316 |
|
74 |
+
| 0.1867 | 1.3865 | 13000 | 0.9270 |
|
75 |
+
| 0.22 | 1.4398 | 13500 | 0.9197 |
|
76 |
+
| 0.1656 | 1.4932 | 14000 | 0.9148 |
|
77 |
+
| 0.1968 | 1.5465 | 14500 | 0.9096 |
|
78 |
+
| 0.1676 | 1.5998 | 15000 | 0.9057 |
|
79 |
+
| 0.2074 | 1.6532 | 15500 | 0.8994 |
|
80 |
+
| 0.1847 | 1.7065 | 16000 | 0.8954 |
|
81 |
+
| 0.1845 | 1.7598 | 16500 | 0.8900 |
|
82 |
+
| 0.1721 | 1.8131 | 17000 | 0.8873 |
|
83 |
+
| 0.2627 | 1.8665 | 17500 | 0.8810 |
|
84 |
+
| 0.1623 | 1.9198 | 18000 | 0.8774 |
|
85 |
+
| 0.2162 | 1.9731 | 18500 | 0.8713 |
|
86 |
+
| 0.1802 | 2.0265 | 19000 | 0.8679 |
|
87 |
+
| 0.179 | 2.0798 | 19500 | 0.8633 |
|
88 |
+
| 0.1549 | 2.1331 | 20000 | 0.8606 |
|
89 |
+
| 0.1742 | 2.1864 | 20500 | 0.8585 |
|
90 |
+
| 0.1448 | 2.2398 | 21000 | 0.8546 |
|
91 |
+
| 0.2066 | 2.2931 | 21500 | 0.8513 |
|
92 |
+
| 0.1483 | 2.3464 | 22000 | 0.8481 |
|
93 |
+
| 0.1813 | 2.3997 | 22500 | 0.8447 |
|
94 |
+
| 0.1617 | 2.4531 | 23000 | 0.8411 |
|
95 |
+
| 0.1664 | 2.5064 | 23500 | 0.8394 |
|
96 |
+
| 0.1786 | 2.5597 | 24000 | 0.8358 |
|
97 |
+
| 0.1465 | 2.6131 | 24500 | 0.8330 |
|
98 |
+
| 0.1289 | 2.6664 | 25000 | 0.8314 |
|
99 |
+
| 0.1662 | 2.7197 | 25500 | 0.8296 |
|
100 |
+
| 0.1463 | 2.7730 | 26000 | 0.8262 |
|
101 |
+
| 0.1471 | 2.8264 | 26500 | 0.8249 |
|
102 |
+
| 0.167 | 2.8797 | 27000 | 0.8219 |
|
103 |
+
| 0.1268 | 2.9330 | 27500 | 0.8204 |
|
104 |
+
| 0.177 | 2.9863 | 28000 | 0.8177 |
|
105 |
+
| 0.1206 | 3.0397 | 28500 | 0.8166 |
|
106 |
+
| 0.1345 | 3.0930 | 29000 | 0.8156 |
|
107 |
+
| 0.1907 | 3.1463 | 29500 | 0.8144 |
|
108 |
+
| 0.1395 | 3.1997 | 30000 | 0.8126 |
|
109 |
+
| 0.1511 | 3.2530 | 30500 | 0.8112 |
|
110 |
+
| 0.1334 | 3.3063 | 31000 | 0.8102 |
|
111 |
+
| 0.1799 | 3.3596 | 31500 | 0.8090 |
|
112 |
+
| 0.1289 | 3.4130 | 32000 | 0.8081 |
|
113 |
+
| 0.1545 | 3.4663 | 32500 | 0.8072 |
|
114 |
+
| 0.1705 | 3.5196 | 33000 | 0.8064 |
|
115 |
+
| 0.1424 | 3.5730 | 33500 | 0.8055 |
|
116 |
+
| 0.1873 | 3.6263 | 34000 | 0.8048 |
|
117 |
+
| 0.1432 | 3.6796 | 34500 | 0.8043 |
|
118 |
+
| 0.1485 | 3.7329 | 35000 | 0.8037 |
|
119 |
+
| 0.1286 | 3.7863 | 35500 | 0.8033 |
|
120 |
+
| 0.1469 | 3.8396 | 36000 | 0.8030 |
|
121 |
+
| 0.1708 | 3.8929 | 36500 | 0.8029 |
|
122 |
+
| 0.1226 | 3.9462 | 37000 | 0.8028 |
|
123 |
+
| 0.1549 | 3.9996 | 37500 | 0.8028 |
|
124 |
|
125 |
|
126 |
### Framework versions
|