--- library_name: transformers base_model: openai/clip-vit-large-patch14-336 tags: - generated_from_trainer model-index: - name: clip-finetuned-csu-p14-336-e4l58-l results: [] --- # clip-finetuned-csu-p14-336-e4l58-l This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2009578191195431e-08 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.4588 | 0.0921 | 500 | 1.4195 | | 0.4255 | 0.1842 | 1000 | 1.3417 | | 0.3724 | 0.2763 | 1500 | 1.2873 | | 0.3251 | 0.3684 | 2000 | 1.2349 | | 0.3308 | 0.4605 | 2500 | 1.1945 | | 0.3017 | 0.5526 | 3000 | 1.1593 | | 0.2962 | 0.6447 | 3500 | 1.1259 | | 0.2919 | 0.7368 | 4000 | 1.0954 | | 0.307 | 0.8289 | 4500 | 1.0729 | | 0.2764 | 0.9210 | 5000 | 1.0524 | | 0.2456 | 1.0131 | 5500 | 1.0375 | | 0.2642 | 1.1052 | 6000 | 1.0233 | | 0.2066 | 1.1973 | 6500 | 1.0104 | | 0.2376 | 1.2894 | 7000 | 0.9984 | | 0.1931 | 1.3815 | 7500 | 0.9887 | | 0.2163 | 1.4736 | 8000 | 0.9767 | | 0.1903 | 1.5657 | 8500 | 0.9665 | | 0.2069 | 1.6578 | 9000 | 0.9572 | | 0.2093 | 1.7499 | 9500 | 0.9497 | | 0.2523 | 1.8420 | 10000 | 0.9420 | | 0.2127 | 1.9341 | 10500 | 0.9329 | | 0.1968 | 2.0262 | 11000 | 0.9270 | | 0.1879 | 2.1183 | 11500 | 0.9231 | | 0.1981 | 2.2104 | 12000 | 0.9184 | | 0.1964 | 2.3024 | 12500 | 0.9135 | | 0.1697 | 2.3945 | 13000 | 0.9100 | | 0.2015 | 2.4866 | 13500 | 0.9052 | | 0.1827 | 2.5787 | 14000 | 0.9026 | | 0.1435 | 2.6708 | 14500 | 0.8998 | | 0.1541 | 2.7629 | 15000 | 0.8963 | | 0.1716 | 2.8550 | 15500 | 0.8935 | | 0.2056 | 2.9471 | 16000 | 0.8905 | | 0.1843 | 3.0392 | 16500 | 0.8875 | | 0.1611 | 3.1313 | 17000 | 0.8858 | | 0.1568 | 3.2240 | 17500 | 0.7821 | | 0.1395 | 3.3161 | 18000 | 0.7794 | | 0.1804 | 3.4083 | 18500 | 0.7778 | | 0.1728 | 3.5004 | 19000 | 0.7769 | | 0.179 | 3.5925 | 19500 | 0.7758 | | 0.179 | 3.6846 | 20000 | 0.7752 | | 0.1454 | 3.7767 | 20500 | 0.7747 | | 0.1568 | 3.8688 | 21000 | 0.7744 | | 0.1663 | 3.9609 | 21500 | 0.7743 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 1.12.1 - Datasets 2.21.0 - Tokenizers 0.19.1