File size: 16,109 Bytes
925ec43 c9bda61 925ec43 c9bda61 925ec43 c9bda61 925ec43 c9bda61 925ec43 c9bda61 9c5009a 925ec43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import os
import time
import pdb
import re
import gradio as gr
import spaces
import numpy as np
import sys
import subprocess
from huggingface_hub import snapshot_download
import requests
import argparse
import os
from omegaconf import OmegaConf
import numpy as np
import cv2
import torch
import glob
import pickle
from tqdm import tqdm
import copy
from argparse import Namespace
import shutil
import gdown
import imageio
import ffmpeg
from moviepy.editor import *
ProjectDir = os.path.abspath(os.path.dirname(__file__))
CheckpointsDir = os.path.join(ProjectDir, "models")
def print_directory_contents(path):
for child in os.listdir(path):
child_path = os.path.join(path, child)
if os.path.isdir(child_path):
print(child_path)
def download_model():
if not os.path.exists(CheckpointsDir):
os.makedirs(CheckpointsDir)
print("Checkpoint Not Downloaded, start downloading...")
tic = time.time()
snapshot_download(
repo_id="TMElyralab/MuseTalk",
local_dir=CheckpointsDir,
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
# weight
os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/")
snapshot_download(
repo_id="stabilityai/sd-vae-ft-mse",
local_dir=CheckpointsDir+'/sd-vae-ft-mse',
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
#dwpose
os.makedirs(f"{CheckpointsDir}/dwpose/")
snapshot_download(
repo_id="yzd-v/DWPose",
local_dir=CheckpointsDir+'/dwpose',
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
#vae
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 指定文件保存的位置
file_path = f"{CheckpointsDir}/whisper/tiny.pt"
os.makedirs(f"{CheckpointsDir}/whisper/")
# 将文件内容写入指定位置
with open(file_path, "wb") as f:
f.write(response.content)
else:
print(f"请求失败,状态码:{response.status_code}")
#gdown face parse
url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812"
os.makedirs(f"{CheckpointsDir}/face-parse-bisent/")
file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth"
gdown.download(url, file_path, quiet=False)
#resnet
url = "https://download.pytorch.org/models/resnet18-5c106cde.pth"
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 指定文件保存的位置
file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth"
# 将文件内容写入指定位置
with open(file_path, "wb") as f:
f.write(response.content)
else:
print(f"请求失败,状态码:{response.status_code}")
toc = time.time()
print(f"download cost {toc-tic} seconds")
print_directory_contents(CheckpointsDir)
else:
print("Already download the model.")
download_model() # for huggingface deployment.
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range
from musetalk.utils.blending import get_image
from musetalk.utils.utils import load_all_model
@spaces.GPU(duration=600)
@torch.no_grad()
def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)):
args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script
args = Namespace(**args_dict)
input_basename = os.path.basename(video_path).split('.')[0]
audio_basename = os.path.basename(audio_path).split('.')[0]
output_basename = f"{input_basename}_{audio_basename}"
result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input
os.makedirs(result_img_save_path,exist_ok =True)
if args.output_vid_name=="":
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4")
else:
output_vid_name = os.path.join(args.result_dir, args.output_vid_name)
############################################## extract frames from source video ##############################################
if get_file_type(video_path)=="video":
save_dir_full = os.path.join(args.result_dir, input_basename)
os.makedirs(save_dir_full,exist_ok = True)
# cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
# os.system(cmd)
# 读取视频
reader = imageio.get_reader(video_path)
# 保存图片
for i, im in enumerate(reader):
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im)
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
fps = get_video_fps(video_path)
else: # input img folder
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
fps = args.fps
#print(input_img_list)
############################################## extract audio feature ##############################################
whisper_feature = audio_processor.audio2feat(audio_path)
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
############################################## preprocess input image ##############################################
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
print("using extracted coordinates")
with open(crop_coord_save_path,'rb') as f:
coord_list = pickle.load(f)
frame_list = read_imgs(input_img_list)
else:
print("extracting landmarks...time consuming")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
with open(crop_coord_save_path, 'wb') as f:
pickle.dump(coord_list, f)
bbox_shift_text=get_bbox_range(input_img_list, bbox_shift)
i = 0
input_latent_list = []
for bbox, frame in zip(coord_list, frame_list):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(crop_frame)
input_latent_list.append(latents)
# to smooth the first and the last frame
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
############################################## inference batch by batch ##############################################
print("start inference")
video_num = len(whisper_chunks)
batch_size = args.batch_size
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size)
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384
audio_feature_batch = pe(audio_feature_batch)
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
############################################## pad to full image ##############################################
print("pad talking image to original video")
for i, res_frame in enumerate(tqdm(res_frame_list)):
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
# print(bbox)
continue
combine_frame = get_image(ori_frame,res_frame,bbox)
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
# cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p temp.mp4"
# print(cmd_img2video)
# os.system(cmd_img2video)
# 帧率
fps = 25
# 图片路径
# 输出视频路径
output_video = 'temp.mp4'
# 读取图片
def is_valid_image(file):
pattern = re.compile(r'\d{8}\.png')
return pattern.match(file)
images = []
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)]
files.sort(key=lambda x: int(x.split('.')[0]))
for file in files:
filename = os.path.join(result_img_save_path, file)
images.append(imageio.imread(filename))
# 保存视频
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p')
# cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}"
# print(cmd_combine_audio)
# os.system(cmd_combine_audio)
input_video = './temp.mp4'
# Check if the input_video and audio_path exist
if not os.path.exists(input_video):
raise FileNotFoundError(f"Input video file not found: {input_video}")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# 读取视频
reader = imageio.get_reader(input_video)
fps = reader.get_meta_data()['fps'] # 获取原视频的帧率
# 将帧存储在列表中
frames = images
# 保存视频并添加音频
# imageio.mimwrite(output_vid_name, frames, 'FFMPEG', fps=fps, codec='libx264', audio_codec='aac', input_params=['-i', audio_path])
# input_video = ffmpeg.input(input_video)
# input_audio = ffmpeg.input(audio_path)
print(len(frames))
# imageio.mimwrite(
# output_video,
# frames,
# 'FFMPEG',
# fps=25,
# codec='libx264',
# audio_codec='aac',
# input_params=['-i', audio_path],
# output_params=['-y'], # Add the '-y' flag to overwrite the output file if it exists
# )
# writer = imageio.get_writer(output_vid_name, fps = 25, codec='libx264', quality=10, pixelformat='yuvj444p')
# for im in frames:
# writer.append_data(im)
# writer.close()
# Load the video
video_clip = VideoFileClip(input_video)
# Load the audio
audio_clip = AudioFileClip(audio_path)
# Set the audio to the video
video_clip = video_clip.set_audio(audio_clip)
# Write the output video
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25)
os.remove("temp.mp4")
#shutil.rmtree(result_img_save_path)
print(f"result is save to {output_vid_name}")
return output_vid_name,bbox_shift_text
# load model weights
audio_processor,vae,unet,pe = load_all_model()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
timesteps = torch.tensor([0], device=device)
def check_video(video):
if not isinstance(video, str):
return video # in case of none type
# Define the output video file name
dir_path, file_name = os.path.split(video)
if file_name.startswith("outputxxx_"):
return video
# Add the output prefix to the file name
output_file_name = "outputxxx_" + file_name
os.makedirs('./results',exist_ok=True)
os.makedirs('./results/output',exist_ok=True)
os.makedirs('./results/input',exist_ok=True)
# Combine the directory path and the new file name
output_video = os.path.join('./results/input', output_file_name)
# # Run the ffmpeg command to change the frame rate to 25fps
# command = f"ffmpeg -i {video} -r 25 -vcodec libx264 -vtag hvc1 -pix_fmt yuv420p crf 18 {output_video} -y"
# read video
reader = imageio.get_reader(video)
fps = reader.get_meta_data()['fps'] # get fps from original video
# conver fps to 25
frames = [im for im in reader]
target_fps = 25
L = len(frames)
L_target = int(L / fps * target_fps)
original_t = [x / fps for x in range(1, L+1)]
t_idx = 0
target_frames = []
for target_t in range(1, L_target+1):
while target_t / target_fps > original_t[t_idx]:
t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx]
if t_idx >= L:
break
target_frames.append(frames[t_idx])
# save video
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p')
return output_video
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"<div align='center'> <h1>MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting </span> </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
</br>\
Yue Zhang <sup>\*</sup>,\
Minhao Liu<sup>\*</sup>,\
Zhaokang Chen,\
Bin Wu<sup>†</sup>,\
Yingjie He,\
Chao Zhan,\
Wenjiang Zhou\
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)\
Lyra Lab, Tencent Music Entertainment\
</h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\
<a style='font-size:18px;color: #000000' href=''> [Technical report(Coming Soon)] </a>\
<a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> </div>"
)
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Driven Audio",type="filepath")
video = gr.Video(label="Reference Video",sources=['upload'])
bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
bbox_shift_scale = gr.Textbox(label="BBox_shift recommend value lower bound,The corresponding bbox range is generated after the initial result is generated. \n If the result is not good, it can be adjusted according to this reference value", value="",interactive=False)
btn = gr.Button("Generate")
out1 = gr.Video()
video.change(
fn=check_video, inputs=[video], outputs=[video]
)
btn.click(
fn=inference,
inputs=[
audio,
video,
bbox_shift,
],
outputs=[out1,bbox_shift_scale]
)
# Set the IP and port
ip_address = "0.0.0.0" # Replace with your desired IP address
port_number = 7860 # Replace with your desired port number
demo.launch(
share=True #server_name=ip_address, server_port=port_number
) |