Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: green_as_train_context_roberta-large_20e
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# green_as_train_context_roberta-large_20e
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4371
|
19 |
+
- Val Accuracy: 0.8913
|
20 |
+
- Val Precision: 0.7554
|
21 |
+
- Val Recall: 0.5910
|
22 |
+
- Val F1: 0.6632
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-06
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 20
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Val Accuracy | Val Precision | Val Recall | Val F1 |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:-------------:|:----------:|:------:|
|
54 |
+
| 0.1908 | 1.0 | 1012 | 0.4035 | 0.8904 | 0.7844 | 0.5448 | 0.6430 |
|
55 |
+
| 0.152 | 2.0 | 2024 | 0.4631 | 0.8930 | 0.7440 | 0.6235 | 0.6784 |
|
56 |
+
| 0.12 | 3.0 | 3036 | 0.5046 | 0.8879 | 0.7028 | 0.6605 | 0.6810 |
|
57 |
+
| 0.0757 | 4.0 | 4048 | 0.7762 | 0.8902 | 0.7438 | 0.6003 | 0.6644 |
|
58 |
+
| 0.0557 | 5.0 | 5060 | 0.8961 | 0.8846 | 0.7273 | 0.5802 | 0.6455 |
|
59 |
+
| 0.0319 | 6.0 | 6072 | 0.8864 | 0.8916 | 0.7338 | 0.6296 | 0.6777 |
|
60 |
+
| 0.0235 | 7.0 | 7084 | 0.8025 | 0.8902 | 0.7348 | 0.6157 | 0.6700 |
|
61 |
+
| 0.0125 | 8.0 | 8096 | 1.1034 | 0.8916 | 0.7559 | 0.5926 | 0.6644 |
|
62 |
+
| 0.0114 | 9.0 | 9108 | 1.1414 | 0.8882 | 0.7422 | 0.5864 | 0.6552 |
|
63 |
+
| 0.0147 | 10.0 | 10120 | 1.2555 | 0.8902 | 0.7401 | 0.6065 | 0.6667 |
|
64 |
+
| 0.0068 | 11.0 | 11132 | 1.2923 | 0.8879 | 0.7526 | 0.5679 | 0.6473 |
|
65 |
+
| 0.0112 | 12.0 | 12144 | 1.3150 | 0.8890 | 0.8024 | 0.5139 | 0.6265 |
|
66 |
+
| 0.0059 | 13.0 | 13156 | 1.1883 | 0.8899 | 0.7396 | 0.6049 | 0.6655 |
|
67 |
+
| 0.0056 | 14.0 | 14168 | 1.3822 | 0.8871 | 0.7824 | 0.5216 | 0.6259 |
|
68 |
+
| 0.0029 | 15.0 | 15180 | 1.4309 | 0.8888 | 0.7741 | 0.5448 | 0.6395 |
|
69 |
+
| 0.0021 | 16.0 | 16192 | 1.3541 | 0.8916 | 0.7529 | 0.5972 | 0.6661 |
|
70 |
+
| 0.004 | 17.0 | 17204 | 1.3666 | 0.8907 | 0.7384 | 0.6142 | 0.6706 |
|
71 |
+
| 0.0022 | 18.0 | 18216 | 1.4396 | 0.8896 | 0.7525 | 0.5818 | 0.6562 |
|
72 |
+
| 0.0028 | 19.0 | 19228 | 1.4340 | 0.8910 | 0.7539 | 0.5910 | 0.6626 |
|
73 |
+
| 0.0001 | 20.0 | 20240 | 1.4371 | 0.8913 | 0.7554 | 0.5910 | 0.6632 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.38.2
|
79 |
+
- Pytorch 2.1.2
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|