--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - recall - f1 model-index: - name: non_green_as_train_context_roberta-large results: [] --- # non_green_as_train_context_roberta-large This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1773 - Accuracy: 0.9776 - Recall: 0.6993 - F1: 0.7021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 0.0584 | 1.0 | 7739 | 0.0916 | 0.9725 | 0.6942 | 0.6562 | | 0.0451 | 2.0 | 15478 | 0.0905 | 0.9773 | 0.6700 | 0.6902 | | 0.0296 | 3.0 | 23217 | 0.1112 | 0.9775 | 0.6912 | 0.6986 | | 0.0141 | 4.0 | 30956 | 0.1487 | 0.9759 | 0.7366 | 0.6979 | | 0.0102 | 5.0 | 38695 | 0.1773 | 0.9776 | 0.6993 | 0.7021 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2