kghanlon commited on
Commit
bfa00dd
1 Parent(s): 0485eba

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: non_green_as_train_contextroberta-large_final
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # non_green_as_train_contextroberta-large_final
19
+
20
+ This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1008
23
+ - Accuracy: 0.9769
24
+ - Recall: 0.6932
25
+ - F1: 0.6943
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 1e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 3
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|
57
+ | 0.0664 | 1.0 | 7739 | 0.0862 | 0.9658 | 0.8042 | 0.6396 |
58
+ | 0.0577 | 2.0 | 15478 | 0.1060 | 0.9768 | 0.6741 | 0.6869 |
59
+ | 0.0337 | 3.0 | 23217 | 0.1008 | 0.9769 | 0.6932 | 0.6943 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.38.2
65
+ - Pytorch 2.1.2
66
+ - Datasets 2.18.0
67
+ - Tokenizers 0.15.2