--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-tweet-disaster results: [] --- # bert-tweet-disaster This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9563 - Accuracy: 0.8320 - F1: 0.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.605 | 1.0 | 108 | 0.4455 | 0.8123 | 0.7741 | | 0.3878 | 2.0 | 216 | 0.3940 | 0.8438 | 0.8126 | | 0.3228 | 3.0 | 324 | 0.4441 | 0.8241 | 0.8006 | | 0.2526 | 4.0 | 432 | 0.4714 | 0.8333 | 0.8006 | | 0.2002 | 5.0 | 540 | 0.5677 | 0.8189 | 0.7890 | | 0.1391 | 6.0 | 648 | 0.6633 | 0.8307 | 0.8000 | | 0.0922 | 7.0 | 756 | 0.8019 | 0.8294 | 0.8071 | | 0.0693 | 8.0 | 864 | 0.8526 | 0.8333 | 0.8049 | | 0.0495 | 9.0 | 972 | 0.9813 | 0.8241 | 0.8075 | | 0.0345 | 10.0 | 1080 | 0.9563 | 0.8320 | 0.8095 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1