File size: 9,184 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import math
import glob
import time
from functools import partial
from pathlib import Path
from typing import Tuple, Optional
import lightning as L
from lightning.fabric.strategies import FSDPStrategy
import torch
from torch.utils.data import DataLoader
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
import numpy as np
from lit_llama.model import Block, LLaMA, LLaMAConfig
from lit_llama.packed_dataset import PackedDataset, CombinedDataset
from lit_llama.utils import save_model_checkpoint
out_dir = "out/training"
save_interval = 1000
eval_interval = 1000
eval_iters = 100
log_interval = 1
# compile = False
# Hyperparameters
learning_rate = 6e-4
batch_size = 125
micro_batch_size = 5
max_iters = 600000 # num_epochs * epoch_size // devices
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
decay_lr = True
warmup_iters = 2000
lr_decay_iters = max_iters
min_lr = 6e-5
# Data proportions from https://arxiv.org/pdf/2302.13971.pdf Table 1
data_config = [
("arxiv", 2.5),
("book", 4.5),
("c4", 15.0),
("cc", 67.0),
("github", 4.5),
("stackexchange", 2.0),
("wikipedia", 4.5),
]
def main(
devices: int = 4,
train_data_dir: Path = "data/lit-redpajama",
val_data_dir: Optional[Path] = None,
) -> None:
auto_wrap_policy = partial(
transformer_auto_wrap_policy, transformer_layer_cls={Block}
)
strategy = FSDPStrategy(
auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block
)
fabric = L.Fabric(
accelerator="cuda", devices=devices, precision="bf16-mixed", strategy=strategy
)
fabric.launch()
fabric.seed_everything(1337)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
config = LLaMAConfig.from_name("7B")
train_dataloader, val_dataloader = create_dataloaders(
batch_size=micro_batch_size,
block_size=config.block_size,
fabric=fabric,
train_data_dir=train_data_dir,
val_data_dir=val_data_dir,
seed=1338,
)
train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)
with fabric.device:
torch.set_default_dtype(torch.bfloat16)
model = LLaMA(config)
model.apply(model._init_weights)
torch.set_default_dtype(torch.float32)
# if compile:
# model = torch.compile(model)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=learning_rate,
weight_decay=weight_decay,
betas=(beta1, beta2),
)
model, optimizer = fabric.setup(model, optimizer)
process_batch_size = batch_size // devices
grad_accum_steps = process_batch_size // micro_batch_size
train(fabric, model, optimizer, train_dataloader, val_dataloader, grad_accum_steps, devices)
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_dataloader: DataLoader,
val_dataloader: Optional[DataLoader],
grad_accum_steps: int,
devices: int,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
step_time = 0.0
tokens = 0
tokens_sec = 0.0
prev_t1 = time.time()
for iter_num, train_data in enumerate(train_dataloader):
t0 = time.time()
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group["lr"] = lr
input_ids = train_data[:, 0 : model.config.block_size].contiguous()
targets = train_data[:, 1 : model.config.block_size + 1].contiguous()
is_accumulating = (iter_num + 1) % grad_accum_steps != 0
with fabric.no_backward_sync(model, enabled=is_accumulating):
logits = model(input_ids)
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
fabric.backward(loss / grad_accum_steps)
t1 = time.time()
if not is_accumulating:
fabric.clip_gradients(model, optimizer, max_norm=grad_clip)
optimizer.step()
optimizer.zero_grad()
step_count += 1
t1 = time.time()
if val_dataloader is not None and step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_dataloader)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
fabric.log_dict(
{"iter": iter_num, "val_loss": val_loss, "step": step_count, "lr": lr}
)
if step_count % save_interval == 0:
fabric.print(f"Saving checkpoint to {out_dir}")
save_model_checkpoint(
fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth")
)
dt = t1 - t0
tokens += micro_batch_size * model.config.block_size
step_time += t1 - prev_t1
prev_t1 = t1
if iter_num % log_interval == 0:
tokens_sec_str = f"{tokens / step_time:.0f}" if not is_accumulating else "-"
fabric.log_dict(
{"iter": iter_num, "train_loss": loss, "step": step_count, "lr": lr}
)
fabric.print(
f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms, speed: {tokens_sec_str} toks/s/device"
)
if not is_accumulating:
tokens = 0
step_time = 0.0
if iter_num > max_iters:
break
@torch.no_grad()
def validate(
fabric: L.Fabric, model: torch.nn.Module, val_dataloader: DataLoader
) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k, val_data in enumerate(val_dataloader):
input_ids = val_data[:, 0 : model.config.block_size].contiguous()
targets = val_data[:, 1 : model.config.block_size + 1].contiguous()
logits = model(input_ids)
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
losses[k] = loss.item()
out = losses.mean()
model.train()
return out
def create_dataloader(
batch_size: int,
block_size: int,
data_dir: str,
fabric,
shuffle: bool = True,
seed: int = 12345,
) -> DataLoader:
datasets = []
for prefix, _ in data_config:
filenames = glob.glob(os.path.join(data_dir, prefix + "*"))
dataset = PackedDataset(
filenames, n_chunks=4, block_size=block_size, shuffle=shuffle, seed=seed,
num_processes=fabric.world_size, process_rank=fabric.global_rank,
)
datasets.append(dataset)
if not datasets:
raise RuntimeError(
f"No data found at {data_dir}. Make sure you ran prepare_redpajama.py to create the dataset."
)
weights = [weight for _, weight in data_config]
sum_weights = sum(weights)
weights = [el / sum_weights for el in weights]
combined_dataset = CombinedDataset(datasets=datasets, seed=seed, weights=weights)
return DataLoader(combined_dataset, batch_size=batch_size, shuffle=False, pin_memory=True)
def create_dataloaders(
batch_size: int,
block_size: int,
fabric,
train_data_dir: str = "data/lit-redpajama",
val_data_dir: Optional[str] = None,
seed: int = 12345,
) -> Tuple[DataLoader, DataLoader]:
# Increase by one because we need the next word as well
effective_block_size = block_size + 1
train_dataloader = create_dataloader(
batch_size=batch_size,
block_size=effective_block_size,
fabric=fabric,
data_dir=train_data_dir,
shuffle=True,
seed=seed,
)
val_dataloader = (
create_dataloader(
batch_size=batch_size,
block_size=effective_block_size,
fabric=fabric,
data_dir=val_data_dir,
shuffle=False,
seed=seed,
)
if val_data_dir
else None
)
return train_dataloader, val_dataloader
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse.cli import CLI
CLI(main)
|