File size: 6,939 Bytes
12001a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""
Instruction-tuning on the Alpaca dataset using a regular finetuning procedure (updating all layers).
Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
"""
import os
import time
from functools import partial
import lightning as L
from lightning.fabric.strategies import FSDPStrategy
import numpy as np
import torch
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from generate import generate
from lit_llama.model import Block, LLaMA, LLaMAConfig
from lit_llama.tokenizer import Tokenizer
from lit_llama.utils import save_model_checkpoint
from scripts.prepare_alpaca import generate_prompt
eval_interval = 1000
save_interval = 1000
eval_iters = 100
log_interval = 100
devices = 4
# Hyperparameters
learning_rate = 3e-5
batch_size = 128 / devices
micro_batch_size = 4
gradient_accumulation_steps = batch_size // micro_batch_size
epoch_size = 50000 # train dataset size
num_epochs = 5
max_iters = num_epochs * epoch_size // micro_batch_size // devices
weight_decay = 0.0
block_size = 512
warmup_steps = 100
def main(
data_dir: str = "data/alpaca",
pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
out_dir: str = "out/full/alpaca",
):
auto_wrap_policy = partial(transformer_auto_wrap_policy, transformer_layer_cls={Block})
strategy = FSDPStrategy(auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block)
fabric = L.Fabric(accelerator="cuda", devices=devices, precision="bf16-mixed", strategy=strategy)
fabric.launch()
fabric.seed_everything(1337 + fabric.global_rank)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data, val_data = load_datasets(data_dir=data_dir)
config = LLaMAConfig.from_name("7B")
config.block_size = block_size
checkpoint = torch.load(pretrained_path)
with fabric.device:
torch.set_default_tensor_type(torch.HalfTensor)
model = LLaMA(config).bfloat16()
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model = fabric.setup_module(model)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
optimizer = fabric.setup_optimizers(optimizer)
train(fabric, model, optimizer, train_data, val_data, out_dir)
# Save the final checkpoint at the end of training
save_model_checkpoint(fabric, model, os.path.join(out_dir, "lit-llama-full-finetuned.pth"))
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_data: np.ndarray,
val_data: np.ndarray,
out_dir: str,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
model.train()
for iter_num in range(max_iters):
is_accumulating = (iter_num + 1) % gradient_accumulation_steps == 0
if step_count <= warmup_steps:
# linear warmup
lr = learning_rate * step_count / warmup_steps
for param_group in optimizer.param_groups:
param_group['lr'] = lr
t0 = time.time()
with fabric.no_backward_sync(model, enabled=is_accumulating):
input_ids, targets = get_batch(fabric, train_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
fabric.backward(loss)
if not is_accumulating:
optimizer.step()
optimizer.zero_grad()
step_count += 1
if step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_data)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
if step_count % save_interval == 0:
print(f"Saving weights to {out_dir}")
save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"))
dt = time.time() - t0
if iter_num % log_interval == 0:
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
def generate_response(model, instruction):
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
sample = {"instruction": instruction, "input": ""}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
output = generate(
model,
idx=encoded,
max_seq_length=block_size,
max_new_tokens=100,
)
output = tokenizer.decode(output)
return output # output.split("### Response:")[1].strip()
@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
losses[k] = loss.item()
out = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
output = generate_response(model, instruction)
fabric.print(instruction)
fabric.print(output)
model.train()
return out.item()
def loss_fn(logits, targets):
# shift the targets such that output n predicts token n+1
logits = logits[..., :-1, :].contiguous()
targets = targets[..., 1:].contiguous()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
def get_batch(fabric: L.Fabric, data: list):
ix = torch.randint(len(data), (micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
max_len = max(len(s) for s in input_ids)
def pad_right(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
return x, y
def load_datasets(data_dir):
train_data = torch.load(os.path.join(data_dir, "train.pt"))
val_data = torch.load(os.path.join(data_dir, "test.pt"))
return train_data, val_data
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse.cli import CLI
CLI(main)
|