|
import sys |
|
import time |
|
import warnings |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import lightning as L |
|
import torch |
|
|
|
from generate import generate |
|
from lit_llama import Tokenizer |
|
from lit_llama.adapter import LLaMA |
|
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup |
|
from scripts.prepare_alpaca import generate_prompt |
|
|
|
|
|
def main( |
|
prompt: str = "What food do lamas eat?", |
|
input: str = "", |
|
adapter_path: Optional[Path] = None, |
|
pretrained_path: Optional[Path] = None, |
|
tokenizer_path: Optional[Path] = None, |
|
quantize: Optional[str] = None, |
|
max_new_tokens: int = 100, |
|
top_k: int = 200, |
|
temperature: float = 0.8, |
|
) -> None: |
|
"""Generates a response based on a given instruction and an optional input. |
|
This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model. |
|
See `finetune_adapter.py`. |
|
|
|
Args: |
|
prompt: The prompt/instruction (Alpaca style). |
|
adapter_path: Path to the checkpoint with trained adapter weights, which are the output of |
|
`finetune_adapter.py`. |
|
input: Optional input (Alpaca style). |
|
pretrained_path: The path to the checkpoint with pretrained LLaMA weights. |
|
tokenizer_path: The tokenizer path to load. |
|
quantize: Whether to quantize the model and using which method: |
|
``"llm.int8"``: LLM.int8() mode, |
|
``"gptq.int4"``: GPTQ 4-bit mode. |
|
max_new_tokens: The number of generation steps to take. |
|
top_k: The number of top most probable tokens to consider in the sampling process. |
|
temperature: A value controlling the randomness of the sampling process. Higher values result in more random |
|
samples. |
|
""" |
|
if not adapter_path: |
|
adapter_path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned.pth") |
|
if not pretrained_path: |
|
pretrained_path = Path(f"./checkpoints/lit-llama/7B/lit-llama.pth") |
|
if not tokenizer_path: |
|
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model") |
|
|
|
assert adapter_path.is_file() |
|
assert pretrained_path.is_file() |
|
assert tokenizer_path.is_file() |
|
|
|
fabric = L.Fabric(devices=1) |
|
dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32 |
|
|
|
print("Loading model ...", file=sys.stderr) |
|
t0 = time.time() |
|
with (lazy_load(pretrained_path) as pretrained_checkpoint, |
|
lazy_load(adapter_path) as adapter_checkpoint): |
|
name = llama_model_lookup(pretrained_checkpoint) |
|
|
|
with EmptyInitOnDevice( |
|
device=fabric.device, dtype=dtype, quantization_mode=quantize |
|
): |
|
model = LLaMA.from_name(name) |
|
|
|
|
|
model.load_state_dict(pretrained_checkpoint, strict=False) |
|
|
|
model.load_state_dict(adapter_checkpoint, strict=False) |
|
|
|
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) |
|
|
|
model.eval() |
|
model = fabric.setup_module(model) |
|
|
|
tokenizer = Tokenizer(tokenizer_path) |
|
sample = {"instruction": prompt, "input": input} |
|
prompt = generate_prompt(sample) |
|
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device) |
|
|
|
t0 = time.perf_counter() |
|
output = generate( |
|
model, |
|
idx=encoded, |
|
max_seq_length=max_new_tokens, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_k=top_k, |
|
eos_id=tokenizer.eos_id |
|
) |
|
t = time.perf_counter() - t0 |
|
|
|
output = tokenizer.decode(output) |
|
output = output.split("### Response:")[1].strip() |
|
print(output) |
|
|
|
print(f"\n\nTime for inference: {t:.02f} sec total, {max_new_tokens / t:.02f} tokens/sec", file=sys.stderr) |
|
if fabric.device.type == "cuda": |
|
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) |
|
|
|
|
|
if __name__ == "__main__": |
|
from jsonargparse import CLI |
|
|
|
torch.set_float32_matmul_precision("high") |
|
warnings.filterwarnings( |
|
|
|
"ignore", |
|
message="ComplexHalf support is experimental and many operators don't support it yet" |
|
) |
|
CLI(main) |
|
|