|
import sys |
|
import time |
|
import warnings |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import lightning as L |
|
import torch |
|
|
|
from lit_llama import LLaMA, Tokenizer |
|
from lit_llama.utils import EmptyInitOnDevice |
|
|
|
|
|
@torch.no_grad() |
|
def generate( |
|
model: torch.nn.Module, |
|
idx: torch.Tensor, |
|
max_new_tokens: int, |
|
max_seq_length: int, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
eos_id: Optional[int] = None, |
|
) -> torch.Tensor: |
|
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. |
|
|
|
The implementation of this function is modified from A. Karpathy's nanoGPT. |
|
|
|
Args: |
|
model: The model to use. |
|
idx: Tensor of shape (T) with indices of the prompt sequence. |
|
max_new_tokens: The number of new tokens to generate. |
|
max_seq_length: The maximum sequence length allowed. |
|
temperature: Scales the predicted logits by 1 / temperature |
|
top_k: If specified, only sample among the tokens with the k highest probabilities |
|
eos_id: If specified, stop generating any more token once the <eos> token is triggered |
|
""" |
|
|
|
T = idx.size(0) |
|
T_new = T + max_new_tokens |
|
empty = torch.empty(T_new, dtype=idx.dtype, device=idx.device) |
|
empty[:T] = idx |
|
idx = empty |
|
|
|
|
|
for t in range(T, T_new): |
|
|
|
idx_cond = idx[:t] |
|
|
|
idx_cond = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:] |
|
|
|
|
|
logits = model(idx_cond.view(1, -1)) |
|
logits = logits[0, -1] / temperature |
|
|
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[[-1]]] = -float("Inf") |
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
idx[t] = idx_next |
|
|
|
|
|
if idx_next == eos_id: |
|
return idx[:t + 1] |
|
|
|
return idx |
|
|
|
|
|
def main( |
|
prompt: str = "Hello, my name is", |
|
*, |
|
num_samples: int = 1, |
|
max_new_tokens: int = 50, |
|
top_k: int = 200, |
|
temperature: float = 0.8, |
|
checkpoint_path: Optional[Path] = None, |
|
tokenizer_path: Optional[Path] = None, |
|
model_size: str = "7B", |
|
quantize: Optional[str] = None, |
|
) -> None: |
|
"""Generates text samples based on a pre-trained LLaMA model and tokenizer. |
|
|
|
Args: |
|
prompt: The prompt string to use for generating the samples. |
|
num_samples: The number of text samples to generate. |
|
max_new_tokens: The number of generation steps to take. |
|
top_k: The number of top most probable tokens to consider in the sampling process. |
|
temperature: A value controlling the randomness of the sampling process. Higher values result in more random |
|
samples. |
|
checkpoint_path: The checkpoint path to load. |
|
tokenizer_path: The tokenizer path to load. |
|
model_size: The model size to load. |
|
quantize: Whether to quantize the model and using which method: |
|
``"llm.int8"``: LLM.int8() mode, |
|
``"gptq.int4"``: GPTQ 4-bit mode. |
|
""" |
|
if not checkpoint_path: |
|
checkpoint_path = Path(f"./checkpoints/lit-llama/{model_size}/lit-llama.pth") |
|
if not tokenizer_path: |
|
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model") |
|
assert checkpoint_path.is_file(), checkpoint_path |
|
assert tokenizer_path.is_file(), tokenizer_path |
|
|
|
fabric = L.Fabric(devices=1) |
|
dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32 |
|
|
|
print("Loading model ...", file=sys.stderr) |
|
t0 = time.time() |
|
with EmptyInitOnDevice( |
|
device=fabric.device, dtype=dtype, quantization_mode=quantize |
|
): |
|
model = LLaMA.from_name(model_size) |
|
|
|
checkpoint = torch.load(checkpoint_path) |
|
model.load_state_dict(checkpoint) |
|
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) |
|
|
|
model.eval() |
|
model = fabric.setup_module(model) |
|
|
|
tokenizer = Tokenizer(tokenizer_path) |
|
encoded_prompt = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device) |
|
|
|
L.seed_everything(1234) |
|
for i in range(num_samples): |
|
t0 = time.perf_counter() |
|
y = generate( |
|
model, |
|
encoded_prompt, |
|
max_new_tokens, |
|
model.config.block_size, |
|
temperature=temperature, |
|
top_k=top_k, |
|
) |
|
t = time.perf_counter() - t0 |
|
print(tokenizer.decode(y)) |
|
print(f"Time for inference {i + 1}: {t:.02f} sec total, {max_new_tokens / t:.02f} tokens/sec", file=sys.stderr) |
|
if fabric.device.type == "cuda": |
|
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) |
|
|
|
|
|
if __name__ == "__main__": |
|
from jsonargparse import CLI |
|
|
|
torch.set_float32_matmul_precision("high") |
|
warnings.filterwarnings( |
|
|
|
"ignore", |
|
message="ComplexHalf support is experimental and many operators don't support it yet" |
|
) |
|
warnings.filterwarnings( |
|
|
|
"ignore", |
|
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization", |
|
) |
|
CLI(main) |
|
|