import sys import time import warnings from pathlib import Path from typing import Optional import lightning as L import torch from generate import generate from lit_llama import Tokenizer, LLaMA from lit_llama.lora import lora from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup from scripts.prepare_alpaca import generate_prompt lora_r = 8 lora_alpha = 16 lora_dropout = 0.05 def main( prompt: str = "What food do lamas eat?", input: str = "", lora_path: Optional[Path] = None, pretrained_path: Optional[Path] = None, tokenizer_path: Optional[Path] = None, quantize: Optional[str] = None, dtype: str = "float32", max_new_tokens: int = 100, top_k: int = 200, temperature: float = 0.8, ) -> None: """Generates a response based on a given instruction and an optional input. This script will only work with checkpoints from the instruction-tuned LoRA model. See `finetune_lora.py`. Args: prompt: The prompt/instruction (Alpaca style). lora_path: Path to the checkpoint with trained LoRA weights, which are the output of `finetune_lora.py`. input: Optional input (Alpaca style). pretrained_path: The path to the checkpoint with pretrained LLaMA weights. tokenizer_path: The tokenizer path to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. dtype: The dtype to use during generation. max_new_tokens: The number of generation steps to take. top_k: The number of top most probable tokens to consider in the sampling process. temperature: A value controlling the randomness of the sampling process. Higher values result in more random samples. """ if not lora_path: lora_path = Path("out/lora/alpaca/lit-llama-lora-finetuned.pth") if not pretrained_path: pretrained_path = Path(f"./checkpoints/lit-llama/7B/lit-llama.pth") if not tokenizer_path: tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model") assert lora_path.is_file() assert pretrained_path.is_file() assert tokenizer_path.is_file() if quantize is not None: raise NotImplementedError("Quantization in LoRA is not supported yet") fabric = L.Fabric(devices=1) dt = getattr(torch, dtype, None) if not isinstance(dt, torch.dtype): raise ValueError(f"{dtype} is not a valid dtype.") dtype = dt print("Loading model ...", file=sys.stderr) t0 = time.time() with (lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(lora_path) as adapter_checkpoint): name = llama_model_lookup(pretrained_checkpoint) with EmptyInitOnDevice( device=fabric.device, dtype=dtype, quantization_mode=quantize ), lora(r=lora_r, alpha=lora_alpha, dropout=lora_dropout, enabled=True): model = LLaMA.from_name(name) # 1. Load the pretrained weights model.load_state_dict(pretrained_checkpoint, strict=False) # 2. Load the fine-tuned adapter weights model.load_state_dict(adapter_checkpoint, strict=False) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() model = fabric.setup_module(model) tokenizer = Tokenizer(tokenizer_path) sample = {"instruction": prompt, "input": input} prompt = generate_prompt(sample) encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device) t0 = time.perf_counter() output = generate( model, idx=encoded, max_seq_length=max_new_tokens, max_new_tokens=max_new_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id ) t = time.perf_counter() - t0 output = tokenizer.decode(output) output = output.split("### Response:")[1].strip() print(output) print(f"\n\nTime for inference: {t:.02f} sec total, {max_new_tokens / t:.02f} tokens/sec", file=sys.stderr) if fabric.device.type == "cuda": print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) if __name__ == "__main__": from jsonargparse import CLI torch.set_float32_matmul_precision("high") warnings.filterwarnings( # Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31 "ignore", message="ComplexHalf support is experimental and many operators don't support it yet" ) CLI(main)