--- base_model: ahmedrachid/FinancialBERT-Sentiment-Analysis tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sentiment_pc_combinedBase results: [] --- # sentiment_pc_combinedBase This model is a fine-tuned version of [ahmedrachid/FinancialBERT-Sentiment-Analysis](https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5153 - Accuracy: 0.8683 - F1: 0.8376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | No log | 0.1739 | 50 | 0.5234 | 0.8096 | 0.7723 | | No log | 0.3478 | 100 | 0.4390 | 0.8457 | 0.8151 | | No log | 0.5217 | 150 | 0.4168 | 0.8491 | 0.8137 | | No log | 0.6957 | 200 | 0.4252 | 0.8522 | 0.8150 | | No log | 0.8696 | 250 | 0.3931 | 0.8561 | 0.8196 | | No log | 1.0435 | 300 | 0.4409 | 0.8409 | 0.8118 | | No log | 1.2174 | 350 | 0.4108 | 0.8657 | 0.8271 | | No log | 1.3913 | 400 | 0.4382 | 0.8613 | 0.8292 | | No log | 1.5652 | 450 | 0.4147 | 0.8622 | 0.8287 | | 0.415 | 1.7391 | 500 | 0.4069 | 0.8652 | 0.8331 | | 0.415 | 1.9130 | 550 | 0.4170 | 0.8591 | 0.8275 | | 0.415 | 2.0870 | 600 | 0.4533 | 0.8626 | 0.8296 | | 0.415 | 2.2609 | 650 | 0.4613 | 0.87 | 0.8401 | | 0.415 | 2.4348 | 700 | 0.4531 | 0.8770 | 0.8447 | | 0.415 | 2.6087 | 750 | 0.4534 | 0.8583 | 0.8277 | | 0.415 | 2.7826 | 800 | 0.4756 | 0.8570 | 0.8274 | | 0.415 | 2.9565 | 850 | 0.4482 | 0.8683 | 0.8391 | | 0.415 | 3.1304 | 900 | 0.4858 | 0.8665 | 0.8350 | | 0.415 | 3.3043 | 950 | 0.4873 | 0.8639 | 0.8341 | | 0.1812 | 3.4783 | 1000 | 0.5153 | 0.8683 | 0.8376 | | 0.1812 | 3.6522 | 1050 | 0.5345 | 0.8578 | 0.8281 | | 0.1812 | 3.8261 | 1100 | 0.5372 | 0.8609 | 0.8331 | | 0.1812 | 4.0 | 1150 | 0.5172 | 0.8670 | 0.8379 | | 0.1812 | 4.1739 | 1200 | 0.5643 | 0.8643 | 0.8342 | | 0.1812 | 4.3478 | 1250 | 0.5783 | 0.8622 | 0.8326 | | 0.1812 | 4.5217 | 1300 | 0.5909 | 0.8565 | 0.8273 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1