File size: 12,367 Bytes
dc1adc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36a9f3f
dc1adc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f118131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for HAT."""
import torch
from transformers import RobertaTokenizer, BertTokenizer
from .configuration_hat import HATConfig
from transformers.utils import logging
try:
    from nltk import sent_tokenize
except:
    raise Exception('NLTK is not installed! Install it with `pip install nltk`...')
logger = logging.get_logger(__name__)


class HATTokenizer:
    def __init__(self, tokenizer=None):
        self._tokenizer = tokenizer
        self.config = HATConfig.from_pretrained(self._tokenizer.name_or_path)
        self._tokenizer.model_max_length = self.model_max_length
        self.type2id = {'input_ids': (self._tokenizer.cls_token_id, self._tokenizer.pad_token_id),
                        'token_type_ids': (0, 0),
                        'attention_mask': (1, 0),
                        'special_tokens_mask': (1, -100)}

    @property
    def model_max_length(self):
        return self.config.model_max_length

    @property
    def mask_token(self):
        return self._tokenizer.mask_token

    @property
    def mask_token_id(self):
        return self._tokenizer.mask_token_id

    @property
    def pad_token_id(self):
        return self._tokenizer.pad_token_id

    @property
    def cls_token_id(self):
        return self._tokenizer.cls_token_id

    @property
    def sep_token_id(self):
        return self._tokenizer.sep_token_id

    @property
    def vocab(self):
        return self._tokenizer.vocab

    def __len__(self):
        """
        Size of the full vocabulary with the added tokens.
        """
        return len(self._tokenizer)

    def pad(self, *args, **kwargs):
        return self._tokenizer.pad(*args, **kwargs)

    def convert_tokens_to_ids(self, *args, **kwargs):
        return self._tokenizer.convert_tokens_to_ids(*args, **kwargs)

    def batch_decode(self, *args, **kwargs):
        return self._tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self._tokenizer.decode(*args, **kwargs)

    def tokenize(self, text, **kwargs):
        return self._tokenizer.tokenize(text, **kwargs)

    def encode(self, text, **kwargs):
        input_ids = self._tokenizer.encode_plus(text, add_special_tokens=False, **kwargs)
        input_ids = self.chunks(input_ids[: self.model_max_length - self.config.max_sentences],
                                chunk_size=self.config.max_sentence_length, special_id=self.type2id['input_ids'])
        return input_ids

    def get_special_tokens_mask(self, *args, **kwargs):
        return self._tokenizer.get_special_tokens_mask(*args, **kwargs)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        try:
            tokenizer = RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
        except:
            tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
        return cls(tokenizer=tokenizer)

    def save_pretrained(self, *args, **kwargs):
        return self._tokenizer.save_pretrained( *args, **kwargs)

    def __call__(self, text, **kwargs):
        greedy_chunking = kwargs.pop('greedy_chunking', None)
        text_pair = kwargs.pop('text_pair', None)
        if isinstance(text[0], list):
            batch = self.auto_chunking(text, **kwargs)
        elif greedy_chunking:
            # fixed uniform chunking
            batch = self.uniform_chunking(text, **kwargs)
        else:
            # dynamic sentence splitting and grouping
            batch = self.sentence_splitting(text, **kwargs)

        if text_pair:
            batch_b = self._tokenizer(text_pair, add_special_tokens=False,
                                      padding=False, truncation=False)
            for idx, sample in enumerate(batch['input_ids']):
                n_sentences = sum(sample[::self.config.max_sentence_size])
                for input_key in batch:
                    batch[input_key][idx][self.config.max_sentence_size * n_sentences:
                                          self.config.max_sentence_size * (n_sentences + 1)] = \
                        self.pad_sentence(batch_b[input_key][idx],
                                          special_id=(self.sep_token_id, self.pad_token_id)
                                          if input_key == 'input_ids' else self.type2id[input_key])

        return batch

    def uniform_chunking(self, texts, **kwargs):
        original_batch = self._tokenizer(texts, add_special_tokens=False, **kwargs)
        batch = {input_type: [] for input_type in original_batch}
        for input_type in original_batch:
            fixed_batch = []
            for example in original_batch[input_type]:
                fixed_batch.append(self.chunks(example[: self.model_max_length - self.config.max_sentences],
                                               chunk_size=self.config.max_sentence_length,
                                               special_id=self.type2id[input_type]))
            batch[input_type] = fixed_batch if isinstance(fixed_batch[0], list) else torch.stack(fixed_batch)

        if kwargs['padding']:
            batch = self.pad(batch,
                             padding=kwargs['padding'],
                             max_length=kwargs['max_length'],
                             pad_to_multiple_of=kwargs['max_length'])

        return batch

    def auto_chunking(self, texts, **kwargs):
        batch = {}
        for text_idx, text in enumerate(texts):
            example_batch = self._tokenizer(text, add_special_tokens=False, **kwargs)
            for input_key in example_batch:
                key_inputs_list = []
                for idx, example in enumerate(example_batch[input_key][:self.config.max_sentences]):
                    key_inputs_list.append(self.pad_sentence(example, special_id=self.type2id[input_key]))
                if isinstance(key_inputs_list[0], list):
                    key_inputs_list = [token for sentence in key_inputs_list for token in sentence]
                else:
                    key_inputs_list = torch.stack([token for sentence in key_inputs_list for token in sentence])
                if input_key in batch:
                    batch[input_key].append(key_inputs_list)
                else:
                    batch[input_key] = [key_inputs_list]

        if kwargs['padding']:
            batch = self.pad(batch,
                             padding=kwargs['padding'],
                             max_length=kwargs['max_length'],
                             pad_to_multiple_of=kwargs['max_length'])

        return batch

    def chunks(self, flat_inputs, chunk_size=128, special_id=0):
        if isinstance(flat_inputs, list):
            return self.list_chunks(flat_inputs, chunk_size, special_id)
        else:
            return self.tensor_chunks(flat_inputs, chunk_size, special_id)

    def list_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)):
        """Yield successive n-sized chunks from lst."""
        structured_inputs = [[special_id[0] if sum(flat_inputs[i:i + chunk_size-1]) else special_id[1]]
                             + flat_inputs[i:i + chunk_size-1] for i in range(0, len(flat_inputs), chunk_size-1)]
        return [token_input for sentence_inputs in structured_inputs for token_input in sentence_inputs]

    def tensor_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)):
        """Yield successive n-sized chunks from lst."""
        structured_inputs = torch.stack([torch.cat((torch.tensor([special_id[0] if flat_inputs[i:i + chunk_size-1].sum() else special_id[1]], dtype=torch.int),
                                                    flat_inputs[i:i + chunk_size-1])) for i in range(0, len(flat_inputs), chunk_size-1)])
        return structured_inputs.reshape(-1)

    def sentence_splitting(self, texts, **kwargs):
        fixed_batch = []
        doc_out = {}
        for text in texts:
            # sentence splitting
            sentences = sent_tokenize(text)
            # tokenization of sentences
            sentences = self._tokenizer(sentences, add_special_tokens=False, padding=False, truncation=False)
            # sentence grouping - merging short sentences to minimize padding
            doc_out = self.sentence_grouping(sentences)
            fixed_batch.append(doc_out)
        # batchify examples
        batch = {input_type: [] for input_type in doc_out}
        for input_type in batch:
            batch[input_type] = [example[input_type] for example in fixed_batch]
            if not isinstance(batch[input_type][0], list):
                batch[input_type] = torch.stack(batch[input_type])

        if kwargs['padding']:
            batch = self.pad(batch,
                             padding=kwargs['padding'],
                             max_length=kwargs['max_length'],
                             pad_to_multiple_of=kwargs['max_length'])

        return batch

    def sentence_grouping(self, sentences):
        doc_out = {input_type: [] for input_type in sentences}
        for input_type in sentences:
            tmp_doc = []
            tmp_sentence = []
            for example in sentences[input_type]:
                if len(tmp_doc) >= self.config.max_sentences:
                    break
                if len(tmp_sentence) + len(example) <= self.config.max_sentence_length - 1:
                    tmp_sentence.extend(example)
                else:
                    tmp_doc.append(self.pad_sentence(tmp_sentence if len(tmp_sentence) else example,
                                                     chunk_size=self.config.max_sentence_length,
                                                     special_id=self.type2id[input_type]))
                    tmp_sentence = example if len(tmp_sentence) else example[self.config.max_sentence_length:]
            if len(tmp_sentence) and len(tmp_doc) < self.config.max_sentences:
                tmp_doc.append(self.pad_sentence(tmp_sentence,
                                                 chunk_size=self.config.max_sentence_length,
                                                 special_id=self.type2id[input_type]))
            doc_out[input_type] = [token for sentence in tmp_doc for token in sentence]
        return doc_out

    def pad_sentence(self, flat_input, chunk_size=128, special_id=(0, 0)):
        if isinstance(flat_input, list):
            return [special_id[0]] + flat_input[:chunk_size-1] + [self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1)
        else:
            return torch.cat((torch.tensor([special_id[0] if flat_input[:chunk_size-1].sum()
                                            else special_id[1]], dtype=torch.int),
                              flat_input[:chunk_size-1],
                              torch.tensor([self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1), dtype=torch.int)
                              ))

    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.
        <Tip warning={true}>
        This API is experimental and may have some slight breaking changes in the next releases.
        </Tip>
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class