Commit
·
0746f41
1
Parent(s):
eff95de
Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
---
|
2 |
-
license: cc-by-
|
3 |
pipeline_tag: fill-mask
|
|
|
4 |
language: en
|
5 |
tags:
|
6 |
-
-
|
7 |
datasets:
|
8 |
- c4
|
9 |
model-index:
|
@@ -15,7 +16,7 @@ model-index:
|
|
15 |
|
16 |
## Model description
|
17 |
|
18 |
-
[Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/
|
19 |
|
20 |
The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096.
|
21 |
|
@@ -39,12 +40,12 @@ mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-base-4096', trust
|
|
39 |
mlm_model("Hello I'm a <mask> model.")
|
40 |
```
|
41 |
|
42 |
-
You can also fine-
|
43 |
|
44 |
```python
|
45 |
from transformers import AutoTokenizer, AutoModelforSequenceClassification
|
46 |
tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True)
|
47 |
-
doc_classifier = AutoModelforSequenceClassification(
|
48 |
```
|
49 |
|
50 |
## Limitations and bias
|
@@ -94,18 +95,22 @@ TThe following hyperparameters were used during training:
|
|
94 |
|
95 |
|
96 |
## Citing
|
97 |
-
|
98 |
-
|
99 |
|
100 |
```
|
101 |
@misc{chalkidis-etal-2022-hat,
|
102 |
-
url = {https://arxiv.org/abs/
|
103 |
author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond},
|
104 |
title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification},
|
105 |
publisher = {arXiv},
|
106 |
year = {2022},
|
107 |
}
|
|
|
108 |
|
|
|
|
|
|
|
109 |
@article{Beltagy2020Longformer,
|
110 |
title={Longformer: The Long-Document Transformer},
|
111 |
author={Iz Beltagy and Matthew E. Peters and Arman Cohan},
|
|
|
1 |
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
pipeline_tag: fill-mask
|
4 |
+
arxiv: 2210.05529
|
5 |
language: en
|
6 |
tags:
|
7 |
+
- long-documents
|
8 |
datasets:
|
9 |
- c4
|
10 |
model-index:
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
19 |
+
[Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529).
|
20 |
|
21 |
The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096.
|
22 |
|
|
|
40 |
mlm_model("Hello I'm a <mask> model.")
|
41 |
```
|
42 |
|
43 |
+
You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks:
|
44 |
|
45 |
```python
|
46 |
from transformers import AutoTokenizer, AutoModelforSequenceClassification
|
47 |
tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True)
|
48 |
+
doc_classifier = AutoModelforSequenceClassification("kiddothe2b/longformer-base-4096", trust_remote_code=True)
|
49 |
```
|
50 |
|
51 |
## Limitations and bias
|
|
|
95 |
|
96 |
|
97 |
## Citing
|
98 |
+
If you use HAT in your research, please cite:
|
99 |
+
[An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint).
|
100 |
|
101 |
```
|
102 |
@misc{chalkidis-etal-2022-hat,
|
103 |
+
url = {https://arxiv.org/abs/2210.05529},
|
104 |
author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond},
|
105 |
title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification},
|
106 |
publisher = {arXiv},
|
107 |
year = {2022},
|
108 |
}
|
109 |
+
```
|
110 |
|
111 |
+
Also cite the original work: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150).
|
112 |
+
|
113 |
+
```
|
114 |
@article{Beltagy2020Longformer,
|
115 |
title={Longformer: The Long-Document Transformer},
|
116 |
author={Iz Beltagy and Matthew E. Peters and Arman Cohan},
|