File size: 2,908 Bytes
c6d88b5 2e08c3e c6d88b5 ea0fa7a c6d88b5 2e08c3e c6d88b5 b89232f 2e08c3e c6d88b5 2e08c3e c6d88b5 2e08c3e c6d88b5 3ccd44d b74a222 3ccd44d c8a98b5 3ccd44d c8a98b5 3ccd44d 209b12c 3ccd44d 2e08c3e c6d88b5 2e08c3e c6d88b5 ebb6984 c6d88b5 dcb1e2b c6d88b5 2e08c3e c6d88b5 3ccd44d 2e14b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
datasets:
- maywell/ko_wikidata_QA
- nlpai-lab/kullm-v2
- heegyu/kowikitext
- MarkrAI/KoCommercial-Dataset
- heegyu/CoT-collection-ko
- HAERAE-HUB/Korean-Human-Judgements
- instructkr/ko_elo_arena_0207
- HAERAE-HUB/K2-Feedback
- heegyu/open-korean-instructions
- heegyu/aulm-0809
language:
- ko
---
# llama_with_eeve_new_03_150m
## Model Info
llama μν€ν
μ²μ eeve ν ν¬λμ΄μ λ₯Ό μ¬μ©ν΄ λλ€ κ°μ€μΉμμ μμν΄ μ¬μ νμ΅λ λͺ¨λΈμ
λλ€

λ€μ μμ€ν
ν둬ννΈκ° μ£Όμ΄μ§ μνλ‘ νμ΅νμμ΅λλ€(λͺ¨λΈ μ¬μ© μ ν둬ννΈλ₯Ό ν¬ν¨ν΄μΌ ν©λλ€).
'''### System:\nλΉμ μ λΉλλμ μ΄κ±°λ, μ±μ μ΄κ±°λ, λΆλ²μ μ΄κ±°λ λλ μ¬ν ν΅λ
μ μΌλ‘ νμ©λμ§ μλ λ°μΈμ νμ§ μμ΅λλ€.
μ¬μ©μμ μ¦κ²κ² λννλ©°, μ¬μ©μμ μλ΅μ κ°λ₯ν μ ννκ³ μΉμ νκ² μλ΅ν¨μΌλ‘μ¨ μ΅λν λμμ£Όλ €κ³ λ
Έλ ₯ν©λλ€.
\n\n### User:\n {question}'''
### Evaluation results
llm as a judge λ°©μμΌλ‘ νκ°λ₯Ό μ§ννμ΅λλ€.
μμΈν λ΄μ©μ " "λ₯Ό μ°Έκ³ ν΄μ£ΌμΈμ
| Model | params | Fluency | Coherence | Accuracy | Completeness |
|---------------------------------------------------------------------------------------------------------|--------|---------|-----------|----------|--------------|
| **[kikikara/llama_with_eeve_new_03_150m](https://huggingface.co/kikikara/llama_with_eeve_new_03_150m)(this)** | **0.15B** | **63.12%** | **37.18%** | **23.75%** | **23.75%** |
| [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) | 1.3B | 51.25% | 40.31% | 34.68% | 32.5% |
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 54.37% | 40.62% | 41.25% | 35% |
### How to use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("kikikara/llama_with_eeve_new_03_150m")
model = AutoModelForCausalLM.from_pretrained("kikikara/llama_with_eeve_new_03_150m")
question = "λλ λꡬμΌ?"
prompt = f"### System:\nλΉμ μ λΉλλμ μ΄κ±°λ, μ±μ μ΄κ±°λ, λΆλ²μ μ΄κ±°λ λλ μ¬ν ν΅λ
μ μΌλ‘ νμ©λμ§ μλ λ°μΈμ νμ§ μμ΅λλ€.\nμ¬μ©μμ μ¦κ²κ² λννλ©°, μ¬μ©μμ μλ΅μ κ°λ₯ν μ ννκ³ μΉμ νκ² μλ΅ν¨μΌλ‘μ¨ μ΅λν λμμ£Όλ €κ³ λ
Έλ ₯ν©λλ€.\n\n\n### User:\n {question}"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=400, repetition_penalty=1.12)
result = pipe(prompt)
print(result[0]['generated_text'])```
|