Training in progress, step 200
Browse files- .ipynb_checkpoints/fine-tune-whisper-streaming-checkpoint.ipynb +311 -144
- fine-tune-whisper-streaming.ipynb +46 -155
- pytorch_model.bin +1 -1
- runs/Dec12_04-37-47_150-136-44-233/1670819878.783822/events.out.tfevents.1670819878.150-136-44-233.69039.1 +3 -0
- runs/Dec12_04-37-47_150-136-44-233/events.out.tfevents.1670819878.150-136-44-233.69039.0 +3 -0
- training_args.bin +1 -1
.ipynb_checkpoints/fine-tune-whisper-streaming-checkpoint.ipynb
CHANGED
@@ -108,7 +108,7 @@
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
-
"execution_count":
|
112 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
113 |
"metadata": {},
|
114 |
"outputs": [],
|
@@ -142,7 +142,7 @@
|
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
-
"execution_count":
|
146 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
147 |
"metadata": {},
|
148 |
"outputs": [],
|
@@ -151,7 +151,7 @@
|
|
151 |
"\n",
|
152 |
"raw_datasets = IterableDatasetDict()\n",
|
153 |
"\n",
|
154 |
-
"raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"train\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n",
|
155 |
"raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"test\", use_auth_token=True)"
|
156 |
]
|
157 |
},
|
@@ -185,109 +185,10 @@
|
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
-
"execution_count":
|
189 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
190 |
"metadata": {},
|
191 |
-
"outputs": [
|
192 |
-
{
|
193 |
-
"data": {
|
194 |
-
"application/vnd.jupyter.widget-view+json": {
|
195 |
-
"model_id": "ab8ef1fb2f284e2abd43a1b1bde55882",
|
196 |
-
"version_major": 2,
|
197 |
-
"version_minor": 0
|
198 |
-
},
|
199 |
-
"text/plain": [
|
200 |
-
"Downloading: 0%| | 0.00/185k [00:00<?, ?B/s]"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
"metadata": {},
|
204 |
-
"output_type": "display_data"
|
205 |
-
},
|
206 |
-
{
|
207 |
-
"data": {
|
208 |
-
"application/vnd.jupyter.widget-view+json": {
|
209 |
-
"model_id": "e0c2142f48224f1582e6457dbb8e5276",
|
210 |
-
"version_major": 2,
|
211 |
-
"version_minor": 0
|
212 |
-
},
|
213 |
-
"text/plain": [
|
214 |
-
"Downloading: 0%| | 0.00/829 [00:00<?, ?B/s]"
|
215 |
-
]
|
216 |
-
},
|
217 |
-
"metadata": {},
|
218 |
-
"output_type": "display_data"
|
219 |
-
},
|
220 |
-
{
|
221 |
-
"data": {
|
222 |
-
"application/vnd.jupyter.widget-view+json": {
|
223 |
-
"model_id": "55aa8ea93e924389b339aefec864805d",
|
224 |
-
"version_major": 2,
|
225 |
-
"version_minor": 0
|
226 |
-
},
|
227 |
-
"text/plain": [
|
228 |
-
"Downloading: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
|
229 |
-
]
|
230 |
-
},
|
231 |
-
"metadata": {},
|
232 |
-
"output_type": "display_data"
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"data": {
|
236 |
-
"application/vnd.jupyter.widget-view+json": {
|
237 |
-
"model_id": "5cc4483a4d234f73914d26f285588949",
|
238 |
-
"version_major": 2,
|
239 |
-
"version_minor": 0
|
240 |
-
},
|
241 |
-
"text/plain": [
|
242 |
-
"Downloading: 0%| | 0.00/494k [00:00<?, ?B/s]"
|
243 |
-
]
|
244 |
-
},
|
245 |
-
"metadata": {},
|
246 |
-
"output_type": "display_data"
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"data": {
|
250 |
-
"application/vnd.jupyter.widget-view+json": {
|
251 |
-
"model_id": "806dfeffeb1a4d6ba3a042cadee13450",
|
252 |
-
"version_major": 2,
|
253 |
-
"version_minor": 0
|
254 |
-
},
|
255 |
-
"text/plain": [
|
256 |
-
"Downloading: 0%| | 0.00/52.7k [00:00<?, ?B/s]"
|
257 |
-
]
|
258 |
-
},
|
259 |
-
"metadata": {},
|
260 |
-
"output_type": "display_data"
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"data": {
|
264 |
-
"application/vnd.jupyter.widget-view+json": {
|
265 |
-
"model_id": "b93cdf2091424615927adaefb032132f",
|
266 |
-
"version_major": 2,
|
267 |
-
"version_minor": 0
|
268 |
-
},
|
269 |
-
"text/plain": [
|
270 |
-
"Downloading: 0%| | 0.00/2.11k [00:00<?, ?B/s]"
|
271 |
-
]
|
272 |
-
},
|
273 |
-
"metadata": {},
|
274 |
-
"output_type": "display_data"
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"data": {
|
278 |
-
"application/vnd.jupyter.widget-view+json": {
|
279 |
-
"model_id": "cdb5621656934de2a60214f67530212c",
|
280 |
-
"version_major": 2,
|
281 |
-
"version_minor": 0
|
282 |
-
},
|
283 |
-
"text/plain": [
|
284 |
-
"Downloading: 0%| | 0.00/2.06k [00:00<?, ?B/s]"
|
285 |
-
]
|
286 |
-
},
|
287 |
-
"metadata": {},
|
288 |
-
"output_type": "display_data"
|
289 |
-
}
|
290 |
-
],
|
291 |
"source": [
|
292 |
"from transformers import WhisperProcessor\n",
|
293 |
"\n",
|
@@ -312,7 +213,7 @@
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
-
"execution_count":
|
316 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
317 |
"metadata": {},
|
318 |
"outputs": [
|
@@ -332,7 +233,7 @@
|
|
332 |
" 'segment': Value(dtype='string', id=None)}"
|
333 |
]
|
334 |
},
|
335 |
-
"execution_count":
|
336 |
"metadata": {},
|
337 |
"output_type": "execute_result"
|
338 |
}
|
@@ -358,7 +259,7 @@
|
|
358 |
},
|
359 |
{
|
360 |
"cell_type": "code",
|
361 |
-
"execution_count":
|
362 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
363 |
"metadata": {},
|
364 |
"outputs": [],
|
@@ -378,7 +279,7 @@
|
|
378 |
},
|
379 |
{
|
380 |
"cell_type": "code",
|
381 |
-
"execution_count":
|
382 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
383 |
"metadata": {},
|
384 |
"outputs": [],
|
@@ -405,7 +306,7 @@
|
|
405 |
},
|
406 |
{
|
407 |
"cell_type": "code",
|
408 |
-
"execution_count":
|
409 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
410 |
"metadata": {},
|
411 |
"outputs": [],
|
@@ -441,7 +342,7 @@
|
|
441 |
},
|
442 |
{
|
443 |
"cell_type": "code",
|
444 |
-
"execution_count":
|
445 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
446 |
"metadata": {},
|
447 |
"outputs": [],
|
@@ -459,7 +360,7 @@
|
|
459 |
},
|
460 |
{
|
461 |
"cell_type": "code",
|
462 |
-
"execution_count":
|
463 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
464 |
"metadata": {},
|
465 |
"outputs": [],
|
@@ -480,7 +381,7 @@
|
|
480 |
},
|
481 |
{
|
482 |
"cell_type": "code",
|
483 |
-
"execution_count":
|
484 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
485 |
"metadata": {},
|
486 |
"outputs": [],
|
@@ -501,7 +402,7 @@
|
|
501 |
},
|
502 |
{
|
503 |
"cell_type": "code",
|
504 |
-
"execution_count":
|
505 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
506 |
"metadata": {},
|
507 |
"outputs": [],
|
@@ -571,7 +472,7 @@
|
|
571 |
},
|
572 |
{
|
573 |
"cell_type": "code",
|
574 |
-
"execution_count":
|
575 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
576 |
"metadata": {},
|
577 |
"outputs": [],
|
@@ -619,7 +520,7 @@
|
|
619 |
},
|
620 |
{
|
621 |
"cell_type": "code",
|
622 |
-
"execution_count":
|
623 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
624 |
"metadata": {},
|
625 |
"outputs": [],
|
@@ -646,14 +547,14 @@
|
|
646 |
},
|
647 |
{
|
648 |
"cell_type": "code",
|
649 |
-
"execution_count":
|
650 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
651 |
"metadata": {},
|
652 |
"outputs": [
|
653 |
{
|
654 |
"data": {
|
655 |
"application/vnd.jupyter.widget-view+json": {
|
656 |
-
"model_id": "
|
657 |
"version_major": 2,
|
658 |
"version_minor": 0
|
659 |
},
|
@@ -690,7 +591,7 @@
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
-
"execution_count":
|
694 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
@@ -740,14 +641,14 @@
|
|
740 |
},
|
741 |
{
|
742 |
"cell_type": "code",
|
743 |
-
"execution_count":
|
744 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
745 |
"metadata": {},
|
746 |
"outputs": [
|
747 |
{
|
748 |
"data": {
|
749 |
"application/vnd.jupyter.widget-view+json": {
|
750 |
-
"model_id": "
|
751 |
"version_major": 2,
|
752 |
"version_minor": 0
|
753 |
},
|
@@ -761,7 +662,7 @@
|
|
761 |
{
|
762 |
"data": {
|
763 |
"application/vnd.jupyter.widget-view+json": {
|
764 |
-
"model_id": "
|
765 |
"version_major": 2,
|
766 |
"version_minor": 0
|
767 |
},
|
@@ -789,7 +690,7 @@
|
|
789 |
},
|
790 |
{
|
791 |
"cell_type": "code",
|
792 |
-
"execution_count":
|
793 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
794 |
"metadata": {},
|
795 |
"outputs": [],
|
@@ -817,7 +718,7 @@
|
|
817 |
},
|
818 |
{
|
819 |
"cell_type": "code",
|
820 |
-
"execution_count":
|
821 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
822 |
"metadata": {},
|
823 |
"outputs": [],
|
@@ -829,16 +730,16 @@
|
|
829 |
" per_device_train_batch_size=64,\n",
|
830 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
831 |
" learning_rate=1e-5,\n",
|
832 |
-
" warmup_steps=
|
833 |
-
" max_steps=
|
834 |
" gradient_checkpointing=True,\n",
|
835 |
" fp16=True,\n",
|
836 |
" evaluation_strategy=\"steps\",\n",
|
837 |
" per_device_eval_batch_size=8,\n",
|
838 |
" predict_with_generate=True,\n",
|
839 |
" generation_max_length=225,\n",
|
840 |
-
" save_steps=
|
841 |
-
" eval_steps=
|
842 |
" logging_steps=25,\n",
|
843 |
" report_to=[\"tensorboard\"],\n",
|
844 |
" load_best_model_at_end=True,\n",
|
@@ -867,7 +768,7 @@
|
|
867 |
},
|
868 |
{
|
869 |
"cell_type": "code",
|
870 |
-
"execution_count":
|
871 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
872 |
"metadata": {},
|
873 |
"outputs": [],
|
@@ -896,7 +797,7 @@
|
|
896 |
},
|
897 |
{
|
898 |
"cell_type": "code",
|
899 |
-
"execution_count":
|
900 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
901 |
"metadata": {},
|
902 |
"outputs": [
|
@@ -935,7 +836,7 @@
|
|
935 |
},
|
936 |
{
|
937 |
"cell_type": "code",
|
938 |
-
"execution_count":
|
939 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
940 |
"metadata": {},
|
941 |
"outputs": [
|
@@ -992,14 +893,15 @@
|
|
992 |
"/home/ubuntu/.venv/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
993 |
" warnings.warn(\n",
|
994 |
"***** Running training *****\n",
|
995 |
-
" Num examples =
|
996 |
" Num Epochs = 9223372036854775807\n",
|
997 |
" Instantaneous batch size per device = 64\n",
|
998 |
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
999 |
" Gradient Accumulation steps = 1\n",
|
1000 |
-
" Total optimization steps =
|
1001 |
" Number of trainable parameters = 241734912\n",
|
1002 |
-
"Reading metadata...: 6505it [00:00,
|
|
|
1003 |
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
1004 |
]
|
1005 |
},
|
@@ -1009,8 +911,8 @@
|
|
1009 |
"\n",
|
1010 |
" <div>\n",
|
1011 |
" \n",
|
1012 |
-
" <progress value='
|
1013 |
-
" [
|
1014 |
" </div>\n",
|
1015 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1016 |
" <thead>\n",
|
@@ -1035,10 +937,13 @@
|
|
1035 |
"name": "stderr",
|
1036 |
"output_type": "stream",
|
1037 |
"text": [
|
1038 |
-
"Reading metadata...: 6505it [00:00,
|
1039 |
-
"Reading metadata...:
|
1040 |
-
"
|
1041 |
-
"
|
|
|
|
|
|
|
1042 |
]
|
1043 |
}
|
1044 |
],
|
@@ -1068,7 +973,7 @@
|
|
1068 |
},
|
1069 |
{
|
1070 |
"cell_type": "code",
|
1071 |
-
"execution_count":
|
1072 |
"id": "6dd0e310-9b07-4133-ac14-2ed2d7524e22",
|
1073 |
"metadata": {},
|
1074 |
"outputs": [],
|
@@ -1094,20 +999,282 @@
|
|
1094 |
},
|
1095 |
{
|
1096 |
"cell_type": "code",
|
1097 |
-
"execution_count":
|
1098 |
"id": "95737cda-c5dd-4887-a4d0-dfcb0d61d977",
|
1099 |
"metadata": {},
|
1100 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1101 |
"source": [
|
1102 |
"trainer.push_to_hub(**kwargs)"
|
1103 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1104 |
}
|
1105 |
],
|
1106 |
"metadata": {
|
1107 |
"kernelspec": {
|
1108 |
-
"display_name": "
|
1109 |
"language": "python",
|
1110 |
-
"name": "
|
1111 |
},
|
1112 |
"language_info": {
|
1113 |
"codemirror_mode": {
|
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
+
"execution_count": 5,
|
112 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
113 |
"metadata": {},
|
114 |
"outputs": [],
|
|
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
+
"execution_count": 6,
|
146 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
147 |
"metadata": {},
|
148 |
"outputs": [],
|
|
|
151 |
"\n",
|
152 |
"raw_datasets = IterableDatasetDict()\n",
|
153 |
"\n",
|
154 |
+
"raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"train+validation\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n",
|
155 |
"raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"test\", use_auth_token=True)"
|
156 |
]
|
157 |
},
|
|
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
+
"execution_count": 7,
|
189 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
190 |
"metadata": {},
|
191 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
"source": [
|
193 |
"from transformers import WhisperProcessor\n",
|
194 |
"\n",
|
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
+
"execution_count": 8,
|
217 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
|
|
233 |
" 'segment': Value(dtype='string', id=None)}"
|
234 |
]
|
235 |
},
|
236 |
+
"execution_count": 8,
|
237 |
"metadata": {},
|
238 |
"output_type": "execute_result"
|
239 |
}
|
|
|
259 |
},
|
260 |
{
|
261 |
"cell_type": "code",
|
262 |
+
"execution_count": 9,
|
263 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
264 |
"metadata": {},
|
265 |
"outputs": [],
|
|
|
279 |
},
|
280 |
{
|
281 |
"cell_type": "code",
|
282 |
+
"execution_count": 10,
|
283 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
284 |
"metadata": {},
|
285 |
"outputs": [],
|
|
|
306 |
},
|
307 |
{
|
308 |
"cell_type": "code",
|
309 |
+
"execution_count": 11,
|
310 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
311 |
"metadata": {},
|
312 |
"outputs": [],
|
|
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
345 |
+
"execution_count": 12,
|
346 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
347 |
"metadata": {},
|
348 |
"outputs": [],
|
|
|
360 |
},
|
361 |
{
|
362 |
"cell_type": "code",
|
363 |
+
"execution_count": 13,
|
364 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
365 |
"metadata": {},
|
366 |
"outputs": [],
|
|
|
381 |
},
|
382 |
{
|
383 |
"cell_type": "code",
|
384 |
+
"execution_count": 14,
|
385 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
386 |
"metadata": {},
|
387 |
"outputs": [],
|
|
|
402 |
},
|
403 |
{
|
404 |
"cell_type": "code",
|
405 |
+
"execution_count": 15,
|
406 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
407 |
"metadata": {},
|
408 |
"outputs": [],
|
|
|
472 |
},
|
473 |
{
|
474 |
"cell_type": "code",
|
475 |
+
"execution_count": 16,
|
476 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
477 |
"metadata": {},
|
478 |
"outputs": [],
|
|
|
520 |
},
|
521 |
{
|
522 |
"cell_type": "code",
|
523 |
+
"execution_count": 17,
|
524 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
525 |
"metadata": {},
|
526 |
"outputs": [],
|
|
|
547 |
},
|
548 |
{
|
549 |
"cell_type": "code",
|
550 |
+
"execution_count": 18,
|
551 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
552 |
"metadata": {},
|
553 |
"outputs": [
|
554 |
{
|
555 |
"data": {
|
556 |
"application/vnd.jupyter.widget-view+json": {
|
557 |
+
"model_id": "bffdd7b1fed44295954d9eed41a9cfd5",
|
558 |
"version_major": 2,
|
559 |
"version_minor": 0
|
560 |
},
|
|
|
591 |
},
|
592 |
{
|
593 |
"cell_type": "code",
|
594 |
+
"execution_count": 19,
|
595 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
596 |
"metadata": {},
|
597 |
"outputs": [],
|
|
|
641 |
},
|
642 |
{
|
643 |
"cell_type": "code",
|
644 |
+
"execution_count": 20,
|
645 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
646 |
"metadata": {},
|
647 |
"outputs": [
|
648 |
{
|
649 |
"data": {
|
650 |
"application/vnd.jupyter.widget-view+json": {
|
651 |
+
"model_id": "48fee2fd3b2a4a67b3a35666fda4dfe9",
|
652 |
"version_major": 2,
|
653 |
"version_minor": 0
|
654 |
},
|
|
|
662 |
{
|
663 |
"data": {
|
664 |
"application/vnd.jupyter.widget-view+json": {
|
665 |
+
"model_id": "51cdba284e8f44318868fbd013970280",
|
666 |
"version_major": 2,
|
667 |
"version_minor": 0
|
668 |
},
|
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
+
"execution_count": 21,
|
694 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
|
|
718 |
},
|
719 |
{
|
720 |
"cell_type": "code",
|
721 |
+
"execution_count": 22,
|
722 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
723 |
"metadata": {},
|
724 |
"outputs": [],
|
|
|
730 |
" per_device_train_batch_size=64,\n",
|
731 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
732 |
" learning_rate=1e-5,\n",
|
733 |
+
" warmup_steps=200,\n",
|
734 |
+
" max_steps=1000,\n",
|
735 |
" gradient_checkpointing=True,\n",
|
736 |
" fp16=True,\n",
|
737 |
" evaluation_strategy=\"steps\",\n",
|
738 |
" per_device_eval_batch_size=8,\n",
|
739 |
" predict_with_generate=True,\n",
|
740 |
" generation_max_length=225,\n",
|
741 |
+
" save_steps=200,\n",
|
742 |
+
" eval_steps=200,\n",
|
743 |
" logging_steps=25,\n",
|
744 |
" report_to=[\"tensorboard\"],\n",
|
745 |
" load_best_model_at_end=True,\n",
|
|
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
+
"execution_count": 23,
|
772 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
773 |
"metadata": {},
|
774 |
"outputs": [],
|
|
|
797 |
},
|
798 |
{
|
799 |
"cell_type": "code",
|
800 |
+
"execution_count": 24,
|
801 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
802 |
"metadata": {},
|
803 |
"outputs": [
|
|
|
836 |
},
|
837 |
{
|
838 |
"cell_type": "code",
|
839 |
+
"execution_count": 25,
|
840 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
841 |
"metadata": {},
|
842 |
"outputs": [
|
|
|
893 |
"/home/ubuntu/.venv/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
894 |
" warnings.warn(\n",
|
895 |
"***** Running training *****\n",
|
896 |
+
" Num examples = 64000\n",
|
897 |
" Num Epochs = 9223372036854775807\n",
|
898 |
" Instantaneous batch size per device = 64\n",
|
899 |
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
900 |
" Gradient Accumulation steps = 1\n",
|
901 |
+
" Total optimization steps = 1000\n",
|
902 |
" Number of trainable parameters = 241734912\n",
|
903 |
+
"Reading metadata...: 6505it [00:00, 31331.40it/s]\n",
|
904 |
+
"Reading metadata...: 4485it [00:00, 41376.86it/s]\n",
|
905 |
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
906 |
]
|
907 |
},
|
|
|
911 |
"\n",
|
912 |
" <div>\n",
|
913 |
" \n",
|
914 |
+
" <progress value='201' max='1000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
915 |
+
" [ 201/1000 22:31 < 1:30:27, 0.15 it/s, Epoch 1.06/9223372036854775807]\n",
|
916 |
" </div>\n",
|
917 |
" <table border=\"1\" class=\"dataframe\">\n",
|
918 |
" <thead>\n",
|
|
|
937 |
"name": "stderr",
|
938 |
"output_type": "stream",
|
939 |
"text": [
|
940 |
+
"Reading metadata...: 6505it [00:00, 64162.65it/s]\n",
|
941 |
+
"Reading metadata...: 4485it [00:00, 27834.06it/s]\n",
|
942 |
+
"***** Running Evaluation *****\n",
|
943 |
+
" Num examples: Unknown\n",
|
944 |
+
" Batch size = 8\n",
|
945 |
+
"Reading metadata...: 4604it [00:00, 27155.92it/s]\n",
|
946 |
+
"The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
947 |
]
|
948 |
}
|
949 |
],
|
|
|
973 |
},
|
974 |
{
|
975 |
"cell_type": "code",
|
976 |
+
"execution_count": 24,
|
977 |
"id": "6dd0e310-9b07-4133-ac14-2ed2d7524e22",
|
978 |
"metadata": {},
|
979 |
"outputs": [],
|
|
|
999 |
},
|
1000 |
{
|
1001 |
"cell_type": "code",
|
1002 |
+
"execution_count": 31,
|
1003 |
"id": "95737cda-c5dd-4887-a4d0-dfcb0d61d977",
|
1004 |
"metadata": {},
|
1005 |
+
"outputs": [
|
1006 |
+
{
|
1007 |
+
"name": "stderr",
|
1008 |
+
"output_type": "stream",
|
1009 |
+
"text": [
|
1010 |
+
"Saving model checkpoint to ./\n",
|
1011 |
+
"Configuration saved in ./config.json\n",
|
1012 |
+
"Model weights saved in ./pytorch_model.bin\n",
|
1013 |
+
"Feature extractor saved in ./preprocessor_config.json\n",
|
1014 |
+
"tokenizer config file saved in ./tokenizer_config.json\n",
|
1015 |
+
"Special tokens file saved in ./special_tokens_map.json\n",
|
1016 |
+
"added tokens file saved in ./added_tokens.json\n"
|
1017 |
+
]
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"data": {
|
1021 |
+
"application/vnd.jupyter.widget-view+json": {
|
1022 |
+
"model_id": "695c170663c94560a567be198b7181ff",
|
1023 |
+
"version_major": 2,
|
1024 |
+
"version_minor": 0
|
1025 |
+
},
|
1026 |
+
"text/plain": [
|
1027 |
+
"Upload file runs/Dec10_16-23-25_129-213-27-84/1670689420.7830398/events.out.tfevents.1670689420.129-213-27-84.…"
|
1028 |
+
]
|
1029 |
+
},
|
1030 |
+
"metadata": {},
|
1031 |
+
"output_type": "display_data"
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"data": {
|
1035 |
+
"application/vnd.jupyter.widget-view+json": {
|
1036 |
+
"model_id": "2318836d6dd3405fabafca4370232e34",
|
1037 |
+
"version_major": 2,
|
1038 |
+
"version_minor": 0
|
1039 |
+
},
|
1040 |
+
"text/plain": [
|
1041 |
+
"Upload file training_args.bin: 100%|##########| 3.50k/3.50k [00:00<?, ?B/s]"
|
1042 |
+
]
|
1043 |
+
},
|
1044 |
+
"metadata": {},
|
1045 |
+
"output_type": "display_data"
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"data": {
|
1049 |
+
"application/vnd.jupyter.widget-view+json": {
|
1050 |
+
"model_id": "9b673eb134984bdda227d23929b66479",
|
1051 |
+
"version_major": 2,
|
1052 |
+
"version_minor": 0
|
1053 |
+
},
|
1054 |
+
"text/plain": [
|
1055 |
+
"Upload file runs/Dec10_16-23-25_129-213-27-84/events.out.tfevents.1670689420.129-213-27-84.69598.2: 100%|#####…"
|
1056 |
+
]
|
1057 |
+
},
|
1058 |
+
"metadata": {},
|
1059 |
+
"output_type": "display_data"
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"name": "stderr",
|
1063 |
+
"output_type": "stream",
|
1064 |
+
"text": [
|
1065 |
+
"remote: Scanning LFS files for validity, may be slow... \n",
|
1066 |
+
"remote: LFS file scan complete. \n",
|
1067 |
+
"To https://huggingface.co/kimbochen/whisper-small-jp\n",
|
1068 |
+
" 3a44fa5..05da956 main -> main\n",
|
1069 |
+
"\n",
|
1070 |
+
"To https://huggingface.co/kimbochen/whisper-small-jp\n",
|
1071 |
+
" 05da956..30906c5 main -> main\n",
|
1072 |
+
"\n"
|
1073 |
+
]
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"data": {
|
1077 |
+
"text/plain": [
|
1078 |
+
"'https://huggingface.co/kimbochen/whisper-small-jp/commit/05da956fdc97e7c01112f45c20e56c8f6a127502'"
|
1079 |
+
]
|
1080 |
+
},
|
1081 |
+
"execution_count": 31,
|
1082 |
+
"metadata": {},
|
1083 |
+
"output_type": "execute_result"
|
1084 |
+
}
|
1085 |
+
],
|
1086 |
"source": [
|
1087 |
"trainer.push_to_hub(**kwargs)"
|
1088 |
]
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"cell_type": "code",
|
1092 |
+
"execution_count": 28,
|
1093 |
+
"id": "4df1603c-ef35-40f1-ae57-3214441073c8",
|
1094 |
+
"metadata": {},
|
1095 |
+
"outputs": [
|
1096 |
+
{
|
1097 |
+
"name": "stderr",
|
1098 |
+
"output_type": "stream",
|
1099 |
+
"text": [
|
1100 |
+
"PyTorch: setting up devices\n"
|
1101 |
+
]
|
1102 |
+
}
|
1103 |
+
],
|
1104 |
+
"source": [
|
1105 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
1106 |
+
" output_dir=\"./\",\n",
|
1107 |
+
" per_device_train_batch_size=64,\n",
|
1108 |
+
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
1109 |
+
" learning_rate=1e-5,\n",
|
1110 |
+
" max_steps=1000,\n",
|
1111 |
+
" num_train_epochs=-1,\n",
|
1112 |
+
" gradient_checkpointing=True,\n",
|
1113 |
+
" fp16=True,\n",
|
1114 |
+
" evaluation_strategy=\"steps\",\n",
|
1115 |
+
" per_device_eval_batch_size=8,\n",
|
1116 |
+
" predict_with_generate=True,\n",
|
1117 |
+
" generation_max_length=225,\n",
|
1118 |
+
" save_steps=1000,\n",
|
1119 |
+
" eval_steps=1000,\n",
|
1120 |
+
" logging_steps=25,\n",
|
1121 |
+
" report_to=[\"tensorboard\"],\n",
|
1122 |
+
" load_best_model_at_end=True,\n",
|
1123 |
+
" metric_for_best_model=\"wer\",\n",
|
1124 |
+
" greater_is_better=False,\n",
|
1125 |
+
" push_to_hub=True,\n",
|
1126 |
+
")"
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"cell_type": "code",
|
1131 |
+
"execution_count": 29,
|
1132 |
+
"id": "afc2b554-7171-48c7-95aa-b7e61b70ab20",
|
1133 |
+
"metadata": {},
|
1134 |
+
"outputs": [
|
1135 |
+
{
|
1136 |
+
"name": "stderr",
|
1137 |
+
"output_type": "stream",
|
1138 |
+
"text": [
|
1139 |
+
"/home/ubuntu/whisper-small-jp/./ is already a clone of https://huggingface.co/kimbochen/whisper-small-jp. Make sure you pull the latest changes with `repo.git_pull()`.\n",
|
1140 |
+
"max_steps is given, it will override any value given in num_train_epochs\n",
|
1141 |
+
"Using cuda_amp half precision backend\n"
|
1142 |
+
]
|
1143 |
+
}
|
1144 |
+
],
|
1145 |
+
"source": [
|
1146 |
+
"trainer = Seq2SeqTrainer(\n",
|
1147 |
+
" args=training_args,\n",
|
1148 |
+
" model=model,\n",
|
1149 |
+
" train_dataset=vectorized_datasets[\"train\"],\n",
|
1150 |
+
" eval_dataset=vectorized_datasets[\"test\"],\n",
|
1151 |
+
" data_collator=data_collator,\n",
|
1152 |
+
" compute_metrics=compute_metrics,\n",
|
1153 |
+
" tokenizer=processor,\n",
|
1154 |
+
" callbacks=[ShuffleCallback()],\n",
|
1155 |
+
")"
|
1156 |
+
]
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"cell_type": "code",
|
1160 |
+
"execution_count": 30,
|
1161 |
+
"id": "b029a1d8-24de-46e7-b067-0f900b1db342",
|
1162 |
+
"metadata": {},
|
1163 |
+
"outputs": [
|
1164 |
+
{
|
1165 |
+
"name": "stderr",
|
1166 |
+
"output_type": "stream",
|
1167 |
+
"text": [
|
1168 |
+
"Loading model from checkpoint-4000.\n",
|
1169 |
+
"/home/ubuntu/.venv/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
1170 |
+
" warnings.warn(\n",
|
1171 |
+
"***** Running training *****\n",
|
1172 |
+
" Num examples = 64000\n",
|
1173 |
+
" Num Epochs = 9223372036854775807\n",
|
1174 |
+
" Instantaneous batch size per device = 64\n",
|
1175 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
1176 |
+
" Gradient Accumulation steps = 1\n",
|
1177 |
+
" Total optimization steps = 1000\n",
|
1178 |
+
" Number of trainable parameters = 241734912\n",
|
1179 |
+
" Continuing training from checkpoint, will skip to saved global_step\n",
|
1180 |
+
" Continuing training from epoch 4\n",
|
1181 |
+
" Continuing training from global step 4000\n",
|
1182 |
+
" Will skip the first 4 epochs then the first 0 batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` flag to your launch command, but you will resume the training on data already seen by your model.\n"
|
1183 |
+
]
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"data": {
|
1187 |
+
"application/vnd.jupyter.widget-view+json": {
|
1188 |
+
"model_id": "01337298313740d98d3cc75b6d5e3ff7",
|
1189 |
+
"version_major": 2,
|
1190 |
+
"version_minor": 0
|
1191 |
+
},
|
1192 |
+
"text/plain": [
|
1193 |
+
"0it [00:00, ?it/s]"
|
1194 |
+
]
|
1195 |
+
},
|
1196 |
+
"metadata": {},
|
1197 |
+
"output_type": "display_data"
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"name": "stderr",
|
1201 |
+
"output_type": "stream",
|
1202 |
+
"text": [
|
1203 |
+
"\n",
|
1204 |
+
"Reading metadata...: 0it [00:00, ?it/s]\u001b[A\n",
|
1205 |
+
"Reading metadata...: 6505it [00:00, 34246.80it/s]\n",
|
1206 |
+
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n",
|
1207 |
+
"\n",
|
1208 |
+
"Reading metadata...: 6505it [00:00, 84823.64it/s]\n",
|
1209 |
+
"\n",
|
1210 |
+
"Reading metadata...: 6505it [00:00, 88617.62it/s]\n",
|
1211 |
+
"\n",
|
1212 |
+
"Reading metadata...: 6505it [00:00, 90289.78it/s]\n",
|
1213 |
+
"\n",
|
1214 |
+
"Reading metadata...: 6505it [00:00, 91816.92it/s]\n"
|
1215 |
+
]
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"data": {
|
1219 |
+
"text/html": [
|
1220 |
+
"\n",
|
1221 |
+
" <div>\n",
|
1222 |
+
" \n",
|
1223 |
+
" <progress value='4001' max='1000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1224 |
+
" [1000/1000 00:00, Epoch 4/9223372036854775807]\n",
|
1225 |
+
" </div>\n",
|
1226 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1227 |
+
" <thead>\n",
|
1228 |
+
" <tr style=\"text-align: left;\">\n",
|
1229 |
+
" <th>Step</th>\n",
|
1230 |
+
" <th>Training Loss</th>\n",
|
1231 |
+
" <th>Validation Loss</th>\n",
|
1232 |
+
" </tr>\n",
|
1233 |
+
" </thead>\n",
|
1234 |
+
" <tbody>\n",
|
1235 |
+
" </tbody>\n",
|
1236 |
+
"</table><p>"
|
1237 |
+
],
|
1238 |
+
"text/plain": [
|
1239 |
+
"<IPython.core.display.HTML object>"
|
1240 |
+
]
|
1241 |
+
},
|
1242 |
+
"metadata": {},
|
1243 |
+
"output_type": "display_data"
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"name": "stderr",
|
1247 |
+
"output_type": "stream",
|
1248 |
+
"text": [
|
1249 |
+
"\n",
|
1250 |
+
"\n",
|
1251 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
1252 |
+
"\n",
|
1253 |
+
"\n",
|
1254 |
+
"Loading best model from ./checkpoint-4000 (score: 88.31039863810469).\n"
|
1255 |
+
]
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"data": {
|
1259 |
+
"text/plain": [
|
1260 |
+
"TrainOutput(global_step=4001, training_loss=8.343380785802548e-08, metrics={'train_runtime': 169.0541, 'train_samples_per_second': 378.577, 'train_steps_per_second': 5.915, 'total_flos': 7.363747084345344e+19, 'train_loss': 8.343380785802548e-08, 'epoch': 4.0})"
|
1261 |
+
]
|
1262 |
+
},
|
1263 |
+
"execution_count": 30,
|
1264 |
+
"metadata": {},
|
1265 |
+
"output_type": "execute_result"
|
1266 |
+
}
|
1267 |
+
],
|
1268 |
+
"source": [
|
1269 |
+
"trainer.train(\"checkpoint-4000\")"
|
1270 |
+
]
|
1271 |
}
|
1272 |
],
|
1273 |
"metadata": {
|
1274 |
"kernelspec": {
|
1275 |
+
"display_name": "wspsr",
|
1276 |
"language": "python",
|
1277 |
+
"name": "wspsr"
|
1278 |
},
|
1279 |
"language_info": {
|
1280 |
"codemirror_mode": {
|
fine-tune-whisper-streaming.ipynb
CHANGED
@@ -108,7 +108,7 @@
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
-
"execution_count":
|
112 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
113 |
"metadata": {},
|
114 |
"outputs": [],
|
@@ -142,7 +142,7 @@
|
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
-
"execution_count":
|
146 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
147 |
"metadata": {},
|
148 |
"outputs": [],
|
@@ -151,7 +151,7 @@
|
|
151 |
"\n",
|
152 |
"raw_datasets = IterableDatasetDict()\n",
|
153 |
"\n",
|
154 |
-
"raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"train\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n",
|
155 |
"raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"test\", use_auth_token=True)"
|
156 |
]
|
157 |
},
|
@@ -185,109 +185,10 @@
|
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
-
"execution_count":
|
189 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
190 |
"metadata": {},
|
191 |
-
"outputs": [
|
192 |
-
{
|
193 |
-
"data": {
|
194 |
-
"application/vnd.jupyter.widget-view+json": {
|
195 |
-
"model_id": "ab8ef1fb2f284e2abd43a1b1bde55882",
|
196 |
-
"version_major": 2,
|
197 |
-
"version_minor": 0
|
198 |
-
},
|
199 |
-
"text/plain": [
|
200 |
-
"Downloading: 0%| | 0.00/185k [00:00<?, ?B/s]"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
"metadata": {},
|
204 |
-
"output_type": "display_data"
|
205 |
-
},
|
206 |
-
{
|
207 |
-
"data": {
|
208 |
-
"application/vnd.jupyter.widget-view+json": {
|
209 |
-
"model_id": "e0c2142f48224f1582e6457dbb8e5276",
|
210 |
-
"version_major": 2,
|
211 |
-
"version_minor": 0
|
212 |
-
},
|
213 |
-
"text/plain": [
|
214 |
-
"Downloading: 0%| | 0.00/829 [00:00<?, ?B/s]"
|
215 |
-
]
|
216 |
-
},
|
217 |
-
"metadata": {},
|
218 |
-
"output_type": "display_data"
|
219 |
-
},
|
220 |
-
{
|
221 |
-
"data": {
|
222 |
-
"application/vnd.jupyter.widget-view+json": {
|
223 |
-
"model_id": "55aa8ea93e924389b339aefec864805d",
|
224 |
-
"version_major": 2,
|
225 |
-
"version_minor": 0
|
226 |
-
},
|
227 |
-
"text/plain": [
|
228 |
-
"Downloading: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
|
229 |
-
]
|
230 |
-
},
|
231 |
-
"metadata": {},
|
232 |
-
"output_type": "display_data"
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"data": {
|
236 |
-
"application/vnd.jupyter.widget-view+json": {
|
237 |
-
"model_id": "5cc4483a4d234f73914d26f285588949",
|
238 |
-
"version_major": 2,
|
239 |
-
"version_minor": 0
|
240 |
-
},
|
241 |
-
"text/plain": [
|
242 |
-
"Downloading: 0%| | 0.00/494k [00:00<?, ?B/s]"
|
243 |
-
]
|
244 |
-
},
|
245 |
-
"metadata": {},
|
246 |
-
"output_type": "display_data"
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"data": {
|
250 |
-
"application/vnd.jupyter.widget-view+json": {
|
251 |
-
"model_id": "806dfeffeb1a4d6ba3a042cadee13450",
|
252 |
-
"version_major": 2,
|
253 |
-
"version_minor": 0
|
254 |
-
},
|
255 |
-
"text/plain": [
|
256 |
-
"Downloading: 0%| | 0.00/52.7k [00:00<?, ?B/s]"
|
257 |
-
]
|
258 |
-
},
|
259 |
-
"metadata": {},
|
260 |
-
"output_type": "display_data"
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"data": {
|
264 |
-
"application/vnd.jupyter.widget-view+json": {
|
265 |
-
"model_id": "b93cdf2091424615927adaefb032132f",
|
266 |
-
"version_major": 2,
|
267 |
-
"version_minor": 0
|
268 |
-
},
|
269 |
-
"text/plain": [
|
270 |
-
"Downloading: 0%| | 0.00/2.11k [00:00<?, ?B/s]"
|
271 |
-
]
|
272 |
-
},
|
273 |
-
"metadata": {},
|
274 |
-
"output_type": "display_data"
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"data": {
|
278 |
-
"application/vnd.jupyter.widget-view+json": {
|
279 |
-
"model_id": "cdb5621656934de2a60214f67530212c",
|
280 |
-
"version_major": 2,
|
281 |
-
"version_minor": 0
|
282 |
-
},
|
283 |
-
"text/plain": [
|
284 |
-
"Downloading: 0%| | 0.00/2.06k [00:00<?, ?B/s]"
|
285 |
-
]
|
286 |
-
},
|
287 |
-
"metadata": {},
|
288 |
-
"output_type": "display_data"
|
289 |
-
}
|
290 |
-
],
|
291 |
"source": [
|
292 |
"from transformers import WhisperProcessor\n",
|
293 |
"\n",
|
@@ -312,7 +213,7 @@
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
-
"execution_count":
|
316 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
317 |
"metadata": {},
|
318 |
"outputs": [
|
@@ -332,7 +233,7 @@
|
|
332 |
" 'segment': Value(dtype='string', id=None)}"
|
333 |
]
|
334 |
},
|
335 |
-
"execution_count":
|
336 |
"metadata": {},
|
337 |
"output_type": "execute_result"
|
338 |
}
|
@@ -358,7 +259,7 @@
|
|
358 |
},
|
359 |
{
|
360 |
"cell_type": "code",
|
361 |
-
"execution_count":
|
362 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
363 |
"metadata": {},
|
364 |
"outputs": [],
|
@@ -378,7 +279,7 @@
|
|
378 |
},
|
379 |
{
|
380 |
"cell_type": "code",
|
381 |
-
"execution_count":
|
382 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
383 |
"metadata": {},
|
384 |
"outputs": [],
|
@@ -405,7 +306,7 @@
|
|
405 |
},
|
406 |
{
|
407 |
"cell_type": "code",
|
408 |
-
"execution_count":
|
409 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
410 |
"metadata": {},
|
411 |
"outputs": [],
|
@@ -441,7 +342,7 @@
|
|
441 |
},
|
442 |
{
|
443 |
"cell_type": "code",
|
444 |
-
"execution_count":
|
445 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
446 |
"metadata": {},
|
447 |
"outputs": [],
|
@@ -459,7 +360,7 @@
|
|
459 |
},
|
460 |
{
|
461 |
"cell_type": "code",
|
462 |
-
"execution_count":
|
463 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
464 |
"metadata": {},
|
465 |
"outputs": [],
|
@@ -480,7 +381,7 @@
|
|
480 |
},
|
481 |
{
|
482 |
"cell_type": "code",
|
483 |
-
"execution_count":
|
484 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
485 |
"metadata": {},
|
486 |
"outputs": [],
|
@@ -501,7 +402,7 @@
|
|
501 |
},
|
502 |
{
|
503 |
"cell_type": "code",
|
504 |
-
"execution_count":
|
505 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
506 |
"metadata": {},
|
507 |
"outputs": [],
|
@@ -571,7 +472,7 @@
|
|
571 |
},
|
572 |
{
|
573 |
"cell_type": "code",
|
574 |
-
"execution_count":
|
575 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
576 |
"metadata": {},
|
577 |
"outputs": [],
|
@@ -619,7 +520,7 @@
|
|
619 |
},
|
620 |
{
|
621 |
"cell_type": "code",
|
622 |
-
"execution_count":
|
623 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
624 |
"metadata": {},
|
625 |
"outputs": [],
|
@@ -646,14 +547,14 @@
|
|
646 |
},
|
647 |
{
|
648 |
"cell_type": "code",
|
649 |
-
"execution_count":
|
650 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
651 |
"metadata": {},
|
652 |
"outputs": [
|
653 |
{
|
654 |
"data": {
|
655 |
"application/vnd.jupyter.widget-view+json": {
|
656 |
-
"model_id": "
|
657 |
"version_major": 2,
|
658 |
"version_minor": 0
|
659 |
},
|
@@ -690,7 +591,7 @@
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
-
"execution_count":
|
694 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
@@ -740,14 +641,14 @@
|
|
740 |
},
|
741 |
{
|
742 |
"cell_type": "code",
|
743 |
-
"execution_count":
|
744 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
745 |
"metadata": {},
|
746 |
"outputs": [
|
747 |
{
|
748 |
"data": {
|
749 |
"application/vnd.jupyter.widget-view+json": {
|
750 |
-
"model_id": "
|
751 |
"version_major": 2,
|
752 |
"version_minor": 0
|
753 |
},
|
@@ -761,7 +662,7 @@
|
|
761 |
{
|
762 |
"data": {
|
763 |
"application/vnd.jupyter.widget-view+json": {
|
764 |
-
"model_id": "
|
765 |
"version_major": 2,
|
766 |
"version_minor": 0
|
767 |
},
|
@@ -789,7 +690,7 @@
|
|
789 |
},
|
790 |
{
|
791 |
"cell_type": "code",
|
792 |
-
"execution_count":
|
793 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
794 |
"metadata": {},
|
795 |
"outputs": [],
|
@@ -817,7 +718,7 @@
|
|
817 |
},
|
818 |
{
|
819 |
"cell_type": "code",
|
820 |
-
"execution_count":
|
821 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
822 |
"metadata": {},
|
823 |
"outputs": [],
|
@@ -829,16 +730,16 @@
|
|
829 |
" per_device_train_batch_size=64,\n",
|
830 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
831 |
" learning_rate=1e-5,\n",
|
832 |
-
" warmup_steps=
|
833 |
-
" max_steps=
|
834 |
" gradient_checkpointing=True,\n",
|
835 |
" fp16=True,\n",
|
836 |
" evaluation_strategy=\"steps\",\n",
|
837 |
" per_device_eval_batch_size=8,\n",
|
838 |
" predict_with_generate=True,\n",
|
839 |
" generation_max_length=225,\n",
|
840 |
-
" save_steps=
|
841 |
-
" eval_steps=
|
842 |
" logging_steps=25,\n",
|
843 |
" report_to=[\"tensorboard\"],\n",
|
844 |
" load_best_model_at_end=True,\n",
|
@@ -867,7 +768,7 @@
|
|
867 |
},
|
868 |
{
|
869 |
"cell_type": "code",
|
870 |
-
"execution_count":
|
871 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
872 |
"metadata": {},
|
873 |
"outputs": [],
|
@@ -896,7 +797,7 @@
|
|
896 |
},
|
897 |
{
|
898 |
"cell_type": "code",
|
899 |
-
"execution_count":
|
900 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
901 |
"metadata": {},
|
902 |
"outputs": [
|
@@ -935,7 +836,7 @@
|
|
935 |
},
|
936 |
{
|
937 |
"cell_type": "code",
|
938 |
-
"execution_count":
|
939 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
940 |
"metadata": {},
|
941 |
"outputs": [
|
@@ -992,14 +893,15 @@
|
|
992 |
"/home/ubuntu/.venv/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
993 |
" warnings.warn(\n",
|
994 |
"***** Running training *****\n",
|
995 |
-
" Num examples =
|
996 |
" Num Epochs = 9223372036854775807\n",
|
997 |
" Instantaneous batch size per device = 64\n",
|
998 |
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
999 |
" Gradient Accumulation steps = 1\n",
|
1000 |
-
" Total optimization steps =
|
1001 |
" Number of trainable parameters = 241734912\n",
|
1002 |
-
"Reading metadata...: 6505it [00:00,
|
|
|
1003 |
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
1004 |
]
|
1005 |
},
|
@@ -1009,8 +911,8 @@
|
|
1009 |
"\n",
|
1010 |
" <div>\n",
|
1011 |
" \n",
|
1012 |
-
" <progress value='
|
1013 |
-
" [
|
1014 |
" </div>\n",
|
1015 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1016 |
" <thead>\n",
|
@@ -1018,22 +920,9 @@
|
|
1018 |
" <th>Step</th>\n",
|
1019 |
" <th>Training Loss</th>\n",
|
1020 |
" <th>Validation Loss</th>\n",
|
1021 |
-
" <th>Wer</th>\n",
|
1022 |
" </tr>\n",
|
1023 |
" </thead>\n",
|
1024 |
" <tbody>\n",
|
1025 |
-
" <tr>\n",
|
1026 |
-
" <td>1000</td>\n",
|
1027 |
-
" <td>0.006600</td>\n",
|
1028 |
-
" <td>0.468024</td>\n",
|
1029 |
-
" <td>90.537665</td>\n",
|
1030 |
-
" </tr>\n",
|
1031 |
-
" <tr>\n",
|
1032 |
-
" <td>2000</td>\n",
|
1033 |
-
" <td>0.003000</td>\n",
|
1034 |
-
" <td>0.512834</td>\n",
|
1035 |
-
" <td>89.360193</td>\n",
|
1036 |
-
" </tr>\n",
|
1037 |
" </tbody>\n",
|
1038 |
"</table><p>"
|
1039 |
],
|
@@ -1048,11 +937,13 @@
|
|
1048 |
"name": "stderr",
|
1049 |
"output_type": "stream",
|
1050 |
"text": [
|
1051 |
-
"Reading metadata...: 6505it [00:00,
|
1052 |
-
"Reading metadata...:
|
1053 |
-
"
|
1054 |
-
"
|
1055 |
-
"
|
|
|
|
|
1056 |
]
|
1057 |
}
|
1058 |
],
|
@@ -1381,9 +1272,9 @@
|
|
1381 |
],
|
1382 |
"metadata": {
|
1383 |
"kernelspec": {
|
1384 |
-
"display_name": "
|
1385 |
"language": "python",
|
1386 |
-
"name": "
|
1387 |
},
|
1388 |
"language_info": {
|
1389 |
"codemirror_mode": {
|
|
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
+
"execution_count": 5,
|
112 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
113 |
"metadata": {},
|
114 |
"outputs": [],
|
|
|
142 |
},
|
143 |
{
|
144 |
"cell_type": "code",
|
145 |
+
"execution_count": 6,
|
146 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
147 |
"metadata": {},
|
148 |
"outputs": [],
|
|
|
151 |
"\n",
|
152 |
"raw_datasets = IterableDatasetDict()\n",
|
153 |
"\n",
|
154 |
+
"raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"train+validation\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n",
|
155 |
"raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"ja\", split=\"test\", use_auth_token=True)"
|
156 |
]
|
157 |
},
|
|
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
+
"execution_count": 7,
|
189 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
190 |
"metadata": {},
|
191 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
"source": [
|
193 |
"from transformers import WhisperProcessor\n",
|
194 |
"\n",
|
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
+
"execution_count": 8,
|
217 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
|
|
233 |
" 'segment': Value(dtype='string', id=None)}"
|
234 |
]
|
235 |
},
|
236 |
+
"execution_count": 8,
|
237 |
"metadata": {},
|
238 |
"output_type": "execute_result"
|
239 |
}
|
|
|
259 |
},
|
260 |
{
|
261 |
"cell_type": "code",
|
262 |
+
"execution_count": 9,
|
263 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
264 |
"metadata": {},
|
265 |
"outputs": [],
|
|
|
279 |
},
|
280 |
{
|
281 |
"cell_type": "code",
|
282 |
+
"execution_count": 10,
|
283 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
284 |
"metadata": {},
|
285 |
"outputs": [],
|
|
|
306 |
},
|
307 |
{
|
308 |
"cell_type": "code",
|
309 |
+
"execution_count": 11,
|
310 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
311 |
"metadata": {},
|
312 |
"outputs": [],
|
|
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
345 |
+
"execution_count": 12,
|
346 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
347 |
"metadata": {},
|
348 |
"outputs": [],
|
|
|
360 |
},
|
361 |
{
|
362 |
"cell_type": "code",
|
363 |
+
"execution_count": 13,
|
364 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
365 |
"metadata": {},
|
366 |
"outputs": [],
|
|
|
381 |
},
|
382 |
{
|
383 |
"cell_type": "code",
|
384 |
+
"execution_count": 14,
|
385 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
386 |
"metadata": {},
|
387 |
"outputs": [],
|
|
|
402 |
},
|
403 |
{
|
404 |
"cell_type": "code",
|
405 |
+
"execution_count": 15,
|
406 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
407 |
"metadata": {},
|
408 |
"outputs": [],
|
|
|
472 |
},
|
473 |
{
|
474 |
"cell_type": "code",
|
475 |
+
"execution_count": 16,
|
476 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
477 |
"metadata": {},
|
478 |
"outputs": [],
|
|
|
520 |
},
|
521 |
{
|
522 |
"cell_type": "code",
|
523 |
+
"execution_count": 17,
|
524 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
525 |
"metadata": {},
|
526 |
"outputs": [],
|
|
|
547 |
},
|
548 |
{
|
549 |
"cell_type": "code",
|
550 |
+
"execution_count": 18,
|
551 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
552 |
"metadata": {},
|
553 |
"outputs": [
|
554 |
{
|
555 |
"data": {
|
556 |
"application/vnd.jupyter.widget-view+json": {
|
557 |
+
"model_id": "bffdd7b1fed44295954d9eed41a9cfd5",
|
558 |
"version_major": 2,
|
559 |
"version_minor": 0
|
560 |
},
|
|
|
591 |
},
|
592 |
{
|
593 |
"cell_type": "code",
|
594 |
+
"execution_count": 19,
|
595 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
596 |
"metadata": {},
|
597 |
"outputs": [],
|
|
|
641 |
},
|
642 |
{
|
643 |
"cell_type": "code",
|
644 |
+
"execution_count": 20,
|
645 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
646 |
"metadata": {},
|
647 |
"outputs": [
|
648 |
{
|
649 |
"data": {
|
650 |
"application/vnd.jupyter.widget-view+json": {
|
651 |
+
"model_id": "48fee2fd3b2a4a67b3a35666fda4dfe9",
|
652 |
"version_major": 2,
|
653 |
"version_minor": 0
|
654 |
},
|
|
|
662 |
{
|
663 |
"data": {
|
664 |
"application/vnd.jupyter.widget-view+json": {
|
665 |
+
"model_id": "51cdba284e8f44318868fbd013970280",
|
666 |
"version_major": 2,
|
667 |
"version_minor": 0
|
668 |
},
|
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
+
"execution_count": 21,
|
694 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
|
|
718 |
},
|
719 |
{
|
720 |
"cell_type": "code",
|
721 |
+
"execution_count": 22,
|
722 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
723 |
"metadata": {},
|
724 |
"outputs": [],
|
|
|
730 |
" per_device_train_batch_size=64,\n",
|
731 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
732 |
" learning_rate=1e-5,\n",
|
733 |
+
" warmup_steps=200,\n",
|
734 |
+
" max_steps=1000,\n",
|
735 |
" gradient_checkpointing=True,\n",
|
736 |
" fp16=True,\n",
|
737 |
" evaluation_strategy=\"steps\",\n",
|
738 |
" per_device_eval_batch_size=8,\n",
|
739 |
" predict_with_generate=True,\n",
|
740 |
" generation_max_length=225,\n",
|
741 |
+
" save_steps=200,\n",
|
742 |
+
" eval_steps=200,\n",
|
743 |
" logging_steps=25,\n",
|
744 |
" report_to=[\"tensorboard\"],\n",
|
745 |
" load_best_model_at_end=True,\n",
|
|
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
+
"execution_count": 23,
|
772 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
773 |
"metadata": {},
|
774 |
"outputs": [],
|
|
|
797 |
},
|
798 |
{
|
799 |
"cell_type": "code",
|
800 |
+
"execution_count": 24,
|
801 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
802 |
"metadata": {},
|
803 |
"outputs": [
|
|
|
836 |
},
|
837 |
{
|
838 |
"cell_type": "code",
|
839 |
+
"execution_count": 25,
|
840 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
841 |
"metadata": {},
|
842 |
"outputs": [
|
|
|
893 |
"/home/ubuntu/.venv/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
894 |
" warnings.warn(\n",
|
895 |
"***** Running training *****\n",
|
896 |
+
" Num examples = 64000\n",
|
897 |
" Num Epochs = 9223372036854775807\n",
|
898 |
" Instantaneous batch size per device = 64\n",
|
899 |
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
|
900 |
" Gradient Accumulation steps = 1\n",
|
901 |
+
" Total optimization steps = 1000\n",
|
902 |
" Number of trainable parameters = 241734912\n",
|
903 |
+
"Reading metadata...: 6505it [00:00, 31331.40it/s]\n",
|
904 |
+
"Reading metadata...: 4485it [00:00, 41376.86it/s]\n",
|
905 |
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
906 |
]
|
907 |
},
|
|
|
911 |
"\n",
|
912 |
" <div>\n",
|
913 |
" \n",
|
914 |
+
" <progress value='201' max='1000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
915 |
+
" [ 201/1000 22:31 < 1:30:27, 0.15 it/s, Epoch 1.06/9223372036854775807]\n",
|
916 |
" </div>\n",
|
917 |
" <table border=\"1\" class=\"dataframe\">\n",
|
918 |
" <thead>\n",
|
|
|
920 |
" <th>Step</th>\n",
|
921 |
" <th>Training Loss</th>\n",
|
922 |
" <th>Validation Loss</th>\n",
|
|
|
923 |
" </tr>\n",
|
924 |
" </thead>\n",
|
925 |
" <tbody>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
926 |
" </tbody>\n",
|
927 |
"</table><p>"
|
928 |
],
|
|
|
937 |
"name": "stderr",
|
938 |
"output_type": "stream",
|
939 |
"text": [
|
940 |
+
"Reading metadata...: 6505it [00:00, 64162.65it/s]\n",
|
941 |
+
"Reading metadata...: 4485it [00:00, 27834.06it/s]\n",
|
942 |
+
"***** Running Evaluation *****\n",
|
943 |
+
" Num examples: Unknown\n",
|
944 |
+
" Batch size = 8\n",
|
945 |
+
"Reading metadata...: 4604it [00:00, 27155.92it/s]\n",
|
946 |
+
"The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
947 |
]
|
948 |
}
|
949 |
],
|
|
|
1272 |
],
|
1273 |
"metadata": {
|
1274 |
"kernelspec": {
|
1275 |
+
"display_name": "wspsr",
|
1276 |
"language": "python",
|
1277 |
+
"name": "wspsr"
|
1278 |
},
|
1279 |
"language_info": {
|
1280 |
"codemirror_mode": {
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 967102601
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c4b0bb4897d70e1953cf26927fc51e19cecc3225658657daa32a0c0d1e1cb0
|
3 |
size 967102601
|
runs/Dec12_04-37-47_150-136-44-233/1670819878.783822/events.out.tfevents.1670819878.150-136-44-233.69039.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d13318210207986e1d4965c6206a303c2bcd72da40d33ba3b859c8e3111cf764
|
3 |
+
size 5864
|
runs/Dec12_04-37-47_150-136-44-233/events.out.tfevents.1670819878.150-136-44-233.69039.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da946657c9377166580c41662af45f086a478b101a9862b40eb5174e55e6f75a
|
3 |
+
size 5844
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3579
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:728d6cd7b154a86029fc38c737217977eb35dd910ed073d6628129742d876d7e
|
3 |
size 3579
|