--- license: apache-2.0 library_name: transformers tags: - biology datasets: - kimou605/TATA-NOTATA-FineMistral-nucleotide_transformer_downstream_tasks - InstaDeepAI/nucleotide_transformer_downstream_tasks language: - en pipeline_tag: text-generation --- BIOTATA logo # Model Card for Model ID BioTATA 7B V1 is a hybrid model merged between BioMistral 7B Dare and a 4bit QLORA adapter trained on TATA/NO TATA sequences from InstaDeepAI nucleotide_transformer_downstream_tasks dataset (promoters_all subset) ## Model Details ### Model Description - **Developed by:** Karim Akkari (kimou605) - **Funded by :** Karim Akkari (kimou605) - **Shared by :** Karim Akkari (kimou605) - **Model type:** FP32 - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model [optional]:** BioMistral 7B Dare ### Model Sources [optional] - **Repository:** kimou605/BioTATA-7B - **Demo [optional]:** [More Information Needed] ## How to Get Started with the Model ```python !pip install transformers !pip install accelerate !pip install bitsandbytes ``` ```python import os import torch import transformers from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline ) ``` ```python model_name='kimou605/BioTATA-7B' model_config = transformers.AutoConfig.from_pretrained( model_name, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" ``` ```python # Activate 4-bit precision base model loading use_4bit = True # Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" # Quantization type (fp4 or nf4) bnb_4bit_quant_type = "nf4" # Activate nested quantization for 4-bit base models (double quantization) use_nested_quant = True ``` ```python compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) ``` ```python model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, ) ``` ```python pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", tokenizer=tokenizer, ) ``` ```python messages = [{"role": "user", "content": "What is TATA"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=200, do_sample=True, temperature=0.01, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` This will inference the model on 4.8GB Vram ## Bias, Risks, and Limitations This model has been developped to show how can a medical LLM adapt itself to identify sequences as TATA/NO TATA The adapter has been trained on a 53.3k rows for only 1 epoch (due to hardware limitations) THIS MODEL IS FOR RESEARCH PURPOSES DO NOT USE IN PRODUCTION ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## Training Details You can view training report [here](https://wandb.ai/esprit-innovision/Fine%20tuning%20mistral%207B%20instadeep/reports/BioTATA--Vmlldzo3ODIwNTU3). ### Training Data kimou605/TATA-NOTATA-FineMistral-nucleotide_transformer_downstream_tasks ### Training Procedure #### Training Hyperparameters - **Training regime:** BF16 4bits #### Speeds, Sizes, Times [optional] 7h/ epoch batch_per_gpu 32 GPU: NVIDIA A40 45GB Vram ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** NVIDIA A40 - **Hours used:** 11H - **Cloud Provider:** vast.ai - **Compute Region:** Europe ## Model Card Contact Karim Akkari (kimou605)