Commit
·
0240590
1
Parent(s):
1a63ec7
Hparams-optimized-3
Browse files- Moonman-Lunar-Lander-v2.zip +2 -2
- Moonman-Lunar-Lander-v2/data +26 -26
- Moonman-Lunar-Lander-v2/policy.optimizer.pth +1 -1
- Moonman-Lunar-Lander-v2/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
Moonman-Lunar-Lander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d84cf8d7c85f281c640d36eaafd0e0502696517547ad645129222d21d3f3a257
|
3 |
+
size 144734
|
Moonman-Lunar-Lander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,13 +41,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,34 +56,34 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5dd83e2c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5dd83e2cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5dd83e2d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5dd83e2dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5dd83e2e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5dd83e2ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5dd83e2f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5dd83e8050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5dd83e80e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5dd83e8170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5dd83e8200>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5dd8409180>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 1048576,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652296689.0383725,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOhFjxE08w+XvCDPltsn77DzVs9wOwrPgAAAAAAAAAAEH6sPsM8X7wqagm9+35putKWbb3JyRq8AACAPwAAgD/N4gw8Cmpku5Xa+bsfwVq7viiQPKY2RjwAAIA/AACAPyZLt72Fo7a5KqBWPLU95TRKa8K6I8sANAAAgD8AAIA/s+VkPRSUoLo5Xby7As0YtobfHLpznIc1AACAPwAAgD+91Ge+7PGIu9h49TpgqrU5SHgVPbjEo7kAAIA/AACAP4AsQr3DNRQ5U1eJu6ESDrl39zQ7yUWIOAAAgD8AAIA/TaaVPlQLs7xGqSE7gUR1ueBCIL6FHUi6AACAPwAAgD9mJ+m9UtioOGjxETyRRE63ON7mO6r3TLYAAIA/AACAP5pZ4bpRHcI9uw+VPeOckL5bmyE+1SjWvQAAAAAAAAAAZjPhvcPxK7pQt8i5rH9kNY08jjliOuI4AACAPwAAgD8ze9i8SO+4urpMQ7u2R7k55aPAujjQqDkAAIA/AACAP03uuL1c3xq6jcGGuzrpgDjOnOq6eiEXOgAAgD8AAIA/eCfRvjL3vj4dqME+90iovj/iVb54hIg9AAAAAAAAAADNlbY9hQu2OH2mbjx9cOe5TtMjOhyuyroAAAAAAACAPzNDFzspnHe42l3kvKLfkjxsffq5j7CFvAAAgD8AAIA/szOovee4vT/OKMC+YQzEvWQXGb3nZS++AAAAAAAAAAAzLTy9j1oTupnJsrzfXk+4GpobOxC/vDcAAIA/AACAPzPpIL24lu65hqPxO0RVxDuUW6U6fq/eOwAAgD8AAIA/gH5xPoHjzby3LYQ8QTblusN2Nb4tepi7AACAPwAAgD+aRoU+7maFvFRbojrFLL24ciPrvR2cv7kAAIA/AACAPyYPrz1IO4K6kkRGu5Wmx7bABVs6E/xhOgAAgD8AAIA/ZlpOvI/yYrozs1Q70s3ztgJLETt4iXm6AACAPwAAgD9mXYA9tvaOP9X9eD6kFgW/WTw0PW7Cl7sAAAAAAAAAAJBDCz9XYPi9iScPvepamruakKS+V2pFvQAAgD8AAIA/gMqiPnTqZT8YuP09T1fbvoHlzD76BuK9AAAAAAAAAABzccQ99tw7uouA7zspGwi43F90ui9+A7cAAIA/AACAP81w2r0pbB85JJ61PE1mIzy++rM7oA3avAAAAAAAAIA/APiEPOFy5TnaTze798WaPAJ1YLtdO2c8AACAPwAAgD8AACW57MCCPlKmtD0bnGm+drA9vNYtuDsAAAAAAAAAANIFhL49FVM8zSPnO3Gil7nfBOu9PnGUOgAAgD8AAIA/pmyXvYXjhblVJqq8jiQavDUgPjsEpig9AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIueNNfotlUkCUhpRSlIwBbJRN6AOMAXSUR0CJ6BOSntOVdX2UKGgGaAloD0MI9n8O8+XlWUCUhpRSlGgVTegDaBZHQIoEDmhdt2t1fZQoaAZoCWgPQwhNhA1PrxhcQJSGlFKUaBVN6ANoFkdAiggJ9RaX8nV9lChoBmgJaA9DCHRfzmxXsClAlIaUUpRoFU3oA2gWR0CKGeUL2HtXdX2UKGgGaAloD0MITWcng6O9XkCUhpRSlGgVTegDaBZHQIoh9bFCLMt1fZQoaAZoCWgPQwhmMEYkCtRbQJSGlFKUaBVN6ANoFkdAiiKJSzgMt3V9lChoBmgJaA9DCLLyy2CMYF5AlIaUUpRoFU3oA2gWR0CKIs+NcW0rdX2UKGgGaAloD0MIcqQzMPJoW0CUhpRSlGgVTegDaBZHQIoleNBF/hF1fZQoaAZoCWgPQwhccXFUbkVeQJSGlFKUaBVN6ANoFkdAiiuA+6iCa3V9lChoBmgJaA9DCNwSueAMfgtAlIaUUpRoFU3oA2gWR0CKWExVQyh0dX2UKGgGaAloD0MImE2AYfnnN0CUhpRSlGgVTegDaBZHQIpeGP1ct5F1fZQoaAZoCWgPQwhNamgDsJ1SQJSGlFKUaBVN6ANoFkdAimA4m9g4O3V9lChoBmgJaA9DCNffEoB/lFlAlIaUUpRoFU3oA2gWR0CKYrKnNxEOdX2UKGgGaAloD0MIBVCMLJnFVMCUhpRSlGgVTTcCaBZHQIpmFD8cdYJ1fZQoaAZoCWgPQwiY3v5cNMNYQJSGlFKUaBVN6ANoFkdAinMpxm03O3V9lChoBmgJaA9DCLXAHhMpRlpAlIaUUpRoFU3oA2gWR0CKfyOdXko4dX2UKGgGaAloD0MI5bZ9j/psX0CUhpRSlGgVTegDaBZHQIqPYnhKlHl1fZQoaAZoCWgPQwgU56ij42xZQJSGlFKUaBVN6ANoFkdAipGPtD2JznV9lChoBmgJaA9DCFOu8C4XBlpAlIaUUpRoFU3oA2gWR0CKnhpDeCTVdX2UKGgGaAloD0MIVgxXB0B8EMCUhpRSlGgVS6FoFkdAiqVD7ALy+nV9lChoBmgJaA9DCIJYNnNIoVdAlIaUUpRoFU3oA2gWR0CKrPyoXKr8dX2UKGgGaAloD0MI00uMZfoWXkCUhpRSlGgVTegDaBZHQIq1a4QSSNh1fZQoaAZoCWgPQwif5Xlwd3RQQJSGlFKUaBVN6ANoFkdAirYbxmTTv3V9lChoBmgJaA9DCJmaBG9IKltAlIaUUpRoFU3oA2gWR0CKu2Y3vQWvdX2UKGgGaAloD0MIrimQ2VmEUECUhpRSlGgVS6poFkdAiscs0gr6L3V9lChoBmgJaA9DCH0/NV66d1VAlIaUUpRoFU3oA2gWR0CKyfj7yhBadX2UKGgGaAloD0MI2XbaGhF8UkCUhpRSlGgVTegDaBZHQIrMCblRxcV1fZQoaAZoCWgPQwjirfNvl/BfQJSGlFKUaBVN6ANoFkdAi0VfzreImHV9lChoBmgJaA9DCDjaccPvZlBAlIaUUpRoFUvRaBZHQItPCTMaCMB1fZQoaAZoCWgPQwhgBI2ZRERbQJSGlFKUaBVN6ANoFkdAi1j8Md92HXV9lChoBmgJaA9DCNiDSfHxCUNAlIaUUpRoFUvpaBZHQItcMCeVcD91fZQoaAZoCWgPQwhivyfWqShWQJSGlFKUaBVN6ANoFkdAi2gRIjGDMHV9lChoBmgJaA9DCOXuc3y0Bk9AlIaUUpRoFU3oA2gWR0CLaZRpDeCTdX2UKGgGaAloD0MIf/YjRWSgJUCUhpRSlGgVS7JoFkdAi2yE8zQ/o3V9lChoBmgJaA9DCLqHhO/90ltAlIaUUpRoFU3oA2gWR0CLgRAVwgkkdX2UKGgGaAloD0MI3gAz38E9V0CUhpRSlGgVTegDaBZHQIuG4P07KaJ1fZQoaAZoCWgPQwhcVmEzwEhaQJSGlFKUaBVN6ANoFkdAi4hcwg1WKnV9lChoBmgJaA9DCGMJa2NsXmFAlIaUUpRoFU3oA2gWR0CLinAO8TSLdX2UKGgGaAloD0MI10//WfNrJ8CUhpRSlGgVTegDaBZHQIuhUqaw2VF1fZQoaAZoCWgPQwgK98q8VfdSQJSGlFKUaBVN6ANoFkdAi6NDT8YQ8XV9lChoBmgJaA9DCN53DI/9g11AlIaUUpRoFU3oA2gWR0CLtLxz7uUmdX2UKGgGaAloD0MIqcKf4c3WOkCUhpRSlGgVS8ZoFkdAi7qGOEM9bHV9lChoBmgJaA9DCHNLqyFxmVVAlIaUUpRoFU3oA2gWR0CLvRE9dNWVdX2UKGgGaAloD0MI3ZTyWgkiV0CUhpRSlGgVTegDaBZHQIu9nJNj9XN1fZQoaAZoCWgPQwiQgxJm2lhcQJSGlFKUaBVN6ANoFkdAi73kal1r7HV9lChoBmgJaA9DCJFkVu9w6xlAlIaUUpRoFUu9aBZHQIu96TyJ9Ap1fZQoaAZoCWgPQwhbQdMSK/FaQJSGlFKUaBVN6ANoFkdAi8C0FB6a9nV9lChoBmgJaA9DCLKC34aYBWBAlIaUUpRoFU3oA2gWR0CLxsmgJ1JUdX2UKGgGaAloD0MIotCy7h+vMECUhpRSlGgVS7RoFkdAi/BvF3pwCXV9lChoBmgJaA9DCNnRONRvB2NAlIaUUpRoFU3oA2gWR0CL8rodMj/udX2UKGgGaAloD0MIB1+YTBWfW0CUhpRSlGgVTegDaBZHQIv4YQFs54p1fZQoaAZoCWgPQwh5BaIn5bRkQJSGlFKUaBVN6ANoFkdAi/qBAnlXBHV9lChoBmgJaA9DCKgck8X95F1AlIaUUpRoFU3oA2gWR0CL/NVzZHurdX2UKGgGaAloD0MIzEbn/BQRWkCUhpRSlGgVTegDaBZHQIv/9jkMkQh1fZQoaAZoCWgPQwjVy+80me9KQJSGlFKUaBVLx2gWR0CMAER7qptKdX2UKGgGaAloD0MILzIBv0YmV0CUhpRSlGgVTegDaBZHQIwWZ/ZuhsZ1fZQoaAZoCWgPQwh1WOGWD7NgQJSGlFKUaBVN6ANoFkdAjCYqfnOjZnV9lChoBmgJaA9DCEEpWrkXZDNAlIaUUpRoFUuxaBZHQIwzd8CxNZh1fZQoaAZoCWgPQwjsTKHzGtVLQJSGlFKUaBVN6ANoFkdAjEMYS6DoQnV9lChoBmgJaA9DCKDDfHkBik9AlIaUUpRoFU3oA2gWR0CMSz7dBSk1dX2UKGgGaAloD0MIYcYUrHGeT0CUhpRSlGgVTegDaBZHQIxL/uLJjlR1fZQoaAZoCWgPQwjCM6FJYo9eQJSGlFKUaBVN6ANoFkdAjFELqdH2AXV9lChoBmgJaA9DCNuLaDumc2JAlIaUUpRoFU3oA2gWR0CMX6ws5GSZdX2UKGgGaAloD0MINNjUeVQ8YUCUhpRSlGgVTegDaBZHQIxhd1bJOnF1fZQoaAZoCWgPQwjtKM5Rx+1gQJSGlFKUaBVN6ANoFkdAjGsL3TNMXnV9lChoBmgJaA9DCECGjh1UuinAlIaUUpRoFUu5aBZHQIxtpAnlXBB1fZQoaAZoCWgPQwiPcFrwohtaQJSGlFKUaBVN6ANoFkdAjHY1DjR2KXV9lChoBmgJaA9DCIZxN4hWk2BAlIaUUpRoFU3oA2gWR0CMgNVbzK9xdX2UKGgGaAloD0MIQPZ698dCYECUhpRSlGgVTegDaBZHQIyEVocrAgx1fZQoaAZoCWgPQwhivVErTPNhQJSGlFKUaBVN6ANoFkdAjI9pEpiI+HV9lChoBmgJaA9DCNI3aRoUVFNAlIaUUpRoFU3oA2gWR0CMkODaGpMpdX2UKGgGaAloD0MIoFBPH4FTNsCUhpRSlGgVS51oFkdAjJGzBAOav3V9lChoBmgJaA9DCOMXXklyrmBAlIaUUpRoFU3oA2gWR0CMk6nKGL1mdX2UKGgGaAloD0MIt3u5T46bU0CUhpRSlGgVTegDaBZHQIyvE6tDD0l1fZQoaAZoCWgPQwhQptHkYpxbQJSGlFKUaBVN6ANoFkdAjLFaY3Ns33V9lChoBmgJaA9DCFwAGqVLO1VAlIaUUpRoFU3oA2gWR0CMycYFaB7NdX2UKGgGaAloD0MI1JrmHaeQMkCUhpRSlGgVTegDaBZHQIzL6ASWZ7Z1fZQoaAZoCWgPQwgX1/hM9j9XQJSGlFKUaBVN6ANoFkdAjN3afSQYDXV9lChoBmgJaA9DCJnXEYfsDWFAlIaUUpRoFU3oA2gWR0CM49Ukv9LpdX2UKGgGaAloD0MIqWvtfaqoW0CUhpRSlGgVTegDaBZHQIzmYhllK9R1fZQoaAZoCWgPQwhkIqXZPK5OQJSGlFKUaBVN6ANoFkdAjOb/Ho5ggHV9lChoBmgJaA9DCMu+K4L/hldAlIaUUpRoFU3oA2gWR0CM50y3Td+HdX2UKGgGaAloD0MIguMybmraWkCUhpRSlGgVTegDaBZHQIzqCq6vq1R1fZQoaAZoCWgPQwhvZ195EJFhQJSGlFKUaBVN6ANoFkdAjRpQumJm/XV9lChoBmgJaA9DCME3TZ8dcLm/lIaUUpRoFUu7aBZHQI0bg0oBq9J1fZQoaAZoCWgPQwjAety3WqNYQJSGlFKUaBVN6ANoFkdAjRxXKKYRd3V9lChoBmgJaA9DCD+RJ0nXTN+/lIaUUpRoFUveaBZHQI0d3EETxoZ1fZQoaAZoCWgPQwhYqaCi6hthQJSGlFKUaBVN6ANoFkdAjSGwBYFJQXV9lChoBmgJaA9DCC1fl+E/iltAlIaUUpRoFU3oA2gWR0CNI5qqwQlKdX2UKGgGaAloD0MIBFd5AmGLW0CUhpRSlGgVTegDaBZHQI0lsal1r7B1fZQoaAZoCWgPQwgoucMmMhVAQJSGlFKUaBVN6ANoFkdAjSjFOwgTy3V9lChoBmgJaA9DCIQQkC+holxAlIaUUpRoFU3oA2gWR0CNPfedCmdidX2UKGgGaAloD0MIYHZPHha3WECUhpRSlGgVTegDaBZHQI1Mvr4WUKR1fZQoaAZoCWgPQwjs+C8QBLpgQJSGlFKUaBVN6ANoFkdAjWiP38GcF3V9lChoBmgJaA9DCC+kw0OYbGJAlIaUUpRoFU3oA2gWR0CNcGXw9aEBdX2UKGgGaAloD0MIL+HQWzy7XECUhpRSlGgVTegDaBZHQI1xEZpBX0Z1fZQoaAZoCWgPQwi30muzsYJbQJSGlFKUaBVN6ANoFkdAjXYT+FUQ1HV9lChoBmgJaA9DCPZAKzDk+GJAlIaUUpRoFU3oA2gWR0CNg1d/J/5MdX2UKGgGaAloD0MIrWnecYoeZkCUhpRSlGgVTegDaBZHQI2Nxe7cwg11fZQoaAZoCWgPQwjgoL36ePhYQJSGlFKUaBVN6ANoFkdAjZAn4XXRPXVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 128,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
Moonman-Lunar-Lander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4661f0bde31a033d7fbb1af0c283f310c2816f61f55ac67928d84fa4a0366243
|
3 |
size 84829
|
Moonman-Lunar-Lander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e50c86aa51433336094ee90f19f3211de6f0839a3d58c5ade9e9e531d39488f2
|
3 |
size 43201
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 189.55 +/- 75.03
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06fca0a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06fca0a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06fca0a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06fca0a680>", "_build": "<function ActorCriticPolicy._build at 0x7f06fca0a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f06fca0a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06fca0a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06fca0a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06fca0a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06fca0a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06fca0aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f06fca4fba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652294637.4887934, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAHMQ4z097hY64shlvWRq7r0lt9K8/aCVvQAAAAAAAAAAmu3ZvK6rkrqcq6I76qUWO6GTfjuCTTG8AACAPwAAgD8AL8O89kh4utdcCjq3DUa0IA4Zu1bgHrkAAIA/AACAP5pg3r1xvVo4F9MXvBnqrTZTvtI75toktgAAgD8AAIA/c914PoOoHT1GVc861m+IOQeptT5S7pq4AACAPwAAgD/6WTy+Dmu+vEMfEr19Ma67u6ssPqaWhzwAAIA/AACAPwDg3j0fhak480iKO2ApZLsUAeW669MevQAAAAAAAAAA81KQPnEZaDod/329SjYCub9Y5TsQiua5AACAPwAAAACaCzo8KRA3upE4I7svvxy2vCQrOWKiQToAAIA/AACAP2baxTv2vGq62tZJOirw67U3tlo6UvZnuQAAgD8AAIA/5ixGPSm0Hbrzgm27dVQ5t+34bTvOeIk6AACAPwAAgD+a2408H32MuT8fgLzstha2Ht1IuWalhjUAAIA/AACAP2ZI5L1qop4/ekUAvmvXZb6zP1s8OJzzPQAAAAAAAAAAM77MPb6wAj93DI49AYAOvhdei7wSTTQ+AAAAAAAAAACNT4+9PRoEuU1q27p2oBm2ipy4OmZUAjoAAIA/AACAP7qLgj5j4wU9Nm41u+c3Hbr57Zc+mn6KOgAAgD8AAIA/WiDtvaRPiD/yShK+9CufvkpVRDsSdhO9AAAAAAAAAAAtFmg+YP+tP/qogj76I5K+lzzMPrGiJz4AAAAAAAAAAOMNUr4vvBk/unBaPVcJgr6sfOG9ljbFvQAAAAAAAAAAllFvvmp+hz87n8W+BwSRvoQc772TtIa9AAAAAAAAAABAZoW+Z7QWvaBxbruTcRm6zayEPt3CnToAAIA/AACAP7MOt71IyY45YNvfu6czCD0oE+A6CjZTvAAAgD8AAIA/AHhZPK5BlrpQ8mm8IIG6NUYwKjoidye1AACAPwAAgD/txiI+OJCuu16tuzylVYW6f9MQvQY0Y7sAAIA/AACAP+Y2+r0Sbds8PpcsPvCIY76Q1xm+cprMPAAAAAAAAAAAbQ0PvuGI9juPei887TSHvL6kg70Zi4C9AAAAAAAAgD/m3S4+BhwGP2JvdL3KEyu+t0Unvuq1Tz0AAAAAAAAAAMDPrL0jCpc/MllzvnKghb7+Z0690XINvAAAAAAAAAAAANf4PLh+97mFFr66DuVNtrAwLrsz6N45AACAPwAAgD/g1Cw+XPodvHO/5jpcqbW43O6Fva2uDroAAIA/AACAPwCKhr17jIO6zurZu0W/tjWzxwm7ehkitQAAgD8AAIA/mvL9PFxfN7rW+Nw5otM8NoSIETubkAG5AACAPwAAgD+gIoQ+ki2LP5qplbvCw1W+Taq5PbJGmL0AAAAAAAAAAJqvgD62+wu8jIyiOu5YUbgzLX291/27uQAAgD8AAIA/2oGkPvvY+Ly1UA66U8tvt/XRLb4WTn04AACAPwAAgD9aGY8+gTvEvH6yVrsNQa451X0rvhcLhToAAIA/AACAP5onwby+p949Lg+wPYPigb7SGqE9tqxRPgAAAAAAAAAARix8PoGl0rw0c6G6JdcUOff1Or5r9845AACAPwAAgD8TYeQ+N5/TvYx7sDpU0DO4HdmLvR37CLoAAIA/AACAPy3nNT6FKaQ6c0dQOW77GjY7AHE85s5uuAAAgD8AAIA/ZmqNPo3sxj6tIue9DX5XvmM8Vz1/A4c8AAAAAAAAAABNy7k9qZtEPkuBhLvvtJu93B/xvBYoi7wAAAAAAAAAAIZJlj5Ypq4+m2AkvhYx+r0oupa9JdHDvQAAAAAAAAAAuqkVvi6pizsC7hS63FFvNwydH71+LTo5AACAPwAAgD8z7a+8FJCGuoWIxzpy7Ks3OMmmOib4dLkAAIA/AACAP/5Sh77fI24/YFauvkL1wL4OVgU+v/cJvgAAAAAAAAAAq8AGP+ugQj9o3vU9PYKLvmds0r1hnrO9AAAAAAAAAACwgKK+HJJsPq4ur73kILC9g8zRPFL5wDwAAAAAAAAAAHpYLr6c5Xm8C7rhvKXTVrvKi9s90UEtPAAAgD8AAIA/usIxvrWEhT/AqKa9epVavsXmLb7y+jg+AAAAAAAAAACwX3K+H5/CPPsHELs2yKI5J5JSvrbXPzoAAIA/AACAP/Ldl76cwNI+cBGPPba5a75Fcmi95LE7vQAAAAAAAAAAZtAPvqClhD84tCK+ce+GvmGPhbyzysW9AAAAAAAAAABmjoM+NBgbP2bOpD1kUU2+/3AZvquqQLwAAAAAAAAAAGZ8aDyPMim6GkyhOwBsXTQVUcG7zyq+ugAAgD8AAIA/9gBWvuvNxz72Zi09dhxtvmeajz4gBRm+AAAAAAAAAAB2ALo+BVexPLjoYDuMXNE4m89EPRd/i7oAAIA/AACAP+0aHz/cAyu8KCyaulxggDkhHZe+jkvOOQAAgD8AAIA/YJkoPglEOj8iFuw8GnQZvkzmQT2+XQe+AAAAAAAAAADNLFs9XPNmuhcvhjqXXoI2HOpAOjb2mbkAAIA/AACAPwBiXLyTNEM/bk2nPkmDN75b/G6+3C8GPgAAAAAAAAAAojuQvkie/jvXfCs8Xmf7uZkujr36TxC4AACAPwAAgD/mnqg9e3aHuu4O6bvQg/m2fbXbOppRYDYAAIA/AACAP3NaXj4llWA/86htPQGOG77ED2y8O/nAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8bioFhFAZECUhpRSlIwBbJRN6AOMAXSUR0CWQBC/47A+dX2UKGgGaAloD0MIMjm1M0zAV8CUhpRSlGgVTVEBaBZHQJZCseKbayt1fZQoaAZoCWgPQwjDnnb4a2RXQJSGlFKUaBVN6ANoFkdAlkRMImgJ1XV9lChoBmgJaA9DCOqu7ILBCVZAlIaUUpRoFU3oA2gWR0CWSL/S6UaAdX2UKGgGaAloD0MIBoTWw5dRJcCUhpRSlGgVTRsBaBZHQJZMIeii7Cl1fZQoaAZoCWgPQwgYCW05l+FbQJSGlFKUaBVN6ANoFkdAllMoQvpQlHV9lChoBmgJaA9DCDGx+bi2+WBAlIaUUpRoFU3oA2gWR0CWZwFKCg9NdX2UKGgGaAloD0MIMEymCkbYXkCUhpRSlGgVTegDaBZHQJZq9a8pTdd1fZQoaAZoCWgPQwjVCWgibJRXQJSGlFKUaBVN6ANoFkdAlm/bjPv8ZXV9lChoBmgJaA9DCGByo8haYWJAlIaUUpRoFU3oA2gWR0CWcgs5GSZCdX2UKGgGaAloD0MIBwd7E0NCE0CUhpRSlGgVTWYBaBZHQJZ3Xnp0OmR1fZQoaAZoCWgPQwjPaKuSyDtdQJSGlFKUaBVN6ANoFkdAlnyha1TisHV9lChoBmgJaA9DCNGRXP5DKGFAlIaUUpRoFU3oA2gWR0CWfYC0F8ohdX2UKGgGaAloD0MIOxqH+l2FUsCUhpRSlGgVTRIBaBZHQJaDbdrO7g91fZQoaAZoCWgPQwhnX3mQntRiQJSGlFKUaBVN6ANoFkdAloTFSKm8/XV9lChoBmgJaA9DCBhA+FCigVpAlIaUUpRoFU3oA2gWR0CWhsQw9JSSdX2UKGgGaAloD0MI8ghupGzhW0CUhpRSlGgVTegDaBZHQJaJSRMewLV1fZQoaAZoCWgPQwhuwVJdwPhhQJSGlFKUaBVN6ANoFkdAlowR1LamGnV9lChoBmgJaA9DCFc+y/PgollAlIaUUpRoFU3oA2gWR0CWjBXrt3OfdX2UKGgGaAloD0MIF/Ayw0Z7VkCUhpRSlGgVTegDaBZHQJaQNXQtz0Z1fZQoaAZoCWgPQwj8/s2LE71VQJSGlFKUaBVN6ANoFkdAlpT28M/hVHV9lChoBmgJaA9DCG5OJQNAXSRAlIaUUpRoFU1BAWgWR0CWlm7Z39rHdX2UKGgGaAloD0MIDRtl/eZYZECUhpRSlGgVTegDaBZHQJaagQcxTKl1fZQoaAZoCWgPQwh9BWnGogdgQJSGlFKUaBVN6ANoFkdAlptlBt1p03V9lChoBmgJaA9DCFNb6iCvly/AlIaUUpRoFU1NAWgWR0CWoOiSJTESdX2UKGgGaAloD0MILv62J8jvYkCUhpRSlGgVTegDaBZHQJaiQn0Cih51fZQoaAZoCWgPQwhgkzXqIRrxv5SGlFKUaBVNPgFoFkdAlqJW/vfCRHV9lChoBmgJaA9DCAMIH0q0pFhAlIaUUpRoFU3oA2gWR0CWpaeUpuuSdX2UKGgGaAloD0MIUFPL1vqyWkCUhpRSlGgVTegDaBZHQJalqrOqvNh1fZQoaAZoCWgPQwhr0m2JXJBbQJSGlFKUaBVN6ANoFkdAlqkRoAXEZXV9lChoBmgJaA9DCDbIJCNnnVxAlIaUUpRoFU3oA2gWR0CWtvqd6LOzdX2UKGgGaAloD0MISN45lKG3XUCUhpRSlGgVTegDaBZHQJbI/4593KV1fZQoaAZoCWgPQwjbMXVXdjlCwJSGlFKUaBVNFwFoFkdAlsxgZXMhYHV9lChoBmgJaA9DCJkPCHQmuGJAlIaUUpRoFU3oA2gWR0CWzLJTER8MdX2UKGgGaAloD0MIVoDvNm8WUkCUhpRSlGgVTegDaBZHQJbM9zbN8md1fZQoaAZoCWgPQwjedMsO8WBSQJSGlFKUaBVN6ANoFkdAls3Zbt7a7HV9lChoBmgJaA9DCAWnPpC8BlhAlIaUUpRoFU3oA2gWR0CW0l+9alk6dX2UKGgGaAloD0MI8Irgf6szYkCUhpRSlGgVTeUDaBZHQJbVLF5v9+B1fZQoaAZoCWgPQwhKCcGqev0ywJSGlFKUaBVNJgFoFkdAltxHuJDVpnV9lChoBmgJaA9DCA/Tvrk/qGZAlIaUUpRoFU1/AmgWR0CW3rSvTw2EdX2UKGgGaAloD0MI0XmNXaJtYkCUhpRSlGgVTegDaBZHQJbmWqvNeMR1fZQoaAZoCWgPQwgv98lRgMJeQJSGlFKUaBVN6ANoFkdAlu9SSmqHXXV9lChoBmgJaA9DCCIa3UHs7E/AlIaUUpRoFU0cAWgWR0CW8CcWCVbBdX2UKGgGaAloD0MIBoIAGTqjWUCUhpRSlGgVTegDaBZHQJb1XKW9lEt1fZQoaAZoCWgPQwj2DUxuFKFjQJSGlFKUaBVN6ANoFkdAlwCupXIU8HV9lChoBmgJaA9DCJyopbkV/1lAlIaUUpRoFU3oA2gWR0CXALGdI5HVdX2UKGgGaAloD0MICW05l+KQYUCUhpRSlGgVTegDaBZHQJcC9mFrVON1fZQoaAZoCWgPQwjxD1t6NINjQJSGlFKUaBVN6wJoFkdAlwpy9/SYxHV9lChoBmgJaA9DCLJnz2VqNlRAlIaUUpRoFU3oA2gWR0CXGFEETxoadX2UKGgGaAloD0MI4e1BCMgGYECUhpRSlGgVTegDaBZHQJcbWNZNfw91fZQoaAZoCWgPQwgVx4FXyytLQJSGlFKUaBVNTgFoFkdAlx3bN4Z/C3V9lChoBmgJaA9DCGXequtQplpAlIaUUpRoFU3oA2gWR0CXKIfEn9ehdX2UKGgGaAloD0MImkNSCyUpUkCUhpRSlGgVTegDaBZHQJcrOFsYVIt1fZQoaAZoCWgPQwj0M/W6RWtgQJSGlFKUaBVN6ANoFkdAly669sabWnV9lChoBmgJaA9DCOnxe5t+p2BAlIaUUpRoFU3oA2gWR0CXNlSydFvydX2UKGgGaAloD0MI18OXiSK1WECUhpRSlGgVTegDaBZHQJdCBftx+8Z1fZQoaAZoCWgPQwhwz/OnDShgQJSGlFKUaBVN6ANoFkdAl0nhd6cAinV9lChoBmgJaA9DCAdBR6tanEBAlIaUUpRoFU3oA2gWR0CXTQW43FUAdX2UKGgGaAloD0MIa2CrBIuUVUCUhpRSlGgVTegDaBZHQJdOtrrPdEd1fZQoaAZoCWgPQwgOoUrNHqQ5wJSGlFKUaBVNQAFoFkdAl07H/giu+3V9lChoBmgJaA9DCGMNF7mnYFZAlIaUUpRoFU3oA2gWR0CXT2mPHT7VdX2UKGgGaAloD0MIzVg0nZ1EW0CUhpRSlGgVTegDaBZHQJdQDiEQGwB1fZQoaAZoCWgPQwjS30vhwdxiQJSGlFKUaBVN6ANoFkdAl1FdLHuJDXV9lChoBmgJaA9DCOSG3023iFlAlIaUUpRoFU3oA2gWR0CXVzXqZ+hHdX2UKGgGaAloD0MID18mipDSV0CUhpRSlGgVTegDaBZHQJdZizt1IRR1fZQoaAZoCWgPQwgSo+cWui9ZQJSGlFKUaBVN6ANoFkdAl1sAUlAu7HV9lChoBmgJaA9DCEPJ5NTOQD/AlIaUUpRoFU0YAWgWR0CXXMqTr3TNdX2UKGgGaAloD0MIFYvfFFajVECUhpRSlGgVTegDaBZHQJdp+quKXOZ1fZQoaAZoCWgPQwgAUwYOaEpbQJSGlFKUaBVN6ANoFkdAl2+vFBIFvHV9lChoBmgJaA9DCFHex9EcglNAlIaUUpRoFU3oA2gWR0CXcFQTEit8dX2UKGgGaAloD0MIBi6PNSM4XkCUhpRSlGgVTegDaBZHQJdzD1uivgZ1fZQoaAZoCWgPQwjr4ctEkZthQJSGlFKUaBVN6ANoFkdAl3a1bqyGBXV9lChoBmgJaA9DCGkaFM0DtlNAlIaUUpRoFU3oA2gWR0CXe2GorFwUdX2UKGgGaAloD0MIPzp15TMmYUCUhpRSlGgVTegDaBZHQJeANgogFHJ1fZQoaAZoCWgPQwikjSPWYsxhQJSGlFKUaBVN6ANoFkdAl4OuAiFCcHV9lChoBmgJaA9DCO+rcqHyB0lAlIaUUpRoFU3oA2gWR0CXiuTLW7OFdX2UKGgGaAloD0MITBk4oKV4YkCUhpRSlGgVTegDaBZHQJeguMZP2wp1fZQoaAZoCWgPQwg7cM6I0tZcQJSGlFKUaBVN6ANoFkdAl6Ue/k/8mHV9lChoBmgJaA9DCDbIJCNn4StAlIaUUpRoFU06AWgWR0CXpd/7zkIYdX2UKGgGaAloD0MIwLSoT3L8UECUhpRSlGgVTegDaBZHQJeqTNZ/0/Z1fZQoaAZoCWgPQwgpe0s5X6FfQJSGlFKUaBVN6ANoFkdAl6yaSLZSN3V9lChoBmgJaA9DCHaNlgM9hC3AlIaUUpRoFU0sAWgWR0CXrZZ75VOsdX2UKGgGaAloD0MICWtj7ISBY0CUhpRSlGgVTegDaBZHQJe4FElVtGd1fZQoaAZoCWgPQwhyGqIKfyhcQJSGlFKUaBVN6ANoFkdAl7j8+/xlQXV9lChoBmgJaA9DCL4uw3+6fFlAlIaUUpRoFU3oA2gWR0CXwHn9vS+hdX2UKGgGaAloD0MIuYlamltHX0CUhpRSlGgVTegDaBZHQJfChPM0P6N1fZQoaAZoCWgPQwiLFqBtNR1iQJSGlFKUaBVN6ANoFkdAl8UvsVtXP3V9lChoBmgJaA9DCLvvGB77N0zAlIaUUpRoFU1bAWgWR0CXxdC8e0XxdX2UKGgGaAloD0MIclMDzeeNX0CUhpRSlGgVTegDaBZHQJfIMnWrfch1fZQoaAZoCWgPQwgV5j3ONMdSQJSGlFKUaBVN6ANoFkdAl8g25H3DenV9lChoBmgJaA9DCKkXfJqThVxAlIaUUpRoFU3oA2gWR0CXzHovi97GdX2UKGgGaAloD0MINBKhEWxZW0CUhpRSlGgVTegDaBZHQJfRr6vaDf51fZQoaAZoCWgPQwjMft3pzsxZQJSGlFKUaBVN6ANoFkdAl9NKvq1PWXV9lChoBmgJaA9DCN6Rsdr8OFdAlIaUUpRoFU3oA2gWR0CX2KMUAT7EdX2UKGgGaAloD0MI001iEFilXkCUhpRSlGgVTegDaBZHQJfe49mpVCJ1fZQoaAZoCWgPQwivQspPqu9dQJSGlFKUaBVN6ANoFkdAl+BTNt65XnV9lChoBmgJaA9DCGg+527XXWJAlIaUUpRoFU3oA2gWR0CX4GRIz3yqdX2UKGgGaAloD0MIvJF55A+RW0CUhpRSlGgVTegDaBZHQJfj1dOZb6h1fZQoaAZoCWgPQwhm3T8WohJXQJSGlFKUaBVN6ANoFkdAl+PYhIOH33V9lChoBmgJaA9DCBbbpKKxfVtAlIaUUpRoFU3oA2gWR0CX5xPXTVlPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4096, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5dd83e2c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5dd83e2cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5dd83e2d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5dd83e2dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f5dd83e2e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f5dd83e2ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5dd83e2f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5dd83e8050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5dd83e80e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5dd83e8170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5dd83e8200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5dd8409180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652296689.0383725, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOhFjxE08w+XvCDPltsn77DzVs9wOwrPgAAAAAAAAAAEH6sPsM8X7wqagm9+35putKWbb3JyRq8AACAPwAAgD/N4gw8Cmpku5Xa+bsfwVq7viiQPKY2RjwAAIA/AACAPyZLt72Fo7a5KqBWPLU95TRKa8K6I8sANAAAgD8AAIA/s+VkPRSUoLo5Xby7As0YtobfHLpznIc1AACAPwAAgD+91Ge+7PGIu9h49TpgqrU5SHgVPbjEo7kAAIA/AACAP4AsQr3DNRQ5U1eJu6ESDrl39zQ7yUWIOAAAgD8AAIA/TaaVPlQLs7xGqSE7gUR1ueBCIL6FHUi6AACAPwAAgD9mJ+m9UtioOGjxETyRRE63ON7mO6r3TLYAAIA/AACAP5pZ4bpRHcI9uw+VPeOckL5bmyE+1SjWvQAAAAAAAAAAZjPhvcPxK7pQt8i5rH9kNY08jjliOuI4AACAPwAAgD8ze9i8SO+4urpMQ7u2R7k55aPAujjQqDkAAIA/AACAP03uuL1c3xq6jcGGuzrpgDjOnOq6eiEXOgAAgD8AAIA/eCfRvjL3vj4dqME+90iovj/iVb54hIg9AAAAAAAAAADNlbY9hQu2OH2mbjx9cOe5TtMjOhyuyroAAAAAAACAPzNDFzspnHe42l3kvKLfkjxsffq5j7CFvAAAgD8AAIA/szOovee4vT/OKMC+YQzEvWQXGb3nZS++AAAAAAAAAAAzLTy9j1oTupnJsrzfXk+4GpobOxC/vDcAAIA/AACAPzPpIL24lu65hqPxO0RVxDuUW6U6fq/eOwAAgD8AAIA/gH5xPoHjzby3LYQ8QTblusN2Nb4tepi7AACAPwAAgD+aRoU+7maFvFRbojrFLL24ciPrvR2cv7kAAIA/AACAPyYPrz1IO4K6kkRGu5Wmx7bABVs6E/xhOgAAgD8AAIA/ZlpOvI/yYrozs1Q70s3ztgJLETt4iXm6AACAPwAAgD9mXYA9tvaOP9X9eD6kFgW/WTw0PW7Cl7sAAAAAAAAAAJBDCz9XYPi9iScPvepamruakKS+V2pFvQAAgD8AAIA/gMqiPnTqZT8YuP09T1fbvoHlzD76BuK9AAAAAAAAAABzccQ99tw7uouA7zspGwi43F90ui9+A7cAAIA/AACAP81w2r0pbB85JJ61PE1mIzy++rM7oA3avAAAAAAAAIA/APiEPOFy5TnaTze798WaPAJ1YLtdO2c8AACAPwAAgD8AACW57MCCPlKmtD0bnGm+drA9vNYtuDsAAAAAAAAAANIFhL49FVM8zSPnO3Gil7nfBOu9PnGUOgAAgD8AAIA/pmyXvYXjhblVJqq8jiQavDUgPjsEpig9AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIueNNfotlUkCUhpRSlIwBbJRN6AOMAXSUR0CJ6BOSntOVdX2UKGgGaAloD0MI9n8O8+XlWUCUhpRSlGgVTegDaBZHQIoEDmhdt2t1fZQoaAZoCWgPQwhNhA1PrxhcQJSGlFKUaBVN6ANoFkdAiggJ9RaX8nV9lChoBmgJaA9DCHRfzmxXsClAlIaUUpRoFU3oA2gWR0CKGeUL2HtXdX2UKGgGaAloD0MITWcng6O9XkCUhpRSlGgVTegDaBZHQIoh9bFCLMt1fZQoaAZoCWgPQwhmMEYkCtRbQJSGlFKUaBVN6ANoFkdAiiKJSzgMt3V9lChoBmgJaA9DCLLyy2CMYF5AlIaUUpRoFU3oA2gWR0CKIs+NcW0rdX2UKGgGaAloD0MIcqQzMPJoW0CUhpRSlGgVTegDaBZHQIoleNBF/hF1fZQoaAZoCWgPQwhccXFUbkVeQJSGlFKUaBVN6ANoFkdAiiuA+6iCa3V9lChoBmgJaA9DCNwSueAMfgtAlIaUUpRoFU3oA2gWR0CKWExVQyh0dX2UKGgGaAloD0MImE2AYfnnN0CUhpRSlGgVTegDaBZHQIpeGP1ct5F1fZQoaAZoCWgPQwhNamgDsJ1SQJSGlFKUaBVN6ANoFkdAimA4m9g4O3V9lChoBmgJaA9DCNffEoB/lFlAlIaUUpRoFU3oA2gWR0CKYrKnNxEOdX2UKGgGaAloD0MIBVCMLJnFVMCUhpRSlGgVTTcCaBZHQIpmFD8cdYJ1fZQoaAZoCWgPQwiY3v5cNMNYQJSGlFKUaBVN6ANoFkdAinMpxm03O3V9lChoBmgJaA9DCLXAHhMpRlpAlIaUUpRoFU3oA2gWR0CKfyOdXko4dX2UKGgGaAloD0MI5bZ9j/psX0CUhpRSlGgVTegDaBZHQIqPYnhKlHl1fZQoaAZoCWgPQwgU56ij42xZQJSGlFKUaBVN6ANoFkdAipGPtD2JznV9lChoBmgJaA9DCFOu8C4XBlpAlIaUUpRoFU3oA2gWR0CKnhpDeCTVdX2UKGgGaAloD0MIVgxXB0B8EMCUhpRSlGgVS6FoFkdAiqVD7ALy+nV9lChoBmgJaA9DCIJYNnNIoVdAlIaUUpRoFU3oA2gWR0CKrPyoXKr8dX2UKGgGaAloD0MI00uMZfoWXkCUhpRSlGgVTegDaBZHQIq1a4QSSNh1fZQoaAZoCWgPQwif5Xlwd3RQQJSGlFKUaBVN6ANoFkdAirYbxmTTv3V9lChoBmgJaA9DCJmaBG9IKltAlIaUUpRoFU3oA2gWR0CKu2Y3vQWvdX2UKGgGaAloD0MIrimQ2VmEUECUhpRSlGgVS6poFkdAiscs0gr6L3V9lChoBmgJaA9DCH0/NV66d1VAlIaUUpRoFU3oA2gWR0CKyfj7yhBadX2UKGgGaAloD0MI2XbaGhF8UkCUhpRSlGgVTegDaBZHQIrMCblRxcV1fZQoaAZoCWgPQwjirfNvl/BfQJSGlFKUaBVN6ANoFkdAi0VfzreImHV9lChoBmgJaA9DCDjaccPvZlBAlIaUUpRoFUvRaBZHQItPCTMaCMB1fZQoaAZoCWgPQwhgBI2ZRERbQJSGlFKUaBVN6ANoFkdAi1j8Md92HXV9lChoBmgJaA9DCNiDSfHxCUNAlIaUUpRoFUvpaBZHQItcMCeVcD91fZQoaAZoCWgPQwhivyfWqShWQJSGlFKUaBVN6ANoFkdAi2gRIjGDMHV9lChoBmgJaA9DCOXuc3y0Bk9AlIaUUpRoFU3oA2gWR0CLaZRpDeCTdX2UKGgGaAloD0MIf/YjRWSgJUCUhpRSlGgVS7JoFkdAi2yE8zQ/o3V9lChoBmgJaA9DCLqHhO/90ltAlIaUUpRoFU3oA2gWR0CLgRAVwgkkdX2UKGgGaAloD0MI3gAz38E9V0CUhpRSlGgVTegDaBZHQIuG4P07KaJ1fZQoaAZoCWgPQwhcVmEzwEhaQJSGlFKUaBVN6ANoFkdAi4hcwg1WKnV9lChoBmgJaA9DCGMJa2NsXmFAlIaUUpRoFU3oA2gWR0CLinAO8TSLdX2UKGgGaAloD0MI10//WfNrJ8CUhpRSlGgVTegDaBZHQIuhUqaw2VF1fZQoaAZoCWgPQwgK98q8VfdSQJSGlFKUaBVN6ANoFkdAi6NDT8YQ8XV9lChoBmgJaA9DCN53DI/9g11AlIaUUpRoFU3oA2gWR0CLtLxz7uUmdX2UKGgGaAloD0MIqcKf4c3WOkCUhpRSlGgVS8ZoFkdAi7qGOEM9bHV9lChoBmgJaA9DCHNLqyFxmVVAlIaUUpRoFU3oA2gWR0CLvRE9dNWVdX2UKGgGaAloD0MI3ZTyWgkiV0CUhpRSlGgVTegDaBZHQIu9nJNj9XN1fZQoaAZoCWgPQwiQgxJm2lhcQJSGlFKUaBVN6ANoFkdAi73kal1r7HV9lChoBmgJaA9DCJFkVu9w6xlAlIaUUpRoFUu9aBZHQIu96TyJ9Ap1fZQoaAZoCWgPQwhbQdMSK/FaQJSGlFKUaBVN6ANoFkdAi8C0FB6a9nV9lChoBmgJaA9DCLKC34aYBWBAlIaUUpRoFU3oA2gWR0CLxsmgJ1JUdX2UKGgGaAloD0MIotCy7h+vMECUhpRSlGgVS7RoFkdAi/BvF3pwCXV9lChoBmgJaA9DCNnRONRvB2NAlIaUUpRoFU3oA2gWR0CL8rodMj/udX2UKGgGaAloD0MIB1+YTBWfW0CUhpRSlGgVTegDaBZHQIv4YQFs54p1fZQoaAZoCWgPQwh5BaIn5bRkQJSGlFKUaBVN6ANoFkdAi/qBAnlXBHV9lChoBmgJaA9DCKgck8X95F1AlIaUUpRoFU3oA2gWR0CL/NVzZHurdX2UKGgGaAloD0MIzEbn/BQRWkCUhpRSlGgVTegDaBZHQIv/9jkMkQh1fZQoaAZoCWgPQwjVy+80me9KQJSGlFKUaBVLx2gWR0CMAER7qptKdX2UKGgGaAloD0MILzIBv0YmV0CUhpRSlGgVTegDaBZHQIwWZ/ZuhsZ1fZQoaAZoCWgPQwh1WOGWD7NgQJSGlFKUaBVN6ANoFkdAjCYqfnOjZnV9lChoBmgJaA9DCEEpWrkXZDNAlIaUUpRoFUuxaBZHQIwzd8CxNZh1fZQoaAZoCWgPQwjsTKHzGtVLQJSGlFKUaBVN6ANoFkdAjEMYS6DoQnV9lChoBmgJaA9DCKDDfHkBik9AlIaUUpRoFU3oA2gWR0CMSz7dBSk1dX2UKGgGaAloD0MIYcYUrHGeT0CUhpRSlGgVTegDaBZHQIxL/uLJjlR1fZQoaAZoCWgPQwjCM6FJYo9eQJSGlFKUaBVN6ANoFkdAjFELqdH2AXV9lChoBmgJaA9DCNuLaDumc2JAlIaUUpRoFU3oA2gWR0CMX6ws5GSZdX2UKGgGaAloD0MINNjUeVQ8YUCUhpRSlGgVTegDaBZHQIxhd1bJOnF1fZQoaAZoCWgPQwjtKM5Rx+1gQJSGlFKUaBVN6ANoFkdAjGsL3TNMXnV9lChoBmgJaA9DCECGjh1UuinAlIaUUpRoFUu5aBZHQIxtpAnlXBB1fZQoaAZoCWgPQwiPcFrwohtaQJSGlFKUaBVN6ANoFkdAjHY1DjR2KXV9lChoBmgJaA9DCIZxN4hWk2BAlIaUUpRoFU3oA2gWR0CMgNVbzK9xdX2UKGgGaAloD0MIQPZ698dCYECUhpRSlGgVTegDaBZHQIyEVocrAgx1fZQoaAZoCWgPQwhivVErTPNhQJSGlFKUaBVN6ANoFkdAjI9pEpiI+HV9lChoBmgJaA9DCNI3aRoUVFNAlIaUUpRoFU3oA2gWR0CMkODaGpMpdX2UKGgGaAloD0MIoFBPH4FTNsCUhpRSlGgVS51oFkdAjJGzBAOav3V9lChoBmgJaA9DCOMXXklyrmBAlIaUUpRoFU3oA2gWR0CMk6nKGL1mdX2UKGgGaAloD0MIt3u5T46bU0CUhpRSlGgVTegDaBZHQIyvE6tDD0l1fZQoaAZoCWgPQwhQptHkYpxbQJSGlFKUaBVN6ANoFkdAjLFaY3Ns33V9lChoBmgJaA9DCFwAGqVLO1VAlIaUUpRoFU3oA2gWR0CMycYFaB7NdX2UKGgGaAloD0MI1JrmHaeQMkCUhpRSlGgVTegDaBZHQIzL6ASWZ7Z1fZQoaAZoCWgPQwgX1/hM9j9XQJSGlFKUaBVN6ANoFkdAjN3afSQYDXV9lChoBmgJaA9DCJnXEYfsDWFAlIaUUpRoFU3oA2gWR0CM49Ukv9LpdX2UKGgGaAloD0MIqWvtfaqoW0CUhpRSlGgVTegDaBZHQIzmYhllK9R1fZQoaAZoCWgPQwhkIqXZPK5OQJSGlFKUaBVN6ANoFkdAjOb/Ho5ggHV9lChoBmgJaA9DCMu+K4L/hldAlIaUUpRoFU3oA2gWR0CM50y3Td+HdX2UKGgGaAloD0MIguMybmraWkCUhpRSlGgVTegDaBZHQIzqCq6vq1R1fZQoaAZoCWgPQwhvZ195EJFhQJSGlFKUaBVN6ANoFkdAjRpQumJm/XV9lChoBmgJaA9DCME3TZ8dcLm/lIaUUpRoFUu7aBZHQI0bg0oBq9J1fZQoaAZoCWgPQwjAety3WqNYQJSGlFKUaBVN6ANoFkdAjRxXKKYRd3V9lChoBmgJaA9DCD+RJ0nXTN+/lIaUUpRoFUveaBZHQI0d3EETxoZ1fZQoaAZoCWgPQwhYqaCi6hthQJSGlFKUaBVN6ANoFkdAjSGwBYFJQXV9lChoBmgJaA9DCC1fl+E/iltAlIaUUpRoFU3oA2gWR0CNI5qqwQlKdX2UKGgGaAloD0MIBFd5AmGLW0CUhpRSlGgVTegDaBZHQI0lsal1r7B1fZQoaAZoCWgPQwgoucMmMhVAQJSGlFKUaBVN6ANoFkdAjSjFOwgTy3V9lChoBmgJaA9DCIQQkC+holxAlIaUUpRoFU3oA2gWR0CNPfedCmdidX2UKGgGaAloD0MIYHZPHha3WECUhpRSlGgVTegDaBZHQI1Mvr4WUKR1fZQoaAZoCWgPQwjs+C8QBLpgQJSGlFKUaBVN6ANoFkdAjWiP38GcF3V9lChoBmgJaA9DCC+kw0OYbGJAlIaUUpRoFU3oA2gWR0CNcGXw9aEBdX2UKGgGaAloD0MIL+HQWzy7XECUhpRSlGgVTegDaBZHQI1xEZpBX0Z1fZQoaAZoCWgPQwi30muzsYJbQJSGlFKUaBVN6ANoFkdAjXYT+FUQ1HV9lChoBmgJaA9DCPZAKzDk+GJAlIaUUpRoFU3oA2gWR0CNg1d/J/5MdX2UKGgGaAloD0MIrWnecYoeZkCUhpRSlGgVTegDaBZHQI2Nxe7cwg11fZQoaAZoCWgPQwjgoL36ePhYQJSGlFKUaBVN6ANoFkdAjZAn4XXRPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:813df8ab9e51b7fe275b272274fa4f76802b8ec072ed1530de4ee88cd140e8eb
|
3 |
+
size 249460
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 189.5487697000611, "std_reward": 75.02746530534012, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T19:34:28.449809"}
|