File size: 2,145 Bytes
888436d
26321cf
bd146fb
 
888436d
bd146fb
 
26321cf
888436d
bd146fb
 
 
 
888436d
bd146fb
 
26321cf
 
 
bd146fb
26321cf
 
 
bd146fb
26321cf
 
 
e9e1171
26321cf
 
 
e9e1171
888436d
 
 
 
 
0d08b71
888436d
0436a8c
888436d
0436a8c
 
 
 
888436d
 
 
 
0436a8c
 
888436d
 
0436a8c
 
888436d
 
0436a8c
 
888436d
 
 
 
 
 
0436a8c
 
 
 
 
 
888436d
 
 
 
0436a8c
 
 
888436d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-urdu-V8-Abid
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      type: mozilla-foundation/common_voice_8_0
      name: Common Voice ur
      args: ur
    metrics:
    - type: wer
      value: 44.63
      name: Test WER
 
    - type: cer
      value: 18.82
      name: Test CER

---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-60-Urdu-V8

This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 11.4832
- Wer: 0.5729
- Cer: 0.3170


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 19.671        | 8.33  | 100  | 7.7671          | 0.8795 | 0.4492 |
| 2.085         | 16.67 | 200  | 9.2759          | 0.6201 | 0.3320 |
| 0.6633        | 25.0  | 300  | 8.7025          | 0.5738 | 0.3104 |
| 0.388         | 33.33 | 400  | 10.2286         | 0.5852 | 0.3128 |
| 0.2822        | 41.67 | 500  | 11.1953         | 0.5738 | 0.3174 |
| 0.2293        | 50.0  | 600  | 11.4832         | 0.5729 | 0.3170 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0