kingabzpro commited on
Commit
99485d2
·
1 Parent(s): d092371

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -19
README.md CHANGED
@@ -1,12 +1,57 @@
1
  ---
 
 
 
2
  license: apache-2.0
3
  tags:
4
- - generated_from_trainer
 
5
  datasets:
6
- - common_voice
 
 
 
7
  model-index:
8
  - name: wav2vec2-large-xls-r-1b-Swedish
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,23 +61,48 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.3232
20
- - Wer: 0.1844
21
- - Cer: 0.0575
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
 
35
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ### Training hyperparameters
38
 
 
1
  ---
2
+ language:
3
+ - sv-SE
4
+
5
  license: apache-2.0
6
  tags:
7
+ - automatic-speech-recognition
8
+ - robust-speech-event
9
  datasets:
10
+ - mozilla-foundation/common_voice_8_0
11
+ metrics:
12
+ - wer
13
+ - cer
14
  model-index:
15
  - name: wav2vec2-large-xls-r-1b-Swedish
16
+ results:
17
+ - task:
18
+ type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
19
+ name: Speech Recognition # Optional. Example: Speech Recognition
20
+ dataset:
21
+ type: mozilla-foundation/common_voice_8_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
22
+ name: Common Voice sv-SE # Required. Example: Common Voice zh-CN
23
+ args: sv-SE # Optional. Example: zh-CN
24
+ metrics:
25
+ - type: wer # Required. Example: wer
26
+ value: 14.04 # Required. Example: 20.90
27
+ name: Test WER Without LM # Optional. Example: Test WER
28
+ args:
29
+ - learning_rate: 7.5e-05
30
+ - train_batch_size: 32
31
+ - eval_batch_size: 8
32
+ - seed: 42
33
+ - gradient_accumulation_steps: 4
34
+ - total_train_batch_size: 128
35
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
36
+ - lr_scheduler_type: linear
37
+ - lr_scheduler_warmup_steps: 1000
38
+ - num_epochs: 50
39
+ - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
40
+ - type: cer # Required. Example: wer
41
+ value: 4.86 # Required. Example: 20.90
42
+ name: Test CER Without LM # Optional. Example: Test WER
43
+ args:
44
+ - learning_rate: 7.5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 128
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 1000
53
+ - num_epochs: 50
54
+ - mixed_precision_training: Native AMP
55
  ---
56
 
57
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
61
 
62
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
63
  It achieves the following results on the evaluation set:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ **Without LM**
66
+ - Loss: 0.3370
67
+ - Wer: 18.44
68
+ - Cer: 5.75
69
+
70
+ **With LM**
71
+ - Loss: 0.3370
72
+ - Wer: 14.04
73
+ - Cer: 4.86
74
+
75
+ #### Evaluation Commands
76
+ 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
77
+
78
+ ```bash
79
+ python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
80
+ ```
81
+
82
+ 2. To evaluate on `speech-recognition-community-v2/dev_data`
83
+
84
+ ```bash
85
+ python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
86
+ ```
87
+
88
+ ### Inference With LM
89
+
90
+ ```python
91
+ import torch
92
+ from datasets import load_dataset
93
+ from transformers import AutoModelForCTC, AutoProcessor
94
+ import torchaudio.functional as F
95
+ model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
96
+ sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
97
+ sample = next(sample_iter)
98
+ resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
99
+ model = AutoModelForCTC.from_pretrained(model_id)
100
+ processor = AutoProcessor.from_pretrained(model_id)
101
+ input_values = processor(resampled_audio, return_tensors="pt").input_values
102
+ with torch.no_grad():
103
+ logits = model(input_values).logits
104
+ transcription = processor.batch_decode(logits.numpy()).text
105
+ ```
106
 
107
  ### Training hyperparameters
108