kingabzpro's picture
Update README.md
1db58e2
|
raw
history blame
3.44 kB
metadata
language:
  - ar
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_7_0
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-xls-r-300m
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_7_0
          name: Common Voice ar
          args: ar
        metrics:
          - type: wer
            value: 31.05
            name: Test WER
            args:
              - learning_rate: 0.0003
              - train_batch_size: 64
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 2
              - total_train_batch_size: 128
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 1000
              - num_epochs: 10
              - mixed_precision_training: Native AMP
          - type: cer
            value: 8.78
            name: Test CER
            args:
              - learning_rate: 0.0003
              - train_batch_size: 64
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 2
              - total_train_batch_size: 128
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 1000
              - num_epochs: 10
              - mixed_precision_training: Native AMP

wav2vec2-large-xlsr-300-arabic

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3384
  • Wer: 0.3105
  • Cer: 0.0879

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7383 1.8 500 0.4292 0.4065 0.1189
0.664 3.6 1000 0.4245 0.3978 0.1175
0.6064 5.4 1500 0.3854 0.3625 0.1048
0.5221 7.19 2000 0.3819 0.3400 0.0976
0.4591 8.99 2500 0.3384 0.3105 0.0879

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0