kingabzpro's picture
Update README.md
1db58e2
|
raw
history blame
3.44 kB
---
language:
- ar
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-xls-r-300m
results:
- task:
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
name: Speech Recognition # Optional. Example: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: Common Voice ar # Required. Example: Common Voice zh-CN
args: ar # Optional. Example: zh-CN
metrics:
- type: wer # Required. Example: wer
value: 31.05 # Required. Example: 20.90
name: Test WER # Optional. Example: Test WER
args:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
- type: cer # Required. Example: wer
value: 8.78 # Required. Example: 20.90
name: Test CER # Optional. Example: Test WER
args:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-300-arabic
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3384
- Wer: 0.3105
- Cer: 0.0879
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.7383 | 1.8 | 500 | 0.4292 | 0.4065 | 0.1189 |
| 0.664 | 3.6 | 1000 | 0.4245 | 0.3978 | 0.1175 |
| 0.6064 | 5.4 | 1500 | 0.3854 | 0.3625 | 0.1048 |
| 0.5221 | 7.19 | 2000 | 0.3819 | 0.3400 | 0.0976 |
| 0.4591 | 8.99 | 2500 | 0.3384 | 0.3105 | 0.0879 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0